首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigated the influences of reproductive priming, using acoustic stimuli alone or a combination of acoustic and visual stimuli on egg-laying in female zebra finches (Taeniopygia guttata). One group of females was exposed during 6 days to both acoustic and visual stimuli from males while another was exposed only to acoustic stimuli; a control group was unable to see or hear males prior to the introduction of unfamiliar males for pairing. We also manipulated the amount of visual stimulation by presenting either: males with normal red bands, males with red bands without ultraviolet reflection or unadorned males. Females exposed to visual stimuli spent more time on perches near males than control females or those only hearing males. However, there were no statistically significant differences in subsequent total eggs produced, or the latency to egg-laying between females exposed to priming males with different visual characteristics; they did not significantly differ from the control females in these parameters either. Females that heard, but did not see, priming stimuli produced more eggs when paired with males than the controls. Thus, acoustic stimuli alone may have promoted reproductive condition while the acoustic and visual stimuli together did not. Our results contradict a previous report, and may reflect components of the experimental design we employed (i.e. by pairing females with unfamiliar males after their initial exposure to priming males, we may have suppressed their ability to advance their reproductive state). Females that only heard priming males may have been more willing to accept pairing males because of the absence of visual identifiers.  相似文献   

2.
Artificial grammar learning (AGL) provides a useful tool for exploring rule learning strategies linked to general purpose pattern perception. To be able to directly compare performance of humans with other species with different memory capacities, we developed an AGL task in the visual domain. Presenting entire visual patterns simultaneously instead of sequentially minimizes the amount of required working memory. This approach allowed us to evaluate performance levels of two bird species, kea (Nestor notabilis) and pigeons (Columba livia), in direct comparison to human participants. After being trained to discriminate between two types of visual patterns generated by rules at different levels of computational complexity and presented on a computer screen, birds and humans received further training with a series of novel stimuli that followed the same rules, but differed in various visual features from the training stimuli. Most avian and all human subjects continued to perform well above chance during this initial generalization phase, suggesting that they were able to generalize learned rules to novel stimuli. However, detailed testing with stimuli that violated the intended rules regarding the exact number of stimulus elements indicates that neither bird species was able to successfully acquire the intended pattern rule. Our data suggest that, in contrast to humans, these birds were unable to master a simple rule above the finite-state level, even with simultaneous item presentation and despite intensive training.  相似文献   

3.
Infants appear to learn abstract rule-like regularities (e.g., la la da follows an AAB pattern) more easily from speech than from a variety of other auditory and visual stimuli (Marcus et al., 2007). We test if that facilitation reflects a specialization to learn from speech alone, or from modality-independent communicative stimuli more generally, by measuring 7.5-month-old infants' ability to learn abstract rules from sign language-like gestures. Whereas infants appear to easily learn many different rules from speech, we found that with sign-like stimuli, and under circumstances comparable to those of Marcus et al. (1999), hearing infants were able to learn an ABB rule, but not an AAB rule. This is consistent with results of studies that demonstrate lower levels of infant rule learning from a variety of other non-speech stimuli, and we discuss implications for accounts of speech-facilitation.  相似文献   

4.

Background

The duration of sounds can affect the perceived duration of co-occurring visual stimuli. However, it is unclear whether this is limited to amodal processes of duration perception or affects other non-temporal qualities of visual perception.

Methodology/Principal Findings

Here, we tested the hypothesis that visual sensitivity - rather than only the perceived duration of visual stimuli - can be affected by the duration of co-occurring sounds. We found that visual detection sensitivity (d’) for unimodal stimuli was higher for stimuli of longer duration. Crucially, in a cross-modal condition, we replicated previous unimodal findings, observing that visual sensitivity was shaped by the duration of co-occurring sounds. When short visual stimuli (∼24 ms) were accompanied by sounds of matching duration, visual sensitivity was decreased relative to the unimodal visual condition. However, when the same visual stimuli were accompanied by longer auditory stimuli (∼60–96 ms), visual sensitivity was increased relative to the performance for ∼24 ms auditory stimuli. Across participants, this sensitivity enhancement was observed within a critical time window of ∼60–96 ms. Moreover, the amplitude of this effect correlated with visual sensitivity enhancement found for longer lasting visual stimuli across participants.

Conclusions/Significance

Our findings show that the duration of co-occurring sounds affects visual perception; it changes visual sensitivity in a similar way as altering the (actual) duration of the visual stimuli does.  相似文献   

5.
Li YC  Chen CC  Chen JH 《PloS one》2011,6(5):e18954

Background

Visual processing network is one of the functional networks which have been reliably identified to consistently exist in human resting brains. In our work, we focused on this network and investigated the intrinsic properties of low frequency (0.01–0.08 Hz) fluctuations (LFFs) during changes of visual stimuli. There were two main questions to be discussed in this study: intrinsic properties of LFFs regarding (1) interactions between visual stimuli and resting-state; (2) impact of repetition rate of visual stimuli.

Methodology/Principal Findings

We analyzed scanning sessions that contained rest and visual stimuli in various repetition rates with a novel method. The method included three numerical approaches involving ICA (Independent Component Analyses), fALFF (fractional Amplitude of Low Frequency Fluctuation), and Coherence, to respectively investigate the modulations of visual network pattern, low frequency fluctuation power, and interregional functional connectivity during changes of visual stimuli. We discovered when resting-state was replaced by visual stimuli, more areas were involved in visual processing, and both stronger low frequency fluctuations and higher interregional functional connectivity occurred in visual network. With changes of visual repetition rate, the number of areas which were involved in visual processing, low frequency fluctuation power, and interregional functional connectivity in this network were also modulated.

Conclusions/Significance

To combine the results of prior literatures and our discoveries, intrinsic properties of LFFs in visual network are altered not only by modulations of endogenous factors (eye-open or eye-closed condition; alcohol administration) and disordered behaviors (early blind), but also exogenous sensory stimuli (visual stimuli with various repetition rates). It demonstrates that the intrinsic properties of LFFs are valuable to represent physiological states of human brains.  相似文献   

6.

Background

The sound-induced flash illusion is an auditory-visual illusion – when a single flash is presented along with two or more beeps, observers report seeing two or more flashes. Previous research has shown that the illusion gradually disappears as the temporal delay between auditory and visual stimuli increases, suggesting that the illusion is consistent with existing temporal rules of neural activation in the superior colliculus to multisensory stimuli. However little is known about the effect of spatial incongruence, and whether the illusion follows the corresponding spatial rule. If the illusion occurs less strongly when auditory and visual stimuli are separated, then integrative processes supporting the illusion must be strongly dependant on spatial congruence. In this case, the illusion would be consistent with both the spatial and temporal rules describing response properties of multisensory neurons in the superior colliculus.

Methodology/Principal Findings

The main aim of this study was to investigate the importance of spatial congruence in the flash-beep illusion. Selected combinations of one to four short flashes and zero to four short 3.5 KHz tones were presented. Observers were asked to count the number of flashes they saw. After replication of the basic illusion using centrally-presented stimuli, the auditory and visual components of the illusion stimuli were presented either both 10 degrees to the left or right of fixation (spatially congruent) or on opposite (spatially incongruent) sides, for a total separation of 20 degrees.

Conclusions/Significance

The sound-induced flash fission illusion was successfully replicated. However, when the sources of the auditory and visual stimuli were spatially separated, perception of the illusion was unaffected, suggesting that the “spatial rule” does not extend to describing behavioural responses in this illusion. We also find no evidence for an associated “fusion” illusion reportedly occurring when multiple flashes are accompanied by a single beep.  相似文献   

7.
Balkenius A  Hansson B 《PloS one》2012,7(4):e32133

Background

The mushroom bodies of the insect brain play an important role in olfactory processing, associative learning and memory. The mushroom bodies show odor-specific spatial patterns of activity and are also influenced by visual stimuli.

Methodology/Principal Findings

Functional imaging was used to investigate changes in the in vivo responses of the mushroom body of the hawkmoth Manduca sexta during multimodal discrimination training. A visual and an odour stimulus were presented either together or individually. Initially, mushroom body activation patterns were identical to the odour stimulus and the multimodal stimulus. After training, however, the mushroom body response to the rewarded multimodal stimulus was significantly lower than the response to the unrewarded unimodal odour stimulus, indicating that the coding of the stimuli had changed as a result of training. The opposite pattern was seen when only the unimodal odour stimulus was rewarded. In this case, the mushroom body was more strongly activated by the multimodal stimuli after training. When no stimuli were rewarded, the mushroom body activity decreased for both the multimodal and unimodal odour stimuli. There was no measurable response to the unimodal visual stimulus in any of the experiments. These results can be explained using a connectionist model where the mushroom body is assumed to be excited by olfactory stimulus components, and suppressed by multimodal configurations.

Conclusions

Discrimination training with multimodal stimuli consisting of visual and odour cues leads to stimulus specific changes in the in vivo responses of the mushroom body of the hawkmoth.  相似文献   

8.
It was shown that a large set of training stimuli promotes abstract concept learning. These experiments were designed to assess whether an application of a large set of training stimuli would facilitate matching learning in crows. Four hooded crows were trained with a set of 72 unique combinations of stimuli in two-alternative simultaneous matching tasks with stimuli of three different categories: achromatic color (white, light-grey, dark-grey, and black), shape (Arabic numerals from 1 to 4 used as visual shapes only), and number of elements (heterogeneous graphic arrays from 1 to 4 items). Although the performance of all crows was significantly above chance (p < 0.01) in some 72-trial blocks, birds were unable to establish matching and to reach the criterion of learning 80% correct or better over 72 consecutive trials) in 5184 trials. Thus, the modified training procedure was less efficient than the training technique previously used (successive cyclic repetition of three small sets of training stimuli), which allowed four of six crows to acquire the matching rule after 1780, 2360, 3830, and 5260 trials [4,9].  相似文献   

9.
We studied spatial organization of the receptive fields (RF) of neurons of the lateral geniculate body (LGB) on unanesthetized cats (pretrigeminal brainstem section). After identification of localization and borders of the RF of the neuron under study, we scanned with a sufficient resolution the entire visual field and tried to find additional space zones, whose stimulation could influence the impulse activity of the neuron. These experiments demonstrated that 24 neurons of 167 examined units (14%) could react to the presentation of visual stimuli within the visual space outside the main RF, but we were unable to determine borders of these additional zones with a sufficient accuracy. In 12 neurons (7% of the group under study), localization, dimensions, and specific features of an additional RF (RF-2) could be clearly determined. As a rule, the center of the RF-2 was localized at a distance of 20-40O; or even farther from the center of the main RF (RF-1). To activate the neuron from the RF-2, application of greater visual stimuli was necessary (as compared with stimulation of the RF-1). Thus, two RF of one and the same neuron had dissimilar spatial organizations and qualitatively differed from each other in their stationary and dynamic characteristics. Considering our findings, we hypothesize that the RF-2 of LGB neurons can play a certain role in perception of large objects within the visual field of the animal by promoting formation of the avoidance reaction.  相似文献   

10.
Electrodes were implanted into cranium above the primary visual cortex of four rabbits (Orictolagus cuniculus). At the first stage, visual evoked potentials (VEPs) were recorded in response to substitution of threshold visual stimuli (0.28 and 0.31 cd/m2). Then the sound (2000 Hz, 84 dB, duration 40 ms) was added simultaneously to every visual stimulus. Single sounds (without visual stimuli) did not produce a VEP-response. It was found that the amplitude ofVEP component N1 (85-110 ms) in response to complex stimuli (visual and sound) increased 1.6 times as compared to "simple" visual stimulation. At the second stage, paired substitutions of 8 different visual stimuli (range 0.38-20.2 cd/m2) by each other were performed. Sensory spaces of intensity were reconstructed on the basis of factor analysis. Sensory spaces of complexes were reconstructed in a similar way for simultaneous visual and sound stimulation. Comparison of vectors representing the stimuli in the spaces showed that the addition of a sound led to a 1.4-fold expansion of the space occupied by smaller intensities (0.28; 1.02; 3.05; 6.35 cd/m2). Also, the addition of the sound led to an arrangement of intensities in an ascending order. At the same time, the sound 1.33-times narrowed the space of larger intensities (8.48; 13.7; 16.8; 20.2 cd/m2). It is suggested that the addition of a sound improves a distinction of smaller intensities and impairs a dis- tinction of larger intensities. Sensory spaces revealed by complex stimuli were two-dimensional. This fact can be a consequence of integration of sound and light in a unified complex at simultaneous stimulation.  相似文献   

11.
A technique is proposed for the investigation of discrete internal representations assumed to be formed by the visual system in response to pattern stimuli. The proposed technique involves applying a local 1-parameter group of spatial transformations to a pattern to generate a continuum of patterns. The visual discriminability of pairs of perturbed patterns corresponding to small fixed increments in the transformation parameter is determined at various points in the parameter range. By means of a simple rule, the characteristics of this discrimination performance are then related to the probability density functions assumed to underlie the hypothesized discrete internal representations. Two experimental applications of the proposed technique are described. The first is concerned with a discrete internal representation involving the specification of the collinearity or non-collinearity of the points in a pattern; the second is concerned with a discrete internal representation involving the specification of the acuteness or obtuseness of the angle between two lines in a pattern.  相似文献   

12.
Emotive aspects of stimuli have been shown to modulate perceptual thresholds. Lately, studies using functional Magnetic Resonance Imaging (fMRI) showed that emotive aspects of visual stimuli activated not only canonical limbic regions, but also sensory areas in the cerebral cortex. However, it is still arguable to what extent such emotive, related activation in sensory areas of the cortex are affected by physical characteristic or attribute difference of stimuli. To manipulate valence of stimuli while keeping visual features largely unchanged, we took advantage of the Expressional Transfiguration (ET) of faces. In addition, to explore the sensitivity of high level visual regions, we compared repeated with unrepeated (i.e. different) stimuli presentations (fMR adaptation). Thus, the dynamics of brain responses was determined according to the relative signal reduction during repeated relative to different presentations (adaptation ratio). Our results showed, for the first time, that emotional valence produced significant differences in fMR adaptation, but not in overall levels of activation of lateral occipital complex (LOC). We then asked whether this emotion modulation on sensory cortex could be related to previous personal experience that attached negative attributes of stimuli. To clarify this, we investigated Posttraumatic Stress Disorder (PTSD) and non-PTSD veterans. PTSD is characterized by recurrent revival of trauma-related sensations. Such phenomena have been attributed to a disturbed processing of trauma-related stimuli, either at the perceptual level or at the cognitive level. We assumed that PTSD veterans would differ from non-PTSD veterans (who have similar combat experience) in their high order visual cortex responses to combat-related visual stimuli that are associated with their traumatic experience. An fMRI study measured the cerebral activation of subjects while viewing pictures with and without combat content, in repeated or different presentation conditions. The emotive effect on the visual cortex was found, again, only in the fMR-adaptation paradigm. Visual cortical regions showed significant differences between PTSD and non-PTSD veterans only in repeated presentations of trauma-related stimuli (i.e. combat). In these regions, PTSD veterans showed less decrease in signal with repeated presentations of the same combat-related stimuli. This finding points to the possibility that traumatic experience modulates brain activity at the level of sensory cortex itself.  相似文献   

13.
Recent research has suggested that pigeons may have difficulty globally integrating visual information in hierarchically arranged stimuli. To isolate and understand the mechanisms responsible for processing emergent perceptual structure, three pigeons were tested in a two alternative choice task that required the global integration of organized local information. They were reinforced for localizing, on randomized distractor backgrounds of black and white square elements, different types of structured targets (e.g., stripes, squares, checkerboards) arranged from these same elements. These hierarchical stimuli were tested at four different levels of spatial granularity (i.e., different element sizes). Experiment 1 found rapid acquisition for the vertical and horizontal stripes or square targets and somewhat slower learning with the checkerboard pattern. Experiment 2 demonstrated successful transfer to a novel target types (alternating bars and "diagonal" stripes). In both experiments, displays with the greatest spatial granularity (smallest elements and most repetitive structure) monotonically supported the best discrimination. These results indicate pigeons can perceive and discriminate emergent visual structure under the right circumstances and suggest they do so with a generalized rule for detecting patterns of non-random perceptual structure.  相似文献   

14.

Background

In alphabetic languages, emerging evidence from behavioral and neuroimaging studies shows the rapid and automatic activation of phonological information in visual word recognition. In the mapping from orthography to phonology, unlike most alphabetic languages in which there is a natural correspondence between the visual and phonological forms, in logographic Chinese, the mapping between visual and phonological forms is rather arbitrary and depends on learning and experience. The issue of whether the phonological information is rapidly and automatically extracted in Chinese characters by the brain has not yet been thoroughly addressed.

Methodology/Principal Findings

We continuously presented Chinese characters differing in orthography and meaning to adult native Mandarin Chinese speakers to construct a constant varying visual stream. In the stream, most stimuli were homophones of Chinese characters: The phonological features embedded in these visual characters were the same, including consonants, vowels and the lexical tone. Occasionally, the rule of phonology was randomly violated by characters whose phonological features differed in the lexical tone.

Conclusions/Significance

We showed that the violation of the lexical tone phonology evoked an early, robust visual response, as revealed by whole-head electrical recordings of the visual mismatch negativity (vMMN), indicating the rapid extraction of phonological information embedded in Chinese characters. Source analysis revealed that the vMMN was involved in neural activations of the visual cortex, suggesting that the visual sensory memory is sensitive to phonological information embedded in visual words at an early processing stage.  相似文献   

15.

Background

In ecological situations, threatening stimuli often come out from the peripheral vision. Such aggressive messages must trigger rapid attention to the periphery to allow a fast and adapted motor reaction. Several clues converge to hypothesize that peripheral danger presentation can trigger off a fast arousal network potentially independent of the consciousness spot.

Methodology/Principal Findings

In the present MEG study, spatio-temporal dynamics of the neural processing of danger related stimuli were explored as a function of the stimuli position in the visual field. Fearful and neutral faces were briefly presented in the central or peripheral visual field, and were followed by target faces stimuli. An event-related beamformer source analysis model was applied in three time windows following the first face presentations: 80 to 130 ms, 140 to 190 ms, and 210 to 260 ms. The frontal lobe and the right internal temporal lobe part, including the amygdala, reacted as soon as 80 ms of latency to fear occurring in the peripheral vision. For central presentation, fearful faces evoked the classical neuronal activity along the occipito-temporal visual pathway between 140 and 190 ms.

Conclusions

Thus, the high spatio-temporal resolution of MEG allowed disclosing a fast response of a network involving medial temporal and frontal structures in the processing of fear related stimuli occurring unconsciously in the peripheral visual field. Whereas centrally presented stimuli are precisely processed by the ventral occipito-temporal cortex, the related-to-danger stimuli appearing in the peripheral visual field are more efficient to produce a fast automatic alert response possibly conveyed by subcortical structures.  相似文献   

16.
Chromosomal mosaicism in chorionic villus samples (CVS) may arise from different sources, such as clonal diversity within the chorionic tissue or contamination with maternal cells. To determine the origin of karyotyped cells, we compared the immunocytochemical features of mitotic cells in CVS long-term cultures with histological sections of their tissue of origin, i.e. chorionic villi. Immunolabelling of intermediate filaments specific for epithelial cells (cytokeratin) and mesenchymal cells (vimentin) established that mitoses yielded from CVS long-term cultures indeed stem from independently growing clones derived from both the epithelial and mesenchymal parts of the chorionic villi. Thus, mosaicism in CVS cultures may reflect true genetic heterogeneity within the biopsy. However, epithelial chorionic cells undergo in vitro metaplasia leading to co-expression of cytokeratins and vimentin. Fetal-specific immune markers (-HCG and SP1-glycoprotein) are not reliably expressed in CVS cell culture.  相似文献   

17.
Average evoked potentials (AEP) were recorded in practically healthy subjects to "meaningless" figures and letters, presented to different halves of the visual field. Analysis of the amplitudes of AEP late components to verbal and non-verbal stimuli reveals hemispheric asymmetry. A higher amplitude of the late positive evoked response (P300) to a "direct" stimulation both by verbal and non-verbal stimuli (in the contralateral field of vision) is recorded in the left hemisphere than in the right one. Similar stimulation of the right hemisphere does not reveal sucha difference. In the left hemisphere the P300 wave is of a clearly greater amplitude to a "direct" stimulation (contralateral visual field) than to an "indirect" one (ipsilateral visual field), regardless of the nature of the stimulus. No such difference is observed in the right hemisphere. The magnitude of the late negative wave (component N200) to non-verbal stimuli is greater in the right hemisphere both in response to "direct" and "indirect" stimulations. No intrahemispheric difference has been found in the amplitude of late evoked responses of the cerebral cortex to verbal and non-verbal stimuli.  相似文献   

18.
The images of two fragments of simple geometrical figures (square, triangle, etc.) were successively presented to healthy adult subjects in the left and right visual fields with the interval of 20, 80 and 380 ms; the subjects had to compare them mentally and decide whether they formed a geometrical figure. The correctness of reaction was controlled by a computer which lightened on the screen the word "correct" or "error". The number of correct decisions was significantly greater in response to the stimuli, forming a regular figure and increased with the increase of interstimuli interval. At the interval of 120 ms, when no regular figure could be formed from two fragments, the number of correct decisions was greater if the stimuli were presented in the left visual field. The reaction time did not depend on the hemisphere to which information was addressed; it was less in response to the stimuli forming a regular figure, and became shorter with the increase of the interstimuli interval.  相似文献   

19.
Prereproductive adults of the grasshopper, Melanoplus sanguinipes (F.) (Orthoptera, Acrididae), demonstrated orientation and movement towards both visual and olfactory stimulus sources in a still-air chamber. Visual stimuli (wheat and lima bean foliage, vertical black or yellow-green stripes, and a yellow-green broad leaf pattern) were approached more frequently than the control white background surface. Olfactory stimuli (chopped wheat foliage and a four-component, synthetic, grass odor blend of volatiles) elicited an even greater positive response than the visual stimuli. Changing the proportions of the four volatiles in the blend significantly reduced positive orientation responses to the stimulus source. Visual cues of wheat foliage and olfactory cues of either chopped wheat odor or the grass odor blend gave greater responses when combined than when presented separately.In flowing air or wind, nearly all insects demonstrated a rapid positive response to odors of chopped wheat and the grass odor blend, significantly greater than the response to the same stimuli in still air. However, positive responses to visual cues were not significantly greater in wind than in still air. When combined with the olfactory stimuli in flowing air, visual cues did not increase the incidence of response. Grasshoppers responding to grass odors in wind moved more rapidly and directly toward the source, and stopped less often and for shorter durations than insects responding to odor in still air or to visual cues.We conclude from these studies that M. sanguinipes adults show orientation behavior to both visual and olfactory stimuli from food plant sources, although leaf odors elicit a stronger positive response particularly when carried by wind.  相似文献   

20.
At tachistoscopic unilateral presentation of noisy visual stimuli and application of "yes-no" method in man predominance was found of the right hemisphere by the number and "yes" reaction time and of the left hemisphere by the number of responses "no". At verbal mnemic load preceding the presentation of visual patterns the left hemisphere asymmetry was observed by the number of "yes" responses and reactions time of both types. FMA was more clearly expressed in men in the first case and in women--in the second one. In more difficult conditions of recognition of several types of patterns, FMA was noticed mainly in women: initial left hemisphere advantage during the increase of the disturbance was changed to the right hemispheric one and appeared again. Preferential participation of the right hemisphere in singling out of the visual signal from noise is supposed. Possibility of the left hemispheric asymmetry manifestation was determined by the specificity and complexity of the visual task, by the level of the disturbance, presentation of competitive task and sexual composition of the group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号