首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study describes a novel microcarrier substrate consisting of a swellable, copolymer of styrene and divinylbenzene, derivatized with trimethylamine. The co-polymer trimethylamine microcarriers support the growth of a number of different cell lines – Madin Darby Bovine Kidney, Madin-Darby Canine Kidney, Vero and Cos-7 – under serum-free conditions, and human diploid fibroblasts in serum-containing medium. Cells attach to the co- polymer trimethylamine microcarriers as rapidly as they attach to other charged-surface microcarriers (faster than they attach to collagen-coated polystyrene microcarriers) and spread rapidly after attachment. All of the cells examined grow to high density on the co- polymer trimethylamine microcarriers. Furthermore, cells are readily released from the surface after exposure to a solution of trypsin/EDTA. In this respect, the co-polymer trimethylamine microcarriers are different from other charged-surface microcarriers. Madin-Darby Bovine Kidney cells grown on this substrate support production of vaccine strain infectious bovine rhinotracheitis virus as readily as on other charged-surface or collagen-coated microcarriers. Thus, the co-polymer trimethylamine microcarriers combine the positive characteristics of the currently available charged-surface and adhesion-peptide coated microcarriers in a single product. The viral vaccine production industry is undergoing considerable change as manufacturers move toward complete, animal product-free culture systems. This novel substrate should find application in the industry, especially in processes which depend on viable cell recovery. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Large numbers of cells will be required for successful embryonic stem cell (ESC)-based cellular therapies or drug discovery, thus raising the need to develop scaled-up bioprocesses for production of ESCs and their derived progeny. Traditionally, ESCs have been propagated in adherent cultures in static flasks on fibroblasts layers in serum-containing medium. Direct translation of two-dimensional flatbed cultures to large-scale production of the quantities of cells required for therapy simply by increasing the number of dishes or flasks is not practical or economical. Here, we describe successful scaled-up production of ESCs on microcarriers in a stirred culture system in a serum-free medium. Cells expanded on CultiSpher S, Cytodex 3, and Collagen microcarriers showed superior cell-fold expansions of 439, 193, and 68, respectively, without excessive agglomeration, compared with 27 in static culture. In addition, the ESCs maintained their pluripotency after long-term culture (28 days) in serum-free medium. This is the first time mESCs have been cultured on microcarriers without prior exposure to serum and/or fibroblasts, while also eliminating the excessive agglomeration plaguing earlier studies. These protocols provide an economical, practical, serum-free means for expanding ESCs in a stirred suspension bioprocess.  相似文献   

3.
Summary Results of growth history studies on IMR-90 and WI-38 showed that the two cell strains were equivalent in population doublings achieved per life span. However, IMR-90 exhibited higher cell yields in phase II than did WI-38. In addition, entry of IMR-90 cells into phase III occurred more abruptly than in WI-38 cultures. Cell sizing analysis showed that phase II and phase III IMR-90 cell populations contained greater numbers of cells in the small volume categories. At senescence, both cell lines contained similar numbers of cells in all size categories. These data suggest that IMR-90 may not be equivalent in all respects to current stocks of WI-38.  相似文献   

4.
Summary A new type of microcarrier was described using bead emulsion-polymerization techniques. An aqueous solution of gelatin and glutaraldehyde was dispersed in a hydrophobic phase of mineral oil, using Triton X-114 as an emulsifier, and polymerization was initiated. The resultant spherical beads, composed entirely of gelatin, showed excellent mechanical stability to ethanol drying, sterilization, and long-term use in microcarrier spinner cultures. The solid gelatin microcarriers supported the growth of L-929 fibroblast, swine aorta endothelial, human umbilical endothelial, and HeLa-S3 cultures with no adverse effects on cell morphology or growth. The beads were transparent in growth medium and attached cells were clearly visualized without staining. The beads were also compatible with techniques for scanning electron microscopy. Collagenase could be used to entirely digest the gelatin beads, leaving the cells free from microcarriers and suspended in solution while retaining 98% cell viability. The results further showed that after collagenase treatment the cells would populate fresh gelatin microcarriers and grow to confluence. Cell attachment kinetics revealed that the endothelial cells attached to the gelatin beads at the same rate as to tissue culture plates, whereas the fibroblast cells attached to the beads more slowly. However, once the fibroblast cells were attached to the gelatin microcarriers they spread and grew normally. This research was supported in part by the National Institutes of Health (GN 29127) and Ventrex Laboratories, Portland, Maine.  相似文献   

5.
A variety of diploid human fibroblast lines have been successfully grown to high densities (greater than 10(6) cell/ml) on recently developed microcarriers. Interferon induction using poly I.poly C and a superinduction procedure resulted in yields greater than 10,000 units/ml with one cell line. A direct comparison of microcarrier cultures to roller bottle cultures showed equivalent interferon yields on a per cell basis and some apparent differences relating to optimum inducer concentrations and kinetics of interferon accumulation.  相似文献   

6.
Mesenchymal stem cells (MSC) are known to be a valuable cell source for tissue engineering and regenerative medicine. However, one of the main limiting steps in their clinical use is the amplification step. MSC expansion on microcarriers has emerged during the last few years, fulfilling the lack of classical T‐flasks expansion. Even if the therapeutic potential of MSC as aggregates has been recently highlighted, cell aggregation during expansion has to be avoided. Thus, MSC culture on microcarriers has still to be improved, notably concerning cell aggregation prevention. The aim of this study was to limit cell aggregation during MSC expansion on Cytodex‐1®, by evaluating the impact of several culture parameters. First, MSC cultures were performed at different agitation rates (0, 25, and 75 rpm) and different initial cell densities (25 and 50 × 106 cell g?1 Cytodex‐1®). Then, the MSC aggregates were put into contact with additional available surfaces (T‐flask, fresh and used Cytodex‐1®) at different times (before and after cell aggregation). The results showed that cell aggregation was partly induced by agitation and prevented in static cultures. Moreover, cell aggregation was dependent on cell density and correlated with a decrease in the total cell number. It was however shown that the aggregated organization could be dissociated when in contact with additional surfaces such as T‐flasks or fresh Cytodex‐1® carriers. Finally, cell aggregation could be successfully limited in spinner flask by adding fresh Cytodex‐1® carriers before its onset. Those results indicated that MSC expansion on agitated Cytodex‐1® microcarriers could be performed without cell aggregation, avoiding a decrease in total cell number. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

7.
Cell growth and protein formation on various microcarriers   总被引:2,自引:0,他引:2  
Kong D  Chen M  Gentz R  Zhang J 《Cytotechnology》1999,29(2):151-158
A large number of microcarriers are commercially available. The capability of cells to successfully proliferate on microcarriers varies with cell lines and media. Choosing the right microcarrier for a particular cell line is more than a choice of a microcarrier. It is part of an integrated process design. A detailed picture of cell growth and product formation will not only be essential in identifying the kind of microcarrier, but also in determining other parts of the process, such as operation mode and media. Our initial screening on thirteen microcarriers showed that cultures on some microcarriers reached a low cell density but high cell-specific productivity, and high density microcarrier cultures have a low specific productivity. The result is a similar product output per unit volume and time for these two types of cultures. An ideal culture system shall have increased volumetric productivity at elevated cell density. This requires the process goal to be incorporated as early as cell line construction and screening. A high output process can then be realized through high density culture. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Summary During serial subcultures 50 μg per ml gentamicin and penicillin (100 U per ml)-streptomycin (100 μg per ml) depressed cell growth significantly 2 weeks after the addition of the antibiotics; gentamicin, but not penicillin-streptomycin, stimulated cell growth before it became inhibitory. Removal of the antibiotics resulted in the cell yield returning to normal. The results show that these antibiotics can be harmful to cells even at concentrations thought to be safe.  相似文献   

9.
Blindness as a consequence of degenerative eye diseases (e.g., age-related macular degeneration and retinitis pigmentosa) is a major health problem and numbers are expected to increase by up to 50% by 2020. Unfortunately, adult mouse and human retinal stem cells (RSCs), unlike fish and amphibians , are quiescent in vivo and do not regenerate following disease or injury. To replace lost cells, we used microcarriers (MCs) in a suspension stirring bioreactor to help achieve numbers suitable for differentiation and transplantation. We achieved a significant 10-fold enrichment of RSC yield compared to conventional static culture techniques using a combination of FACTIII MCs and relative hypoxia (5%) inside the bioreactor. We found that hypoxia (5% O2) was associated with better RSC expansion across all platforms; and this can be attributed to hypoxia-induced increases in survival and/or symmetric division of stem cells. In the future, we will target the differentiation of RSCs and their progeny toward rod and cone photoreceptor phenotypes using FACTIII MCs inside bioreactors to expand their populations in order to produce the large numbers of cells needed for transplantation.  相似文献   

10.
Summary Human colonic adenocarcinoma cells have been successfully grown on polystyrene microcarriers by modifying the culture conditions used in monolayer culture. The method can be divided into two culture phases: a) a phase of spreading, wherein cells were seeded in presence of serum-supplemented medium; b) a phase of active growth wherein spread cells on the beads were allowed to grow in a serum-free medium. Under these conditions, optimal spreading and growth of HT 29 and HRT 18 cells on the microcarriers were obtained. A differential propagation was observed between HT 29-D4 and HT 29-D9 cells (both clonal populations derived from HT 29 cells) on the microcarriers that is tentatively related to the discrepancy observed in the spreading efficiency of these clonal cells on serum-coated culture flasks. An index of spreading efficiency (IS index) has been defined to quantify the efficiency of spreading of each cell line on microcarriers. These data gave the opportunity to develop serum-free, scale-up methods to culture cells like HT 29 which release potentially useful products. This work was supported by CNRS (U.A. 202 and U.A. 1186), Fédération Nationale des Centres de Lutte Contre le Cancer (FNCLCC), INSERM (CRE, no 847006), CNAMTS-INSERM (8386), MRT (GBM 85M0564) and l'Association pour la Recherche sur le Cancer (ARC 86-234).  相似文献   

11.
The effects of the substitution of serum by Ultroser G on human skin fibroblasts cultured on microcarriers were analysed. Cultures could not be established on microcarriers in the presence of Ultroser G. However, microcarrier cultures started in the presence of 10% foetal calf serum, and transferred to 2% Ultroser G after 7 days resulted in high cell densities.  相似文献   

12.
Molecular changes associated with cellular senescence in human diploid fibroblasts (HDF), IMR-90, were analyzed by two-dimensional differential proteome analysis. A high percentage of replicative senescent cells were positive for senescence-associated beta-galactosidase activity, and displayed elevated levels of p21 and p53 proteins. Comparison of early population doubling level (PDL) versus replicative senescent cells among the 1000 spots resolved on gels revealed that the signal intensities of six spots were increased fivefold, whereas those of four spots were decreased. Proteome analysis data demonstrated that connective tissue growth factor (CTGF) is an age-associated protein. Up-regulation of CTGF expression in senescent cells was further confirmed by Western blotting and RT-PCR. We postulate that CTGF expression is controlled, in part, by transforming growth factor-beta (TGF-beta), in view of the high levels of TGF-beta isoforms as well as type I and II receptors detected only in late PDL of HDF cells. To verify this hypothesis, we stimulated early PDL cells with TGF-beta1 as well as stress inducing agents such as hydrogen peroxide. As expected, CTGF expression and Smad protein phosphorylation were dramatically increased up to observed levels in normal replicative senescent cells. In vivo experiments disclosed that CTGF, pSmad, and p53 were constitutively expressed at basal levels in up to 18-month-old rat liver, and expression was significantly up-regulated in 24-month-old rat tissue. However, expression patterns were not altered at all periods examined in livers of caloric-restricted rats. In view of both in vitro and in vivo data, we propose that the TGF-beta/Smad pathway functions in the induction of CTGF, a novel biomarker protein of cellular senescence in human fibroblasts.  相似文献   

13.
Anchorage-dependent Baby Hamster Kidney (BHK) cells were cultivated on polyhydroxyethylmethacrylate (PHEMA), polystyrene (PS), and Cytodex microcarriers. Analysis of the experimental data indicated that there were a finite number of sites on the microcarrier surfaces, available for anchorage. The number of these sites was determined by the chemical and physical structure of the surface. A small fraction of these sites were suitable for attachment of the cells before proliferation. A larger fraction of these sites did not support attachment but the cells could proliferate on them by the help of previously attached mother cells. The attachment and proliferation of the BHK cells on these microcarriers were satisfactorily modeled by surface saturation type of mathematical expressions.  相似文献   

14.
Evidence for clonal attenuation of growth potential in hela cells   总被引:5,自引:0,他引:5  
Summary The growth of primary clones and serial subclones of HeLa cells and of diploid human fibroblast-like cells were compared both in the presence and absence of feeder layers; the latter had no significant effects upon the results. Clones and subclones of both cell types displayed great heterogeneity in growth rates, typically with a bimodality of growth distributions. Serial passages of clones selected on the basis of superior rates of proliferation showed attentuation of growth potentials; the extent of such attentuations was much less in the case of HeLa cells, suggesting at least one possible basis for the differences in long-term growth potential between these two classes of cell lines. This research was supported by Grants AG 00257 and AG 00592 from NIH. Dr. Martinez was supported by Postdoctoral Fellowship AG/HD 02765 from NIH.  相似文献   

15.
The addition of the glucocorticoid analog dexamethasone (DX) to serum-free cultures of human fibroblasts caused a twofold enhancement of the mitogenic response to epidermal growth factor (EGF), although DX by itself was not mitogenic. A basis for this effect was suggested by studies showing that DX also increased the cellular binding of 125I-EGF. DX increased the ability of the cells to bind 125I-EGF only at low physiological concentrations of this polypeptide. Thus, data from 125I-EGF binding to cells incubated without DX produced a linear Scatchard plot, whereas the data from 125I-EGF binding to DX-treated cells led to an upwardly curvilinear Scatchard plot. Measurements of 125I-EGF association with the cell surface and cytoplasm indicated that this binding change involved an alteration of cell surface EGF receptors. The binding change appeared not to involve negatively cooperative interactions between EGF receptors, nor a change in the number of receptors. The binding alteration could be explained by a model in which DX converted 25–30% of the cell surface EGF receptors to a form having a fourfold increased affinity.  相似文献   

16.
As a result of their pluripotency and potential for unlimited self‐renewal, human embryonic stem cells (hESCs) hold tremendous promise in regenerative medicine. An essential prerequisite for the widespread application of hESCs is the establishment of effective and efficient protocols for large‐scale cell culture, storage, and distribution. At laboratory scales hESCs are cultured adherent to tissue culture plates; these culture techniques are labor‐intensive and do not scale to high cell numbers. In an effort to facilitate larger scale hESC cultivation, we investigated the feasibility of culturing hESCs adherent to microcarriers. We modified the surface of Cytodex 3 microcarriers with either Matrigel or mouse embryonic fibroblasts (MEFs). hESC colonies were effectively expanded in a pluripotent, undifferentiated state on both Matrigel‐coated microcarriers and microcarriers seeded with a MEF monolayer. While the hESC expansion rate on MEF‐microcarriers was less than that on MEF‐plates, the doubling time of hESCs on Matrigel‐microcarriers was indistinguishable from that of hESCs expanded on Matrigel‐coated tissue culture plates. Standard hESC cryopreservation methodologies are plagued by poor viability and high differentiation rates upon thawing. Here, we demonstrate that cryopreservation of hESCs adherent to microcarriers in cryovials provides a higher recovery of undifferentiated cells than cryopreservation of cells in suspension. Together, these results suggest that microcarrier‐based stabilization and culture may facilitate hESC expansion and storage for research and therapeutic applications. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

17.
Summary Iron-free RITC 80-7 defined medium was used to examine effects of ferrous iron and transferrin on cell proliferation of human diploid fibroblasts. Both ferrous iron and holotransferrin stimulated cell proliferation in the medium, but apotransferrin did not. When 5 g/l human serum albumin (HSA) was added to the defined medium, excellent growth was obtained under hypoxic conditions, whereas a reduction of cellular growth during the culture periods was observed under aerobic conditions. When ferrous iron was added to the HSA medium alone, the reduction in growth increased in proportion to the concentrations, whereas the addition of transferrin prevented this reduction in a concentration-dependent manner. This suggests that the ferrous iron concentration in media causes a reduction in growth under aerobic conditions and transferrin prevents this reduction because it decreases the ferrous iron concentration. Further, serum albumin seems to be a source of iron in media.  相似文献   

18.
The emergence of medicinal indications for stem cell therapies has seen a need to develop the manufacturing capacity for adherent cells such as mesenchymal stem cells (MSCs). One such development is in the use of microcarriers, which facilitate enhanced cell densities for adherent stem cell cultures when compared with 2D culture platforms. Given the variety of stem cell expansion systems commercially available, novel methods of non‐invasive and automated monitoring of cell number, confluence, and aggregation, within disparate environments, will become imperative to process control, ensuring reliable and consistent performance. The in situ epi‐illumination of mouse embryonic fibroblasts and human mesenchymal stem cells attached to Cytodex 1 and 3 microcarriers was achieved using a bespoke microscope. Robust image processing techniques were developed to provide quantitative measurements of confluence, aggregate recognition, and cell number, without the need for fluorescent labeling or cell detachment. Large datasets of cells counted on individual microcarriers were statistically analyzed and compared with NucleoCounter measurements, with an average difference of less than 7% observed from days 0 to 6 of a 12‐day culture noted, prior to the onset of aggregation. The developed image acquisition system and post‐processing methodologies were successfully applied to dynamically moving colonized microcarriers. The proposed system offers a novel method of cell identification at the individual level, to consistently and accurately assess viable cell number, confluence, and cell distribution, while also minimizing the variability inherent in the current invasive means by which cells adhered to microcarriers are analyzed. Biotechnol. Bioeng. 2017;114: 2032–2042. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

19.
Summary To determine if fibroblasts could be a source of fibroblast growth factor (FGF) in tissue, cells were initiated in culture from newborn human foreskin. Cells were studied in Passages 2 to 8. Fibroblast cell lysates promoted radiolabeled thymidine uptake by cultured quiescent fibroblasts. Seventy-nine percent of the growth-promoting activity of lysates was recovered from heparin-Sepharose. The heparin-binding growth factor reacted on immunoblots with antiserum to human placenta-derived basic FGF and competed with iodinated basic FGF for binding to antiserum to (1-24)bFGF synthetic peptide. To confirm that fibroblasts were the source of the growth factor, cell lysates were prepared from cells incubated with radiolabeled methionine. Heparin affinity purified material was immunoprecipitated with basic FGF antiserum and electrophoresed. Radiolabeled material was detected on gel autoradiographs in the same molecular weight region as authentic iodinated basic FGF. The findings are consistant with the notion that cultured fibroblasts express basic FGF. As these cells also respond to the mitogen, it is possible that the regulation of their growth is under autocrine control. Fibroblasts may be an important source of the growth factor in tissue. Supported in part by grant DK 31063 from the National Institutes of Health, Bethesda, MD.  相似文献   

20.
Summary Microscopic slides were mounted with paraffin on Teflon plates that contain 18 holes of 6 mm diameter each. This arrangement is reversible and yields 18 individual cell culture well on one slide, thus allowing a simultaneous culture of different cell lines under identical conditions. The glass-paraffin junction can be easily detached and the paraffin sticks exclusively to the Teflon. This investigation was supported in part by research grants from the Deutsche Forschungsgemeinschaft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号