首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Ebolaviruses cause a severe and often fatal haemorrhagic fever in humans, with some species such as Ebola virus having case fatality rates approaching 90%. Currently, the worst Ebola virus outbreak since the disease was discovered is occurring in West Africa. Although thought to be a zoonotic infection, a concern is that with increasing numbers of humans being infected, Ebola virus variants could be selected which are better adapted for human-to-human transmission.

Results

To investigate whether genetic changes in Ebola virus become established in response to adaptation in a different host, a guinea pig model of infection was used. In this experimental system, guinea pigs were infected with Ebola virus (EBOV), which initially did not cause disease. To simulate transmission to uninfected individuals, the virus was serially passaged five times in naïve animals. As the virus was passaged, virulence increased and clinical effects were observed in the guinea pig. An RNAseq and consensus mapping approach was then used to evaluate potential nucleotide changes in the Ebola virus genome at each passage.

Conclusions

Upon passage in the guinea pig model, EBOV become more virulent, RNA editing and also coding changes in key proteins become established. The data suggest that the initial evolutionary trajectory of EBOV in a new host can lead to a gain in virulence. Given the circumstances of the sustained transmission of EBOV in the current outbreak in West Africa, increases in virulence may be associated with prolonged and uncontrolled epidemics of EBOV.  相似文献   

2.

Background

Poverty has been implicated as a challenge in the control of the current Ebola outbreak in West Africa. Although disparities between affected countries have been appreciated, disparities within West African countries have not been investigated as drivers of Ebola transmission. To quantify the role that poverty plays in the transmission of Ebola, we analyzed heterogeneity of Ebola incidence and transmission factors among over 300 communities, categorized by socioeconomic status (SES), within Montserrado County, Liberia.

Methodology/Principal Findings

We evaluated 4,437 Ebola cases reported between February 28, 2014 and December 1, 2014 for Montserrado County to determine SES-stratified temporal trends and drivers of Ebola transmission. A dataset including dates of symptom onset, hospitalization, and death, and specified community of residence was used to stratify cases into high, middle and low SES. Additionally, information about 9,129 contacts was provided for a subset of 1,585 traced individuals. To evaluate transmission within and across socioeconomic subpopulations, as well as over the trajectory of the outbreak, we analyzed these data with a time-dependent stochastic model. Cases in the most impoverished communities reported three more contacts on average than cases in high SES communities (p<0.001). Our transmission model shows that infected individuals from middle and low SES communities were associated with 1.5 (95% CI: 1.4–1.6) and 3.5 (95% CI: 3.1–3.9) times as many secondary cases as those from high SES communities, respectively. Furthermore, most of the spread of Ebola across Montserrado County originated from areas of lower SES.

Conclusions/Significance

Individuals from areas of poverty were associated with high rates of transmission and spread of Ebola to other regions. Thus, Ebola could most effectively be prevented or contained if disease interventions were targeted to areas of extreme poverty and funding was dedicated to development projects that meet basic needs.  相似文献   

3.
The 2014–2015 Ebola outbreak is the largest and most widespread to date. In order to estimate ongoing transmission in the affected countries, we estimated the weekly average number of secondary cases caused by one individual infected with Ebola throughout the infectious period for each affected West African country using a stochastic hidden Markov model fitted to case data from the World Health Organization. If the average number of infections caused by one Ebola infection is less than 1.0, the epidemic is subcritical and cannot sustain itself. The epidemics in Liberia and Sierra Leone have approached subcriticality at some point during the epidemic; the epidemic in Guinea is ongoing with no evidence that it is subcritical. Response efforts to control the epidemic should continue in order to eliminate Ebola cases in West Africa.  相似文献   

4.
Epidemic, infectious, diseases affect a large number of individuals across developing as well as developed countries. With reference to some very simple diffusion models, in this paper we consider how available economic resources could be optimally allocated by health authorities to mitigate, possibly eradicate, the disease. Optimality was defined as the minimization of the long run number of infected people. The main goal of the work has been to introduce a methodology for deciding if it would be best to concentrate resources to prevent contact between individuals and with an external source, or to develop a new treatment for curing the disease, or both. The analysis suggests that this depends on the cost functions, that is the available technology, for controlling the relevant parameters underlying the epidemics as well as on the available financial resources. In the case of the recent Ebola outbreak, the suggestions of the model have been consistent with the policies adopted.  相似文献   

5.
White spot syndrome virus (WSSV) is devastating shrimp aquaculture throughout the world, but despite its economic importance no work has been done on modeling epidemics of this pathogen. Therefore we developed a Reed-Frost epidemic model for WSSV in Litopenaeus vannamei. The model includes uninfected susceptible, latently infected, acutely infected, and dead infected shrimp. The source of new infections during an outbreak is considered to be dead infected shrimp. The transmission coefficient, patency coefficient, virulence coefficient, and removal coefficient (disappearance of dead infected shrimp) control the dynamics of the model. In addition, an explicit area parameter is included to help to clarify the distinction between density and absolute shrimp population size. An analysis of the model finds that as number of shrimp, initial dose, transmission coefficient, patency coefficient, virulence coefficient, or removal coefficient changes, the speed of the epidemic changes. The model predicts that a threshold density of susceptible shrimp exists below which an outbreak of WSSV will not occur. Only initial dose, transmission coefficient, removal coefficient, and area coefficient affect the predicted threshold density. Increases in the transmission coefficient reduce the threshold value, whereas increases in the other factors cause the threshold value to increase. Epidemic models may prove useful to the shrimp aquaculture industry by suggesting testable hypotheses, some of which may contribute to the eventual control of WSSV outbreaks.  相似文献   

6.
7.
Ebola virus has been responsible for two major epidemics over the last several years and there has been a strong effort to find potential treatments that can improve the disease outcome. Antiviral favipiravir was thus tested on non-human primates infected with Ebola virus. Half of the treated animals survived the Ebola virus challenge, whereas the infection was fully lethal for the untreated ones. Moreover, the treated animals that did not survive died later than the controls. We evaluated the hematological, virological, biochemical, and immunological parameters of the animals and performed proteomic analysis at various timepoints of the disease. The viral load strongly correlated with dysregulation of the biological functions involved in pathogenesis, notably the inflammatory response, hemostatic functions, and response to stress. Thus, the management of viral replication in Ebola virus disease is of crucial importance in preventing the immunopathogenic disorders and septic-like shock syndrome generally observed in Ebola virus-infected patients.  相似文献   

8.
Taura syndrome virus (TSV) is a highly virulent pathogen of Litopenaeus vannamei, has affected shrimp aquaculture throughout the world, and threatens wild populations. Despite its importance, little work has been done on the pathogen's formal epidemiology. Therefore we developed a compartment model for epidemics of TSV in closed populations of L. vannamei. The model includes five compartments, uninfected susceptible, prepatently infected, acutely infected, chronically infected, and dead infected shrimp. The transmission coefficients, patency coefficient, virulence coefficients, and removal coefficient (disappearance of dead infected shrimp) control the dynamics of the model. We estimated the coefficients in laboratory studies and inserted the estimates in the model to characterize TSV epidemics and to estimate the basic reproduction ratio R(0) and threshold density for TSV epidemics in L. vannamei. Further we examined through computer simulation the effect of varying the coefficients on R(0). Decreases in transmission decrease R(0), decreases in virulence increase R(0), increases in patency do not affect R(0), and increases in recovery most likely increase R(0) but under some conditions might decrease it.  相似文献   

9.
Network frailty and the geometry of herd immunity   总被引:2,自引:0,他引:2  
The spread of infectious disease through communities depends fundamentally on the underlying patterns of contacts between individuals. Generally, the more contacts one individual has, the more vulnerable they are to infection during an epidemic. Thus, outbreaks disproportionately impact the most highly connected demographics. Epidemics can then lead, through immunization or removal of individuals, to sparser networks that are more resistant to future transmission of a given disease. Using several classes of contact networks-Poisson, scale-free and small-world-we characterize the structural evolution of a network due to an epidemic in terms of frailty (the degree to which highly connected individuals are more vulnerable to infection) and interference (the extent to which the epidemic cuts off connectivity among the susceptible population that remains following an epidemic). The evolution of the susceptible network over the course of an epidemic differs among the classes of networks; frailty, relative to interference, accounts for an increasing component of network evolution on networks with greater variance in contacts. The result is that immunization due to prior epidemics can provide greater community protection than random vaccination on networks with heterogeneous contact patterns, while the reverse is true for highly structured populations.  相似文献   

10.
11.
We constructed dynamic Ebola virus disease (EVD) transmission models to predict epidemic trends and evaluate intervention measure efficacy following the 2014 EVD epidemic in West Africa. We estimated the effective vaccination rate for the population, with basic reproduction number (R0) as the intermediate variable. Periodic EVD fluctuation was analyzed by solving a Jacobian matrix of differential equations based on a SIR (susceptible, infective, and removed) model. A comprehensive compartment model was constructed to fit and predict EVD transmission patterns, and to evaluate the effects of control and prevention measures. Effective EVD vaccination rates were estimated to be 42% (31–50%), 45% (42–48%), and 51% (44–56%) among susceptible individuals in Guinea, Liberia and Sierra Leone, respectively. In the absence of control measures, there would be rapid mortality in these three countries, and an EVD epidemic would be likely recur in 2035, and then again 8~9 years later. Oscillation intervals would shorten and outbreak severity would decrease until the periodicity reached ~5.3 years. Measures that reduced the spread of EVD included: early diagnosis, treatment in isolation, isolating/monitoring close contacts, timely corpse removal, post-recovery condom use, and preventing or quarantining imported cases. EVD may re-emerge within two decades without control and prevention measures. Mass vaccination campaigns and control and prevention measures should be instituted to prevent future EVD epidemics.  相似文献   

12.
In this paper the optimal control strategies of an SIR (susceptible–infected–recovered) epidemic model with time delay are introduced. In order to do this, we consider an optimally controlled SIR epidemic model with time delay where a control means treatment for infectious hosts. We use optimal control approach to minimize the probability that the infected individuals spread and to maximize the total number of susceptible and recovered individuals. We first derive the basic reproduction number and investigate the dynamical behavior of the controlled SIR epidemic model. We also show the existence of an optimal control for the control system and present numerical simulations on real data regarding the course of Ebola virus in Congo. Our results indicate that a small contact rate(probability of infection) is suitable for eradication of the disease (Ebola virus) and this is one way of optimal treatment strategies for infectious hosts.  相似文献   

13.
14.
The West African Ebola Virus Disease epidemic of 2014-16 cost more than 11,000 lives. Interventions targeting key behaviors to curb transmission, such as safe funeral practices and reporting and isolating the ill, were initially unsuccessful in a climate of fear, mistrust, and denial. Building trust was eventually recognized as essential to epidemic response and prioritized, and trust was seen to improve toward the end of the epidemic as incidence fell. However, little is understood about how and why trust changed during Ebola, what factors were most influential to community trust, and how different institutions might have been perceived under different levels of exposure to the outbreak. In this large-N household survey conducted in Liberia in 2018, we measured self-reported trust over time retrospectively in three different communities with different exposures to Ebola. We found trust was consistently higher for non-governmental organizations than for the government of Liberia across all time periods. Trust reportedly decreased significantly from the start to the peak of the epidemic in the study site of highest Ebola incidence. This finding, in combination with a negative association found between knowing someone infected and trust of both iNGOs and the government, indicates the experience of Ebola may have itself caused a decline of trust in the community. These results suggest that national governments should aim to establish trust when engaging communities to change behavior during epidemics. Further research on the relationship between trust and epidemics may serve to improve epidemic response efficacy and behavior uptake.  相似文献   

15.
We assess how presymptomatic infection affects predictability of infectious disease epidemics. We focus on whether or not a major outbreak (i.e. an epidemic that will go on to infect a large number of individuals) can be predicted reliably soon after initial cases of disease have appeared within a population. For emerging epidemics, significant time and effort is spent recording symptomatic cases. Scientific attention has often focused on improving statistical methodologies to estimate disease transmission parameters from these data. Here we show that, even if symptomatic cases are recorded perfectly, and disease spread parameters are estimated exactly, it is impossible to estimate the probability of a major outbreak without ambiguity. Our results therefore provide an upper bound on the accuracy of forecasts of major outbreaks that are constructed using data on symptomatic cases alone. Accurate prediction of whether or not an epidemic will occur requires records of symptomatic individuals to be supplemented with data concerning the true infection status of apparently uninfected individuals. To forecast likely future behavior in the earliest stages of an emerging outbreak, it is therefore vital to develop and deploy accurate diagnostic tests that can determine whether asymptomatic individuals are actually uninfected, or instead are infected but just do not yet show detectable symptoms.  相似文献   

16.
In 2014, a major epidemic of human Ebola virus disease emerged in West Africa, where human-to-human transmission has now been sustained for greater than 12 months. In the summer of 2014, there was great uncertainty about the answers to several key policy questions concerning the path to containment. What is the relative importance of nosocomial transmission compared with community-acquired infection? How much must hospital capacity increase to provide care for the anticipated patient burden? To which interventions will Ebola transmission be most responsive? What must be done to achieve containment? In recent years, epidemic models have been used to guide public health interventions. But, model-based policy relies on high quality causal understanding of transmission, including the availability of appropriate dynamic transmission models and reliable reporting about the sequence of case incidence for model fitting, which were lacking for this epidemic. To investigate the range of potential transmission scenarios, we developed a multi-type branching process model that incorporates key heterogeneities and time-varying parameters to reflect changing human behavior and deliberate interventions in Liberia. Ensembles of this model were evaluated at a set of parameters that were both epidemiologically plausible and capable of reproducing the observed trajectory. Results of this model suggested that epidemic outcome would depend on both hospital capacity and individual behavior. Simulations suggested that if hospital capacity was not increased, then transmission might outpace the rate of isolation and the ability to provide care for the ill, infectious, and dying. Similarly, the model suggested that containment would require individuals to adopt behaviors that increase the rates of case identification and isolation and secure burial of the deceased. As of mid-October, it was unclear that this epidemic would be contained even by 99% hospitalization at the planned hospital capacity. A new version of the model, updated to reflect information collected during October and November 2014, predicts a significantly more constrained set of possible futures. This model suggests that epidemic outcome still depends very heavily on individual behavior. Particularly, if future patient hospitalization rates return to background levels (estimated to be around 70%), then transmission is predicted to remain just below the critical point around R eff = 1. At the higher hospitalization rate of 85%, this model predicts near complete elimination in March to June, 2015.  相似文献   

17.
Epidemiologists usually study the interaction between a host population and one parasitic infection. However, different parasite species effectively compete, in an ecological sense, for the same finite group of susceptible hosts, so there may be an indirect effect on the population dynamics of one disease due to epidemics of another. In human populations, recovery from any serious infection is normally preceded by a period of convalescence, during which infected individuals stay at home and are effectively shielded from exposure to other infectious diseases. We present a model for the dynamics of two infectious diseases, incorporating a temporary removal of susceptibles. We use this model to explore population-level consequences of a temporary insusceptibility in childhood diseases, the dynamics of which are partly driven by differences in contact rates in and out of school terms. Significant population dynamic interference is predicted and cannot be dismissed in the limited case-study data available for measles and whooping cough in England before the vaccination era.  相似文献   

18.
We present an epidemiological model for the crayfish plague, a disease caused by an invasive oomycete Aphanomyces astaci, and its general susceptible freshwater crayfish host. The pathogen shows high virulence with resulting high mortality rates in freshwater crayfishes native to Europe, Asia, Australia, and South America. The crayfish plague occurrence shows complicated dynamics due to the several types of possible infection routes, which include cannibalism and necrophagy. We explore this complexity by addressing the roles of host cannibalism and the multiple routes of transmission through (1) environment, (2) contact, (3) cannibalism, and (4) scavenging of infected carcasses. We describe a compartment model having six classes of crayfish and a pool of crayfish plague spores from a single nonevolving strain. We show that environmental transmission is the decisive factor in the development of epidemics. Compared with a pathogen-free crayfish population, the presence of the pathogen with a low environmental transmission rate, regardless of the contact transmission rate, decreases the crayfish population size with a low risk of extinction. Conversely, a high transmission rate could drive both the crayfish and pathogen populations to extinction. High contact transmission rate with a low but nonzero environmental transmission rate can have mixed outcomes from extinction to large healthy population, depending on the initial values. Scavenging and cannibalism have a relevant role only when the environmental transmission rate is low, but scavenging can destabilize the system by transmitting the pathogen from a dead to a susceptible host. To the contrary, cannibalism stabilizes the dynamics by decreasing the proportion of infected population. Our model provides a simple tool for further analysis of complex host parasite dynamics and for the general understanding of crayfish disease dynamics in the wild.  相似文献   

19.
BackgroundEbola virus (EBOV) is a zoonotic filovirus spread through exposure to infected bodily fluids of a human or animal. Though EBOV is capable of causing severe disease, referred to as Ebola Virus Disease (EVD), individuals who have never been diagnosed with confirmed, probable or suspected EVD can have detectable EBOV antigen-specific antibodies in their blood. This study aims to identify risk factors associated with detectable antibody levels in the absence of an EVD diagnosis.MethodologyData was collected from September 2015 to August 2017 from 1,366 consenting individuals across four study sites in the DRC (Boende, Kabondo-Dianda, Kikwit, and Yambuku). Seroreactivity was determined to EBOV GP IgG using Zaire Ebola Virus Glycoprotein (EBOV GP antigen) ELISA kits (Alpha Diagnostic International, Inc.) in Kinshasa, DRC; any result above 4.7 units/mL was considered seroreactive. Among the respondents, 113 (8.3%) were considered seroreactive. Several zoonotic exposures were associated with EBOV seroreactivity after controlling for age, sex, healthcare worker status, location, and history of contact with an EVD case, namely: ever having contact with bats, ever having contact with rodents, and ever eating non-human primate meat. Contact with monkeys or non-human primates was not associated with seroreactivity.ConclusionsThis analysis suggests that some zoonotic exposures that have been linked to EVD outbreaks can also be associated with EBOV GP seroreactivity in the absence of diagnosed EVD. Future investigations should seek to clarify the relationships between zoonotic exposures, seroreactivity, asymptomatic infection, and EVD.  相似文献   

20.
We investigate the properties of a simple discrete time stochastic epidemic model. The model is Markovian of the SIR type in which the total population is constant and individuals meet a random number of other individuals at each time step. Individuals remain infectious for R time units, after which they become removed or immune. Individual transition probabilities from susceptible to diseased states are given in terms of the binomial distribution. An expression is given for the probability that any individuals beyond those initially infected become diseased. In the model with a finite recovery time R, simulations reveal large variability in both the total number of infected individuals and in the total duration of the epidemic, even when the variability in number of contacts per day is small. In the case of no recovery, R=infinity, a formal diffusion approximation is obtained for the number infected. The mean for the diffusion process can be approximated by a logistic which is more accurate for larger contact rates or faster developing epidemics. For finite R we then proceed mainly by simulation and investigate in the mean the effects of varying the parameters p (the probability of transmission), R, and the number of contacts per day per individual. A scale invariant property is noted for the size of an outbreak in relation to the total population size. Most notable are the existence of maxima in the duration of an epidemic as a function of R and the extremely large differences in the sizes of outbreaks which can occur for small changes in R. These findings have practical applications in controlling the size and duration of epidemics and hence reducing their human and economic costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号