首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of oligomycin in the presence of Ca2+ increased the ADP pool in mitochondrial suspension. It is suggested that oligomycin inhibition of Ca2+-induced mitochondrial respiratory activation is the function of the increased endogenous ADP pool. Low ADP concentrations (5–20 μM) produce the same inhibitory effect as oligomycin. The increase of ADP levels in the presence of glucose plus hexokinase resulted in the inhibition of Ca2+-induced respiration, while the addition of phosphoenol pyruvate plus pyruvate kinase followed by a reduction in ADP levels, reversed the oligomycin inhibitory effect. One of the essential stages of ADP accumulation in mitochondrial suspensions in the presence of oligomycin and Ca2+ is proposed to be the formation of ADP from AMP and ATP, effected by adenylate kinase.  相似文献   

2.
Increased conversion of glucose to lactic acid associated with decreased mitochondrial respiration is a unique feature of tumors first described by Otto Warburg in the 1920s. Recent evidence suggests that the Warburg effect is caused by oncogenes and is an underlying mechanism of malignant transformation. Using a novel approach to measure cellular metabolic rates in vitro, the bioenergetic basis of this increased glycolysis and reduced mitochondrial respiration was investigated in two human cancer cell lines, H460 and A549. The bioenergetic phenotype was analyzed by measuring cellular respiration, glycolysis rate, and ATP turnover of the cells in response to various pharmacological modulators. H460 and A549 cells displayed a dependency on glycolysis and an ability to significantly upregulate this pathway when their respiration was inhibited. The converse, however, was not true. The cell lines were attenuated in oxidative phosphorylation (OXPHOS) capacity and were unable to sufficiently upregulate mitochondrial OXPHOS when glycolysis was disabled. This observed mitochondrial impairment was intimately linked to the increased dependency on glycolysis. Furthermore, it was demonstrated that H460 cells were more glycolytic, having a greater impairment of mitochondrial respiration, compared with A549 cells. Finally, the upregulation of glycolysis in response to mitochondrial ATP synthesis inhibition was dependent on AMP-activated protein kinase activity. In summary, our results demonstrate a bioenergetic phenotype of these two cancer cell lines characterized by increased rate of glycolysis and a linked attenuation in their OXPHOS capacity. These metabolic alterations provide a mechanistic explanation for the growth advantage and apoptotic resistance of tumor cells. oxygen consumption; oxidative phosphorylation; Warburg effect; real time  相似文献   

3.
Mitochondria are highly dynamic organelles that continuously move, fuse and divide. Mitochondrial dynamics modulate overall mitochondrial morphology and are essential for the proper function, maintenance and transmission of mitochondria and mitochondrial DNA (mtDNA). We have investigated mitochondrial fusion in yeast cells with severe defects in oxidative phosphorylation (OXPHOS) due to removal or various specific mutations of mtDNA. We find that, under fermentative conditions, OXPHOS deficient cells maintain normal levels of cellular ATP and ADP but display a reduced mitochondrial inner membrane potential. We demonstrate that, despite metabolic compensation by glycolysis, OXPHOS defects are associated to a selective inhibition of inner but not outer membrane fusion. Fusion inhibition was dominant and hampered the fusion of mutant mitochondria with wild-type mitochondria. Inhibition of inner membrane fusion was not systematically associated to changes of mitochondrial distribution and morphology, nor to changes in the isoform pattern of Mgm1, the major fusion factor of the inner membrane. However, inhibition of inner membrane fusion correlated with specific alterations of mitochondrial ultrastructure, notably with the presence of aligned and unfused inner membranes that are connected to two mitochondrial boundaries. The fusion inhibition observed upon deletion of OXPHOS related genes or upon removal of the entire mtDNA was similar to that observed upon introduction of point mutations in the mitochondrial ATP6 gene that are associated to neurogenic ataxia and retinitis pigmentosa (NARP) or to maternally inherited Leigh Syndrome (MILS) in humans. Our findings indicate that the consequences of mtDNA mutations may not be limited to OXPHOS defects but may also include alterations in mitochondrial fusion. Our results further imply that, in healthy cells, the dominant inhibition of fusion could mediate the exclusion of OXPHOS-deficient mitochondria from the network of functional, fusogenic mitochondria.  相似文献   

4.
《BBA》1985,808(2):316-322
The dependence of both respiration and total activity of ATP-consuming reactions on the cellular adenine nucleotide pattern was investigated in intact bovine spermatozoa. ATP consumption was manipulated by inhibition with vanadate and activation with caffeine, leading to a decrease or increase in the rate of respiration up to 70% or 20%, respectively. Oligomycin blocked the respiration to the same extent as did vanadate, suggesting that the total extramitochondrial ATP-consuming activity is vanadate-sensitive. The major part of ATP utilization must be linked to dynein ATPase, since inhibition of (Na+, K+) ATPase by ouabain showed only a small effect on respiration (−17%). Being a potent inhibitor of dynein ATPase, vanadate drastically reduced the amount of motile cells, whereas caffeine tended to increase the intensity of motion. The effects of vanadate or caffeine on respiration were paralleled by changes in cellular ATP, reflecting the response of mitochondrial respiration on the cellular ATP/ADP ratio. Respiration was found to depend on changes in the ATP/ADP ratio in the range from about 3 (+ caffeine) to 9 (+ vanadate). The range of response of ATP consumption to the ATP/ADP ratio was determined by varying the mitochondrial ATP production via the concentration of lactate which was used as substrate. The measured effects on both respiratory rate and ATP/ADP ratio suggested that ATP consumption was markedly dependent on ATP/ADP ratios below 5. It is concluded that lactate concentrations above 1 mM sufficiently supply bovine spermatozoa with substrate and the energy turnover is mainly limited by the activity of dynein ATPase rather than by the capacity of mitochondrial oxidative phosphorylation.  相似文献   

5.
The relations between motility and respiration were studied in ejaculated bull spermatozoa respiring with lactate. Motility was quantitatively evaluated by a turbidimetric procedure as percentage of cells moving per minute from the bottom of the cuvette into the light path. For selective inhibition of ATP-consuming reactions including motility or of mitochondrial respiration, vanadate or cyanide, respectively, were used. Both inhibitors were found to produce proportional changes in motility and respiration. The simultaneous changes in motility and respiration were linked to shifts in the cellular ATP/ADP ratio. Partial uncoupling of respiration in vanadate-inhibited cells gave similar relations between respiration and ATP/ADP ratios as stepwise inhibition of ATP-utilizing reactions by vanadate. Presuming saturation kinetics with respect to the ATP/ADP ratio, half maximum constants of 1.7 and 4.7 for the ATP/ADP ratio and maximum values of about 130% and 300% (in comparison to untreated cells) were estimated for motility and respiration, respectively. Respiration showed a much steeper dependence on the ATP/ADP ratio than motility resulting in an apparent cooperativity coefficient of 2.9. From these dependences on the ATP/ADP ratio, the shares in the control of ATP turnover in untreated cells were estimated. At sufficient supply with substrate, more than 80% of control were excreted by motility and other ATP-utilizing reactions, the rest by mitochondrial ATP production, i.e., the reactions of oxidative phosphorylation.  相似文献   

6.
Hampp R 《Plant physiology》1985,79(3):690-694
The effect of TP (triosephosphates:glyceraldehyde-3 phosphate, GAP, +dihydroxyacetone phosphate, DHAP) on respiration, phosphorylation and matrix ATP/ADP ratios of isolated oat mesophyll mitochondria was investigated. With both malate and NADH, a 50% inhibition of state 3-phosphorylation was induced by about 15 to 20 millimolar GAP and 30 to 40 millimolar DHAP. However, the nature of the inhibition appeared to be different with the two respiratory substrates. In the presence of NADH, TP did not inhibit the rate of state 3 (addition of ADP) O2 consumption. In fact, depending on concentration, TP gradually increased the rates measured without ADP towards those seen under state 3, acting as uncouplers. When malate was the substrate for respiration, state 3 rates were decreased. The effect was comparable to that of rotenone and could be abolished by the addition of NADH. These observations indicate a dual action of TP: inhibition of electron transport around site I and uncoupling. In any case, the intramitochondrial ATP/ADP ratio decreased upon addition of TP. The effective TP concentrations as well as the changes in mitochondrial ATP/ADP ratios were comparable to results on changes of compartmental pool sizes of adenylates and other metabolites during dark/light transition of oat mesophyll protoplasts (R. Hampp, M. Goller, H. Füllgraf, and I. Eberle 1985 Plant Cell Physiol 24: 99). The possible role of TP in the regulation of mitochondrial respiration in the light, as well as modes of interference, are discussed.  相似文献   

7.
《BBA》2022,1863(8):148915
Although the development of chemoresistance is multifactorial, active chemotherapeutic efflux driven by upregulations in ATP binding cassette (ABC) transporters are commonplace. Chemotherapeutic efflux pumps, like ABCB1, couple drug efflux to ATP hydrolysis and thus potentially elevate cellular demand for ATP resynthesis. Elevations in both mitochondrial content and cellular respiration are common phenotypes accompanying many models of cancer cell chemoresistance, including those dependent on ABCB1. The present study set out to characterize potential mitochondrial remodeling commensurate with ABCB1-dependent chemoresistance, as well as investigate the impact of ABCB1 activity on mitochondrial respiratory kinetics. To do this, comprehensive bioenergetic phenotyping was performed across ABCB1-dependent chemoresistant cell models and compared to chemosensitive controls. In doxorubicin (DOX) resistant ovarian cancer cells, the combination of both increased mitochondrial content and enhanced respiratory complex I (CI) boosted intrinsic oxidative phosphorylation (OXPHOS) power output. With respect to ABCB1, acute ABCB1 inhibition partially normalized intact basal mitochondrial respiration between chemosensitive and chemoresistant cells, suggesting that active ABCB1 contributes to mitochondrial remodeling in favor of enhanced OXPHOS. Interestingly, while enhanced OXPHOS power output supported ABCB1 drug efflux when DOX was present, in the absence of chemotherapeutic stress, enhanced OXPHOS power output was associated with reduced tumorigenicity.  相似文献   

8.
Oligomycin is an inhibitor of the mitochondrial ATP synthase. In nitrogen-replete cells of the marine diatom Phaeodactylum tricornutum Bohlin, the rate of dark respiration was high and markedly inhibited (62%–74%) in the presence of oligomycin. In contrast, the rate of dark respiration in nitrogen-deprived cells was about half that in nitrogen-replete cells but was only slightly inhibited (16%–30%) by oligomycin. Consistent with these effects on rates of dark respiration, oligomycin decreased the ATP level and the ATP:ADP ratio by about 40% in nitrogen-replete cells incubated in darkness but had a negligible effect on the ATP level and ATP:ADP ratio in nitrogen-deprived cells. In sodium and nitrogen-deprived cells, the rate of dark respiration was greater than that in nitrogen-replete cells, but there was little effect of oligomycin on the rate of dark respiration. In light-limited cells, the rate of dark respiration was similar to that in nitrogen-deprived cells, but the inhibition (57%) in the presence of oligomycin was greater. These results suggest that most of the O2 consumption by nitrogen-replete cells was linked to mitochondrial ATP synthesis and that the rate of mitochondrial ATP synthesis in nitrogen-deprived and sodium and nitrogen-deprived cells was low. The potential implications of these results for our understanding of maintenance respiration are discussed.  相似文献   

9.
线粒体呼吸链膜蛋白复合体的结构   总被引:8,自引:0,他引:8  
线粒体作为真核细胞的重要“能量工厂”,是细胞进行呼吸作用的场所,呼吸作用包括柠檬酸循环和氧化磷酸化两个过程,其中氧化磷酸化过程的电子传递链(又称线粒体呼吸链)位于线粒体内膜上,由四个相对分子质量很大的跨膜蛋白复合体(Ⅰ、Ⅱ、Ⅲ、和Ⅳ)、介于Ⅰ/Ⅱ与Ⅲ之间的泛醌以及介于Ⅲ与Ⅳ之间的细胞色素c共同组成。线粒体呼吸链的功能是进行生物氧化,并与称之为复合物V的ATP合成酶(磷酸化过程)相偶联,共同完成氧化磷酸化过程,并生产能量分子ATP。线粒体呼吸链的结构生物学研究对于彻底了解电子传递和能量转化的机理是至关重要的,本文分别论述线粒体呼吸链复合体Ⅰ、Ⅱ、Ⅲ和Ⅳ的结构,并跟踪线粒体呼吸链超复合体的结构研究进展。  相似文献   

10.
We proposed that inhibition of mitochondrial adenine nucleotide translocator (ANT) by long chain acyl-CoA (LCAC) underlies the mechanism associating obesity and type 2 diabetes. Here we test that after long-term exposure to a high-fat diet (HFD): (i) there is no adaptation of the mitochondrial compartment that would hinder such ANT inhibition, and (ii) ANT has significant control of the relevant aspects of oxidative phosphorylation. After 7 weeks, HFD induced a 24+/-6% increase in hepatic LCAC concentration and accumulation of the oxidative stress marker N(epsilon)-(carboxymethyl)lysine. HFD did not significantly affect mitochondrial copy number, oxygen uptake, membrane potential (Deltapsi), ADP/O ratio, and the content of coenzyme Q(9), cytochromes b and a+a(3). Modular kinetic analysis showed that the kinetics of substrate oxidation, phosphorylation, proton leak, ATP-production and ATP-consumption were not influenced significantly. After HFD-feeding ANT exerted considerable control over oxygen uptake (control coefficient C=0.14) and phosphorylation fluxes (C=0.15), extra- (C=0.23) and intramitochondrial (C=-0.56) ATP/ADP ratios, and Deltapsi (C=-0.11). We conclude that although HFD induces accumulation of LCAC and N(epsilon)-(carboxymethyl)lysine, oxidative phosphorylation does not adapt to these metabolic challenges. Furthermore, ANT retains control of fluxes and intermediates, making inhibition of this enzyme a more probable link between obesity and type 2 diabetes.  相似文献   

11.
The efficiency of stimulation of mitochondrial respiration in permeabilized muscle cells by ADP produced at different intracellular sites, e.g. cytosolic or mitochondrial intermembrane space, was evaluated in wild-type and creatine kinase (CK)-deficient mice. To activate respiration by endogenous production of ADP in permeabilized cells, ATP was added either alone or together with creatine. In cardiac fibers, while ATP alone activated respiration to half of the maximal rate, creatine plus ATP increased the respiratory rate up to its maximum. To find out whether the stimulation by creatine is a consequence of extramitochondrial [ADP] increase, or whether it directly correlates with ADP generation by mitochondrial CK in the mitochondrial intermembrane space, an exogenous ADP-trap system was added to rephosphorylate all cytosolic ADP. Under these conditions, creatine plus ATP still increased the respiration rate by 2.5 times, compared with ATP alone, for the same extramitochondrial [ADP] of 14 microM. Moreover, this stimulatory effect of creatine, observed in wild-type cardiac fibers disappeared in mitochondrial CK deficient, but not in cytosolic CK-deficient muscle. It is concluded that respiration rates can be dissociated from cytosolic [ADP], and ADP generated by mitochondrial CK is an important regulator of oxidative phosphorylation.  相似文献   

12.
Nitric oxide biosynthesis in cardiac muscle leads to a decreased oxygen consumption and lower ATP synthesis. It is suggested that this effect of nitric oxide is mainly due to the inhibition of the mitochondrial respiratory chain enzyme, cytochrome c oxidase. However, this work demonstrates that nitric oxide is able to inhibit soluble mitochondrial creatine kinase (CK), mitochondrial CK bound in purified mitochondria, CK in situ in skinned fibres as well as the functional activity of mitochondrial CK in situ in skinned fibres. Since mitochondrial isoenzyme is functionally coupled to oxidative phosphorylation, its inhibition also leads to decreased sensitivity of mitochondrial respiration to ADP and thus decreases ATP synthesis and oxygen consumption under physiological ADP concentrations.  相似文献   

13.
Carboxyatractylate inhibits the uncoupling effect of free fatty acids   总被引:2,自引:0,他引:2  
The ATP/ADP-antiporter inhibitors and ADP decrease the palmitate-induced stimulation of the mitochondrial respiration in the controlled state. The degree of inhibition decreases in the order: carboxyatractylate greater than bongkrekic acid, palmitoyl-CoA, ADP greater than atractylate. GDP is ineffective. The inhibiting concentration of carboxyatractylate coincides with this arresting the state 3 respiration. Carboxyatractylate inhibition decreases when the palmitate concentration increases. Stimulation of controlled respiration by FCCP or gramicidin D at any concentration of these uncouplers is carboxyatractylate-resistant, whereas that by low concentrations of DNP is partially suppressed by carboxyatractylate. These data together with observations that palmitate does not increase H+ conductance in bilayer phospholipid membranes and in cytochrome oxidase-asolectin proteoliposomes indicate that the ATP/ADP-antiporter is somehow involved in the uncoupling by low concentrations of fatty acids (or DNP), whereas that by FCCP and gramicidin D is due to their effect on the phospholipid bilayer. It is suggested that the antiporter facilitates translocation of palmitate anion across the mitochondrial membrane.  相似文献   

14.
1. A large series of 3' esters of ADP has been synthesized. Several of these can serve as photoaffinity labels; others exhibit fluorescent properties. The corresponding AMP and ATP derivatives have also been synthesized in some cases. 2. The influence of the 3'-O-acyl nucleotides on energy-linked functions of beef-heart submitochondrial particles has been investigated. The following results were obtained. a) 3'Esters of ADP are powerful and highly specific inhibitors of oxidative phosphorylation. The inhibition is competitive to ADP and Ki values as low as 0.05 microM, for the 3'-O-(1)naphthoyl ester of ADP, could be observed. b) The inhibition of oxidative phosphorylation by 3' esters of ADP appears to be non-competitive versus inorganic phosphate. c) The nucleotide analogs are not phosphorylated themselves. The corresponding ATP analogs can not drive energy-linked process. d) The 3' esters of AMP are ineffective as inhibitors, whereas the ATP derivatives are only comparatively weak inhibitors. e) Uncoupled or solubilized ATPase is almost two orders of magnitude less sensitive against inhibition by 3' esters than coupled systems. The analogs exert maximal inhibition specifically in systems involving an 'energized' state of the coupling device. f) Azido-group-bearing analogs can be used for irreversible photoinactivation of the coupling ATPase. Photoinactivation also is most efficient when carried out with 'energized' particles. g) The inhibitory properties are similar also in ATP-driven NAD+ reduction by succinate, and in the uncoupler-sensitive ATP in equilibrium with Pi exchange. The required concentrations for half-maximal inhibition are somewhat higher than in oxidative phosphorylation, but lower than with uncoupled ATPase. 3. From molecular models, from substituent properties, and from the conditions required for inhibition it is concluded that these highly effective analogs of ADP may act as conformation-specific probes at the catalytic site of oxidative phosphorylation. The results are interpreted in terms of a model suggesting that, in the process of ATP synthesis, a hydrophobic cavity on the enzyme is exposed only in the energized state, accepting the large 3' substituent. The substituent is assumed to inhibit phosphoryl transfer and/or conformational transitions inherent in the process of ADP phosphorylation by steric hinderance.  相似文献   

15.
TNFR1/Fas engagement results in the cleavage of cytosolic Bid to truncated Bid (tBid), which translocates to mitochondria. We demonstrate that recombinant tBid induces in vitro immediate destabilization of the mitochondrial bioenergetic homeostasis. These alterations result in mild uncoupling of mitochondrial state-4 respiration, associated with an inhibition the adenosine diphosphate (ADP)-stimulated respiration and phosphorylation rate. tBid disruption of mitochondrial homeostasis was inhibited in mitochondria overexpressing Bcl-2 and Bcl-XL. The inhibition of state-3 respiration is mediated by the reorganization of cardiolipin within the mitochondrial membranes, which indirectly affects the activity of the ADP/ATP translocator. Cardiolipin-deficient yeast mitochondria did not exhibit any respiratory inhibition by tBid, proving the absolute requirement for cardiolipin for tBid binding and activity. In contrast, the wild-type yeast mitochondria underwent a similar inhibition of ADP-stimulated respiration associated with reduced ATP synthesis. These events suggest that mitochondrial lipids rather than proteins are the key determinants of tBid-induced destabilization of mitochondrial bioenergetics.  相似文献   

16.
The adenine nucleotides ADP and ATP are probably the most important endogenous inhibitors of the mitochondrial permeability transition (MPT). We studied the inhibitory effects of adenine nucleotides on brain MPT by measuring mitochondrial swelling and Ca2+ and cytochrome c release. We observed that in the presence of either ADP or ATP, at 250 μM, brain mitochondria accumulated more than 1 μmol Ca2+ × mg protein−1. ADP or ATP also prevented Ca2+-induced mitochondrial swelling and cytochrome c release. Interestingly, ATP lost most of its inhibitory effects on MPT when the experiments were carried out in the presence of ATP-regenerating systems. These results indicate that MPT inhibition observed in the presence of added ATP could be mainly due to hydrolysis of ATP to ADP. From mitochondrial swelling measurements, half-maximal inhibitory values (K i) of 4.5 and 98 μM were obtained for ADP and ATP, respectively. In addition, a delayed mitochondrial swelling sensitive to higher ADP concentrations was observed. Mitochondrial anoxia/reoxygenation did not interfere with the inhibitory effect of ADP on Ca2+-induced MPT, but oxidative phosphorylation markedly decreased this effect. We conclude that ADP is a potent inhibitor of brain MPT whereas ATP is a weaker inhibitor of this phenomenon. Our results suggest that ADP can have an important protective role against MPT-mediated tissue damage under conditions of brain ischemia and hypoglycemia.  相似文献   

17.
The inhibitory effect of oligomycin was investigated in intact mitochondria through oxidative phosphorylation and uncoupler induced ATPase activity. Results show that oligomycin inhibition curves can be either sigmoidal or hyperbolic depending on experimental conditions and chiefly on the metabolic state of mitochondria with regard to the distribution of mitochondrial endogenous adenine-nucleotides. Active respiration and uncoupler-induced ATPse activity produce sigmoidal titration curves for a high initial ATP : ADP ratio and hyperbolic curves for a low ATP : ADP ratio. Time-dependent inhibitions are observed for the two reactions. The maximal inhibitory action for low concentrations of the inhibitor is delayed by the initial presence of ATP or the possibility of generating from inorganic phosphate before adding oligomycin. Results presented here show that the initial adenine-nucleotide distribution is important for oligomycin sensitivity of energy-linked reactions. Although a limited conformational change of the oligomycin-sensitivity to the inhibitor, it is more likely that a gross structural change of the inner membrane induced by adenine-nucleotides modifies membrane permeability to oligomycin.  相似文献   

18.
Mitochondria from rabbit reticulocytes contain about 50% of the total reticulocyte hexokinases. The proportion of mitochondrial hexokinases may be changed under different metabolic conditions. Mitochondrial bound and soluble hexokinases exhibit different kinetic properties (KMATP and glucose-6-phosphate inhibition). The respiratory rate of isolated reticulocyte mitochondria in the presence of glucose depends on the glucose-6-phosphate concentration, as the ADP generation by the endogenous hexokinases is strongly inhibited by glucose-6-phosphate. In the experimental system all intermediary states of mitochondrial respiration can be adjusted between the state of maximal activity (state 3 or active state) and the controlled or resting state (state 4) by different glucose-6-phosphate levels. The stationary levels of the extramitochondrial adenine nucleotides in this experimental system have been measured. The rate of mitochondrial respiration and ATP formation depends on the extramitochondrial ATP/ADP ratio. At ratios of about 10 and lower the mitochondria are in their maximum phosphorylation state, at higher ratios the mitochondrial ATP formation is controlled by the extramitochondrial ATP/ADP ratio. It is postulated that the close intercounnection between the mitochondrial hexokinase and the mitochondrial ATP forming system in reticulocytes is of funcitonal significance for mitochondrial-cytosolic interactions in rabbit reticulocytes and probably in other types of cells with mitochondrial hexokinases, too.  相似文献   

19.
The effects of several short-chain mercapto acids on the rate of respiration supported by either palmitoylcarnitine, octanoate, or pyruvate was studied with coupled rat heart mitochondria. 3-Mercaptopropionic acid was found to be a potent inhibitor of respiration sustained by palmitoylcarnitine or octanoate, whereas under identical conditions respiration with pyruvate as a substrate was unaffected. 2-Mercaptoacetic acid also inhibits palmitoylcarnitine-supported respiration, but only at much higher concentrations of the inhibitor. 2-Mercaptopropionic acid has virtually no effect. Incubation of mitochondria with 3-mercaptopropionic acid did not cause the irreversible inactivation of any beta-oxidation enzyme. Since 3-mercaptopropionic acid did not inhibit beta-oxidation in uncoupled mitochondria, it appears that this compound must first be metabolized in an energy-dependent reaction before it becomes inhibitory. 3-Mercaptopropionyl-CoA and three of its S-acyl derivatives, all of which are likely mitochondrial metabolites of 3-mercaptopropionic acid, were tested for their capacity to inhibit the individual enzymes of beta-oxidation. 3-Mercaptopropionyl-CoA inhibits only acyl-CoA dehydrogenase, whereas S-myristoyl-3-mercaptopropionyl-CoA inhibits reversibly several beta-oxidation enzymes. All observations together lead us to suggest that the inhibition of beta-oxidation by 3-mercaptopropionic acid in coupled rat heart mitochondria is most likely a consequence of the reversible inhibition of acyl-CoA dehydrogenase by long-chain S-acyl-3-mercaptopropionyl-CoA thioesters and possibly by 3-mercaptopropionyl-CoA.  相似文献   

20.
Decreases in GSH pools detected during ischemia sensitize neurons to excitotoxic damage. Thermodynamic analysis predicts that partial GSH depletion will cause an oxidative shift in the thiol redox potential. To investigate the acute bioenergetic consequences, neurons were exposed to monochlorobimane (mBCl), which depletes GSH by forming a fluorescent conjugate. Neurons transfected with redox-sensitive green fluorescent protein showed a positive shift in thiol redox potential synchronous with the formation of the conjugate. Mitochondria within neurons treated with mBCl for 1 h failed to hyperpolarize upon addition of oligomycin to inhibit their ATP synthesis. A decreased ATP turnover was confirmed by monitoring neuronal oxygen consumption in parallel with mitochondrial membrane potential (Deltapsi(m)) and GSH-mBCl formation. mBCl progressively decreased cell respiration, with no effect on mitochondrial proton leak or maximal respiratory capacity, suggesting adequate glycolysis and a functional electron transport chain. This approach to "state 4" could be mimicked by the adenine nucleotide translocator inhibitor bongkrekic acid, which did not further decrease respiration when administered after mBCl. The cellular ATP/ADP ratio was decreased by mBCl, and consistent with mitochondrial ATP export failure, respiration could not respond to an increased cytoplasmic ATP demand by plasma membrane Na(+) cycling; instead, mitochondria depolarized. More prolonged mBCl exposure induced mitochondrial failure, with Deltapsi(m) collapse followed by cytoplasmic Ca(2+) deregulation. The initial bioenergetic consequence of neuronal GSH depletion in this model is thus an inhibition of ATP export, which precedes other forms of mitochondrial dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号