首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of phosphopeptides in whole saliva (saliva expectorated from the mouth) was demonstrated and their origin was evaluated. Whole saliva contained much larger numbers of small phosphopeptides than are found in the glandular secretions. Most of these originated from the acidic proline-rich proteins (PRPs) in the major salivary glands and were formed, after secretion into the oral cavity, as a result of rapid degradation by proteolytic enzymes from extraglandular sources contained in sediment from whole saliva. Some peptides may have been formed by cleavage of basic PRPs, but other phosphoproteins apparently contributed little to the observed phosphopeptides. Most of the enzymes that produced phosphopeptides are serine proteinases. The gel-electrophoretic band patterns of the phosphopeptides obtained from 26 individuals of various acidic-PRP phenotypes were remarkably similar, demonstrating that the enzymes responsible were generally present in the population surveyed and that similar cleavages occur regardless of the nature of the acidic PRPs. Many of these peptides were N-terminal proteolytic cleavage products of acidic PRPs. The N-terminal phosphorylated region of acidic PRPs contains various biological activities, such as inhibition of hydroxyapatite formation, calcium binding and binding to hydroxyapatite, the major mineral of teeth. The demonstration of these phosphopeptides in the saliva that is in contact with the oral surface may therefore be of biological importance.  相似文献   

2.
Salivary glands synthesize and secrete an unusual family of proline-rich proteins (PRPs) that can be broadly divided into acidic and basic PRPs. We studied the tissue-specific expression of these proteins in rabbits, using antibodies to rabbit acidic and basic PRPs as well as antibodies and cDNA probes to human PRPs. By immunoblotting, in vitro translation, and Northern blotting, basic PRPs could be readily detected in the parotid gland but were absent in other salivary glands. In contrast, synthesis in vitro of acidic PRPs was detected in parotid, sublingual, and submandibular glands. Ultrastructural localization with immunogold showed heavy labeling with antibodies to acidic PRPs of secretory granules of parotid acinar cells and sublingual serous demilune cells. Less intense labeling occurred in the seromucous acinar cells of the submandibular gland. With antibodies to basic PRPs, the labeling of the parotid gland was similar to that observed with antibodies to acidic PRPs, but there was only weak labeling of granules of a few sublingual demilune cells, and no labeling of the submandibular gland. These results demonstrate a variable pattern of distribution of acidic and basic PRPs in rabbit salivary glands. These animals are therefore well suited for study of differential tissue expression of PRPs.  相似文献   

3.
Exocrine cells have an essential function of sorting secreted proteins into the correct secretory pathway. A clear understanding of sorting in salivary glands would contribute to the correct targeting of therapeutic transgenes. The present work investigated whether there is a change in the relative proportions of basic proline-rich protein (PRP) and acidic PRPs in secretory granules in response to chronic isoproterenol treatment, and whether this alters the sorting of endogenous cargo proteins. Immunoblot analysis of secretory granules from rat parotids found a large increase of basic PRP over acidic PRPs in response to chronic isoproterenol treatment. Pulse chase experiments demonstrated that isoproterenol also decreased regulated secretion of newly synthesized secretory proteins, including PRPs, amylase and parotid secretory protein. This decreased efficiency of the apical regulated pathway may be mediated by alkalization of the secretory granules since it was reversed by treatment with mild acid. We also investigated changes in secretion through the basolateral (endocrine) pathways. A significant increase in parotid secretory protein and salivary amylase was detected in sera of isoproterenol-treated animals, suggesting increased routing of the regulated secretory proteins to the basolateral pathway. These studies demonstrate that shifts of endogenous proteins can modulate regulated secretion and sorting of cargo proteins. amylase; parotid secretory protein; polarized secretion  相似文献   

4.
To elucidate the localization of post-translational modifications of different classes of human salivary proteins and peptides (acidic and basic proline-rich proteins (PRPs), Histatins, Statherin, P-B peptide, and "S type" Cystatins) a comparative reversed phase HPLC-ESI-MS analysis on intact proteins of enriched granule preparations from parotid and submandibular glands as well as parotid, submandibular/sublingual (Sm/Sl), and whole saliva was performed. The main results of this study indicate the following. (i) Phosphorylation of all salivary peptides, sulfation of Histatin 1, proteolytic cleavages of acidic and precursor basic PRPs occur before granule storage. (ii) In agreement with previous studies, basic PRPs are secreted by the parotid gland only, whereas all isoforms of acidic PRPs (aPRPs) are secreted by both parotid and Sm/Sl glands. (iii) Phosphorylation levels of aPRPs, Histatin 1, and Statherin are higher in the parotid gland, whereas the extent of cleavage of aPRP is higher in Sm/Sl glands. (iv) O-Sulfation of tyrosines of Histatin 1 is a post-translational modification specific for the submandibular gland. (v) The concentration of Histatin 3, Histatin 5, and Histatin 6, but not Histatin 1, is higher in parotid saliva. (vi) Histatin 3 is submitted to the first proteolytic cleavage (generating Histatins 6 and 5) during granule maturation, and it occurs to the same relative extent in both glands. (vii) The proteolytic cleavages of Histatin 5 and 6, generating a cascade of Histatin 3 fragments, take place after granule secretion and are more extensive in parotid secretion. (viii) Basic PRPs are cleaved in the oral cavity by unknown peptidases, generating various small proline-rich peptides. (ix) C-terminal removal from Statherin is more extensive in parotid saliva. (x) P-B peptide is secreted by both glands, and its relative quantity is higher in submandibular/sublingual secretion. (xi) In agreement with previous studies, S type Cystatins are mainly the product of Sm/Sl glands.  相似文献   

5.
Precursor proteins of the acquired enamel pellicle derive from glandular and non-glandular secretions, which are components of whole saliva. The purpose of this investigation was to gain further insights into the characteristics of proteins in whole saliva and in vivo formed pellicle components. To maximize separation and resolution using only micro-amounts of protein, a two-dimensional gel electrophoresis system was employed. Protein samples from parotid secretion, submandibular/sublingual secretion, whole saliva, and pellicle were subjected to isoelectric focusing followed by SDS-PAGE. Selected protein spots were excised, subjected to "in-gel" trypsin digestion, and examined by mass spectrometry (MS). The data generated, including peptide maps and tandem MS spectra, were analyzed using protein data base searches. Components identified in whole saliva include cystatins (SA-III, SA, and SN), statherin, albumin, amylase, and calgranulin A. Components identified in pellicle included histatins, lysozyme, statherin, cytokeratins, and calgranulin B. The results showed that whole saliva and pellicle have more complex protein patterns than those of glandular secretions. There are some similarities and also distinct differences between the patterns of proteins present in whole saliva and pellicle. MS approaches allowed identification of not only well characterized salivary proteins but also novel proteins not previously identified in pellicle.  相似文献   

6.
The complete amino acid sequence of the macaque proline-rich phosphoglycoprotein (MPRP) was determined by automated Edman degradation of the protein, fragments F-1 and F-2 derived from the protein by an intrinsic salivary protease, and chymotryptic, tryptic, Staphylococcus aureus V8 protease, and endoproteinase lysine-C peptides. MPRP contains 115 amino acid residues including phosphorylated serine at residues 1, 2, 6, 12, and 15, and 6 O-glycosidic carbohydrate units at residues 69, 75, 87 (threonine) and 96, 103, and 106 (serine). The Mr of the polypeptide moiety of the protein is 12,656. The amino-terminal domain contains all 5 phosphoserine residues and most of the other negatively charged and hydrophilic residues, whereas the carboxyl-terminal domain contains 24 of 25 proline residues, and 6 O-glycosidic oligosaccharides. Comparison of MPRP with the four major anionic proline-rich proteins (PRPs) from human glandular secretion shows that 57% of the amino acid residues are identical if gaps are introduced to maximize homology, suggesting that these proteins are phylogenetically related. Significant structural and functional differences occur between the macaque and human proteins. MPRP has 5 phosphoserines, PRPs have 2. MPRP is a glycoprotein, PRPs are not. MPRP inhibits the spontaneous precipitation (primary precipitation) of calcium phosphate salts from supersaturated solutions in addition to inhibiting seeded crystal growth (secondary precipitation) (Oppenheim, F. G., Offner, G. D., and Troxler, R. F. (1982) J. Biol. Chem. 257, 9271-9282), whereas PRPs inhibit only secondary precipitation. MPRP is the only major anionic proline-rich protein in macaque glandular secretion; in contrast, there are four major anionic PRPs and these display a genetic polymorphism. The significance of these structural differences with respect to biological function and the possible relationship of MPRP to salivary mucins are discussed.  相似文献   

7.
Five major basic polypeptides with characteristics typical of proline-rich proteins, accumulated in parotid glands after long term isoprenaline treatment of Balb C mice. They were studied by two-dimensional gel electrophoresis and designated B1 degree, B2' degrees, B2 degrees, B3 degrees and B4 degrees on the basis of pI-dependent mobility. They were not observed in the glands of normal mice and were precipitated when glands were homogenized in 10% trichloroacetic acid unlike the three isoprenaline-induced proline-rich proteins of murine parotid glands reported previously. Isoprenaline induced six proline-rich in vitro translation products which were absent normally. Four of these species had pI-dependent mobilities almost identical to B1 degree, B2 degrees, B3 degrees and B4 degrees, indicating not only precursor/product relationships, but also that isoprenaline induced the accumulation of the proteins by regulating the mRNA. Identical salivary counterparts of the basic glandular proline-rich proteins were not detected whereas a series of smaller and more basic isoprenaline-induced polypeptides were observed in saliva (major speices B1s-B4s). The glandular proline-rich proteins were secreted from parotid tissue in vitro and the data indicate that proline-rich proteins are synthesised as precursors and processed into salivary form in the parotid glands after secretion. The relationships between the B-type in vitro translation products, parotid gland precursors and salivary proteins were also confirmed immunologically.  相似文献   

8.
Prolonged isoproterenol treatment of rats is known to cause hypertrophy and hyperplasia of the parotid glands. Our results show that a dramatic increase in the synthesis or accumulation in the parotid glands of a series of proteins rich in proline also occurs with isoproterenol treatment. After 10 days of treatment (5 mg of isoproterenol/day) these proline-rich proteins (PRPs) comprise more than 50% of the total soluble proteins in parotid gland homogenates. The PRPs are rapidly labeled in vivo by a single intraperitoneal injection of [3H]proline with maximum incorporation occurring at about 3. More than 90% of the [3h]proline found in parotid gland homogenates is incorporated into PRPs with less than 1% of the radioactivity in alpha-amylase. Tritium incorporated into PRPs was isolated as [3H]proline after acid hydrolysis. One acidic and six basic 3H-labeled PRPs were isolated from the 100,000 x g supernatant fraction of parotid gland homogenates by Sephadex G-100 and ion exchange chromatography. The six basic proteins accounted for about 90% of the total PRPs isolated.  相似文献   

9.
A proline-rich glycoprotein (PRG) was isolated from human parotid saliva and examined by circular dichroism and fluorescence spectroscopy. Addition of guanidine hydrochloride to PRG labeled with an extrinsic dansyl probe had no effect on the fluorescence spectra's 511 nm lambda-max location. Thermodynamic calculations supported the contention that PRG has no significant tertiary structure. Circular dichroism results for PRG were simulated by computer and a secondary structure composed of 70% random coil and 30% beta-form conformation was predicted. Circular dichroism of PRG failed to detect either poly-L-proline type I or II structures. Deglycosylation of PRG had no measurable effect on the circular dichroism spectrum, indicating that the carbohydrate side chains had little influence on PRG secondary structure. Based upon mathematical calculations, beta-turns were predicted around three glycosylated Asn residues of PRG. These collective data suggest that PRG is composed of a disordered polypeptide chain with at least three of the N-linked Asn residues participating in some type of beta-turn.  相似文献   

10.
In ruminants, different functions have been ascribed to the different salivary glands according to the feeding type. In this context, possible adaptations of salivary functions were investigated regarding the secretion of various proteins by different types of salivary glands. To yield uncontaminated parotid saliva in large quantities, a non-surgical method has been developed. Parotid gland secretions were collected via endoscopic placement of guide wires into each parotid duct, which were subsequently used for placement of collection catheters. Salivary flow was stimulated by intra-glandular administration of the parasympathomimetic compound pilocarpine-hydrochloride into the parotid gland. Mixed saliva (excluding parotid saliva) was collected into sterile tubes by normal outflow during the sampling of parotid saliva. The total flow volume, flow rate and the content of proteins as well as of several ions (Na+, K+, Ca2+, inorganic phosphate) of both types of saliva were measured in sheep, fallow deer and roe deer. Roe deer secreted the highest amount of total salivary proteins relative to body mass [mg/kg body mass] and the highest relative volume [ml/10 min/kg body mass], both in parotid and mixed saliva, of all ruminant species examined. Additionally, the protein profile and the tannin-binding properties of parotid and mixed saliva in roe deer were investigated. Parotid saliva bound almost twice as much tannin as mixed saliva, underlining the importance of yielding uncontaminated parotid saliva for tannin-binding studies. Accepted: 6 January 1998  相似文献   

11.
Abstract

A unique family of proline-rich proteins (PRPs) is induced in rats following prolonged isoproterenol treatment. PRPs can be divided into glycosylated (GPRP), basic (BPRP) and acidic (APRP) proline-rich proteins based on their physicochemical characteristics. Inducible rat parotid PRPs were isolated from aqueous extracts of parotid glands of isoproterenol-treated animals by sequential chromatography on columns of DEAE-Sepharose CL-6B, Sephadex G-100 and FPLC on Suprose-12 column. The GPRP showed a single homogeneous band on sodium dodecylpolyacrylamide gel electrophoresis with an estimated molecular weight of approximately 220,000. Compositional analysis of GPRP revealed that this protein contained 19.7% glutamic acid/glutamine, 28.2% proline and 9.5% glycine, and 44% carbohydrate, consisting of fucose (2.81g/100g), mannose (9.78g/100g), galactose (9.29g/100g), N-acetylglucosamine (18.03g/100g) and N-acetylgalactosamine (3.90g/100g). Basic PRPs consisted of a family of proteins with estimated molecular masses ranging from 14–45 kDa. These proteins contained 42.6% proline, 20.65% glutamic acid/glutamine and 21.33% glycine. Acidic PRPs also comprised of a family of metachromatically stained ladder of 40–60 kDa containing 29.1% proline, 21.5% glutamic acid/glutamine and 17.8% glycine. APRP were heavily glycosylated containing N-acetylglucosamine (6.34g/100g), N-acetylgalactosamine (19.04g/100g) and glucuronic acid (38.08g/100g).  相似文献   

12.
Eleven basic proline-rich proteins were purified from the parotid saliva of a single individual. The complete amino acid sequences of six of these were determined by conventional protein sequence methodology, bringing to nine the number of known primary structures of nonglycosylated basic proline-rich proteins from the same individual. The partial sequence of one additional protein is also reported. All of the basic proline-rich proteins studied contain segments with identical or very similar sequences, but with two possible exceptions, none of the proteins is derived from another secreted proline-rich protein. The amino acid sequences of nine nonglycosylated basic proline-rich proteins were compared with primary structures deduced from published nucleotide sequences of DNA coding for human parotid proline-rich proteins. The sequences align well, in general, but differences also exist pointing to the complexity of the genetics of these proteins. Seven secretory basic proline-rich proteins appear to be formed from three larger precursors by selective posttranslational proteolyses of arginyl bonds. One of the basic proline-rich proteins appears to derive from human acidic proline-rich proteins. The remaining two proteins studied do not conform to any DNA structure as yet reported. Two of the basic proline-rich proteins studied are phosphoproteins and exhibit abilities to inhibit hydroxyapatite formation in vitro.  相似文献   

13.
Periodontitis is associated with the presence of certain Gram-negative bacteria in the oral cavity, among these Actinobacillus actinomycetemcomitans. In order to determine which types of salivary components interact with A. actinomycetemcomitans two strains (HG 1175 and FDC Y4) were incubated with whole saliva and individual glandular secretions, viz. parotid, submandibular, and sublingual saliva. Immunochemical analysis by immunoblotting of bacteria-bound salivary proteins showed that IgA, the low-molecular mucin MG2, parotid agglutinin, and a 300 kDa sublingual and submandibular glycoprotein, were bound to the bacterial strains tested. In addition, adherence of A. actinomycetemcomitans to salivary proteins in a solid-phase was studied. After electrophoresis and transfer of salivary proteins to nitrocellulose membranes A. actinomycetemcomitans adhered only to MG2. In this assay periodate treatment, mild acid hydrolysis or neuraminidase digestion of the saliva glycoproteins abolished binding of two clinical isolates (HG 1175 and NY 664), suggesting that sialic acid residues on MG2 are involved in the binding. In contrast, adherence of the smooth laboratory strain Y4 was not affected by removal of sialic acid residues or even periodate treatment of MG2.Abbreviations S-IgA Secretory IgA - MG1 high-molecular-weight mucin - MG2 low-molecular-weight mucin - EP-GP extra parotid-glycoprotein - PRPs proline-rich proteins - SNA Sambucus nigra agglutinin - MAA Maackia amurensis agglutinin - PNA peanut agglutinin - UEA Ulex europaeus agglutinin  相似文献   

14.
Antisera raised in response to proline-rich proteins purified from parotid secretions of man and the primate Macaca fascicularis were employed to investigate the interrelationships of these proteins by immunodiffusion, immunoelectrophoresis and the combined use of disc gel acrylamide electrophoresis with radial immunodiffusion. The major human proline-rich proteins, PRP I, PRP II, PRP III and PRP IV as well as several minor proline-rich proteins cross-react with antiserum to PRP I or PRP III. Similarly primate parotid saliva contains several components cross-reacting with antiserum directed against a purified primate proline-rich protein, MPRP. Antiserum to PRP I or PRP III cross-reacted with MPRP and primate parotid saliva protein, whereas antiserum to MPRP cross-reacted only with human parotid saliva protein and not with the isolated human proline-rich proteins. The immunological relationships of these salivary proline-rich proteins within and between species suggest their origin from a common precursor molecule.  相似文献   

15.
Summary Rabbit polyclonal antibodies against isoproterenol-induced mouse proline-rich proteins (PRPs) were used to localize PRPs in the parotid salivary glands of normal adult BALB/c mice. The antibodies recognized both acidic-type and basic-type PRPs. Immunoblotting experiments revealed that the glands contained an acidic-type and a basic-type PRP. Parotid gland tissue was fixed with Karnosky's fixative and embedded in Lowicryl resin at low temperature. PRPs were localized at the electron microscope level using an indirect post-embedding staining technique with protein A-gold. The secretion granules of the acinar cells were strongly labelled. Pre-absorption of the antibody with purified acidic-type and basic-type PRPs indicated that the basic-type PRP is mainly located at the periphery of the granules but that the acidic-type PRP is more evenly distributed within the granules. Pre-absorption of the antibody with -amylase did not affect the staining pattern, suggesting minimal cross-reactivity. PRPs were also detected within the rough endoplasmic reticulum and the Golgi apparatus of acinar cells, within the granules of the proacinar cells and in the lumena of the ducts, but not within the intercalated or striated duct cell granules.  相似文献   

16.
17.
The major anionic proline-rich proteins in the parotid and submandibular secretions of subhuman primates and man perform the important biological function of inhibiting crystal growth of calcium phosphate salts from saliva, which is supersaturated with calcium phosphate salts, thereby preventing excess deposition of hydroxylapatite on tooth surfaces. The present work was initiated as a first step towards investigating proline-rich protein biosynthesis in parotid glands using the subhuman primate, Macaca fascicularis, as a model system. RNA was isolated from macaque parotid glands and separated into poly(A)-enriched and poly(A)-deficient fractions by chromatography on oligo(dT)-cellulose. The mRNAs in both fractions promoted incorporation of radiolabeled amino acids into polypeptides in an mRNA-dependent reticulocyte lysate translation system. Five major proline-rich polypeptides were detected and one of these was shown to be the in vitro precursor of the major anionic macaque proline-rich protein (MPRP), which is the structural and functional counterpart of the major anionic proline-rich proteins in the parotid and submandibular secretions of man (Oppenheim, F.G., Offner, G.D., and Troxler, R.F. (1982) J. Biol. Chem. 257, 9271-9282). Radiosequencing of the material in anti-MPRP immune precipitates showed that the in vitro precursor of MPRP contained an 18-residue signal peptide. The in vitro precursor of MPRP was processed in dog pancreas vesicles to a form with a lower apparent Mr and with an NH2-terminal amino acid sequence identical to that of native MPRP. The phenylthiohydantoin derivatives of Ala and Ile were detected at residue 9 and those of Val and Met were detected at residue 16 of the signal peptide. This indicated that the in vitro precursor of MPRP, which migrated electrophoretically as a single band in anti-MPRP immune precipitates, contained two different in vitro polypeptides derived from two different mRNAs. These results are discussed in the context of the genetic polymorphism among the major anionic proline-rich proteins in the parotid and submandibular secretions of man.  相似文献   

18.
Human tracheobronchial epithelial cells grown in air-liquid interface culture have emerged as a powerful tool for the study of airway biology. In this study, we have investigated whether this culture system produces "mucus" with a protein composition similar to that of in vivo, induced airway secretions. Previous compositional studies of mucous secretions have greatly underrepresented the contribution of mucins, which are major structural components of normal mucus. To overcome this limitation, we have used a mass spectrometry-based approach centered on prior separation of the mucins from the majority of the other proteins. Using this approach, we have compared the protein composition of apical secretions (AS) from well-differentiated primary human tracheobronchial cells grown at air-liquid interface and human tracheobronchial normal induced sputum (IS). A total of 186 proteins were identified, 134 from AS and 136 from IS; 84 proteins were common to both secretions, with host defense proteins being predominant. The epithelial mucins MUC1, MUC4, and MUC16 and the gel-forming mucins MUC5B and MUC5AC were identified in both secretions. Refractometry showed that the gel-forming mucins were the major contributors by mass to both secretions. When the composition of the IS was corrected for proteins that were most likely derived from saliva, serum, and migratory cells, there was considerable similarity between the two secretions, in particular, in the category of host defense proteins, which includes the mucins. This shows that the primary cell culture system is an important model for study of aspects of innate defense of the upper airways related specifically to mucus consisting solely of airway cell products.  相似文献   

19.
The complete amino acid sequences of two basic proline-rich proteins, IB-1 and IB-6, from human parotid saliva have been determined. Fragments for sequence analysis were obtained by enzymatic digestions. The proteins have molecular weights of 9571 (IB-1) and 11,530 (IB-6) and contain 34 and 39 mol % proline, respectively. IB-1 and IB-6 contain an identical sequence of 54 residues except for an alanine in position 52 of IB-6, where IB-1 has proline. An unusually high number of repeated sequences occurs in both molecules. IB-1 has a blocked amino-terminal residue, pyroglutamic acid, and also contains one phosphoserine residue in position 8. The relationship of these proteins to the basic proline-rich protein IB-9 [Kauffman, D., Wong, R., Bennick, A., & Keller, P. (1982) Biochemistry 21, 6558-6562] and to other salivary proline-rich proteins is discussed.  相似文献   

20.
The aim of this study was the development of a method based on the coupling of RP-HPLC and ESI-MS for identifying and quantifying proteins and peptides secreted by human salivary glands in vitro. Salivary gland specimens, obtained from informed patients undergoing surgical resection, were incubated in an optimized medium. Incubation media of glandular specimens, selected on the basis of cytomorphological and ultrastructural analysis, were investigated by HPLC-MS. Several salivary peptides/proteins, previously recognized in human whole saliva, were searched for along the chromatogram by the selected ion monitoring (SIM) strategy. Analysis of the incubation media of parotid glands revealed the presence of basic PRPs PC, PD, PH, IB-1, II-2, and acidic PRP-1 and PRP-3 in all of the investigated samples. Basic PRPs PB and PA, acidic PRPs, and cystatins SN and S1 were detected in all of the incubation media of submandibular glands, whereas histatin 1 was detected in only one sample. Moreover, the method allowed detection of some post-translational derivatives of known salivary proteins, as well as of several previously unidentified small peptides. The present method represents a sensitive and powerful instrument to detect peptides and proteins secreted by human salivary glands in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号