首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time-dependent increase in stability, as measured in terms of the rate of dissolution, of collagen fibrils formed in vitro from pepsin-treated collagen was significantly affected only by temperature, and not by either ionic strength or pH. This is in contrast with collagen fibril formation, a process which is greatly affected by ionic strength and pH. Within the range of temperature 29-37 degrees C, lower temperature caused slower fibril formation and faster fibril stabilization. These results suggest that the intermolecular interactions involved in stabilizing collagen fibrils are entirely different from those involved in fibril formation. Based on kinetic analysis of the dissolution and stabilization of the fibrils, it is proposed that collagen molecules first form unstable fibrils which become gradually stabilized on prolonged incubation, without necessarily introducing covalent cross-links.  相似文献   

2.
The data on the effect of temperature on the kinetics of collagen fibril formation at physiological pH values and ionic strength in the temperature range 26–39°C have been analyzed. The temperature of 35°C optimal for collagen fibril formation has been defined as the point of inflection for half-maximal turbidity and collagen molecule microunfolding values, which corresponds to the temperature of the first transition on the heat absorption curve. The temperature range (32–35°C) in which collagen microunfolding stimulates fibril formation has been determined.  相似文献   

3.
4.
The results of a calorimetric study of type I collagen fibrillogenesis were analyzed. The dependence of the half-width of the temperature transition of a collagen solution on the concentration and temperature of collagen formation was studied. It was demonstrated that, by varying temperature and collagen concentration, one can regulate the density of packing and dimensions of cooperative fibril blocks. At temperatures below the physiological level (25 degrees C and 30 degrees C), and a relatively low concentration of collagen (0.3 mg/ml), fibrils with the lowest density of packing are formed. The degree of order does not change as the collagen concentration increases twofold but grows as the concentration increases fourfold. It was shown that, at the physiological temperature (35 degrees C), fibrils with a dense packing of molecules are formed at all collagen concentrations studied. The value of fibril formation enthalpy is minimal at a temperature of 35 degrees C, pH 7.2, an ionic strength of 0.17 M and a concentration of 1.2 mg/ml. Based on the results obtained, a conclusion was made that the packing density of fibrils formed at physiological temperature does not depend on collagen concentration over the concentration range of 0.3 - 1.2 mg/ml.  相似文献   

5.
Although the collagen V heterotrimer is known to be involved in the control of fibril assembly, the role of the homotrimer in fibrillar organization has not yet been examined. Here, the production of substantial amounts of recombinant collagen V homotrimer has allowed a detailed study of its role in homotypic and heterotypic fibril formation. After removal of terminal regions by pepsin digestion, both the collagen V heterotrimer and homotrimer formed thin homotypic fibrils, thus showing that diameter limitation is at least in part an intrinsic property of the collagen V triple helix. When mixed with collagen I, however, various complementary approaches indicated that the collagen V heterotrimer and homotrimer exerted different effects in heterotypic fibril formation. Unlike the heterotrimer, which was buried in the fibril interior, the homotrimer was localized as thin filamentous structures at the surface of wide collagen I fibrils and did not regulate fibril assembly. Its localization at the fibril surface suggests that the homotrimer can act as a molecular linker between collagen fibrils or macromolecules in the extracellular matrix or both. Thus, depending on their respective distribution in tissues, the different collagen V isoforms might fulfill specific biological functions.  相似文献   

6.
Hydration of an isolated rat tail tendon fibril induces its rotation. A similar effect is observed under the influence of temperature changes in the range of 12-38 degrees C. The direction and intensity of the rotation do not depend on the length of a tendon fibril in the range of 12-80 mm. A probabilistic character of the distribution of right- and left-rotating collagen molecules in the tendon was revealed. The direction and intensity of fibril rotation depends on the predominance of the amount of right- and left-rotating collagen molecules. The role of the rotation of collagen bundles in the mechanism of excitation of mechanoreceptors by the action of temperature is discussed.  相似文献   

7.
The effect of temperature on the kinetics of formation of fibrils from rat tail collagen molecules devoid of telopeptides was studied. It was shown that the rats of fibril formation at 30 and 35 degrees C increases five- and eightfold, respectively, as compared with that at 25 degrees C. It was found that enthalpy of fibril denaturation at 30 degrees C is maximal for the collagen both with intact telopeptides and devoid of telopeptides. It was found that essential for the fibrilogenesis of type I collagen devoid of telopeptides are temperatures of 30 and 35 degrees C.  相似文献   

8.
Mechanical properties of collagen fibrils   总被引:1,自引:0,他引:1  
The formation of collagen fibers from staggered subfibrils still lacks a universally accepted model. Determining the mechanical properties of single collagen fibrils (diameter 50-200 nm) provides new insights into collagen structure. In this work, the reduced modulus of collagen was measured by nanoindentation using atomic force microscopy. For individual type 1 collagen fibrils from rat tail, the modulus was found to be in the range from 5 GPa to 11.5 GPa (in air and at room temperature). The hypothesis that collagen anisotropy is due to the subfibrils being aligned along the fibril axis is supported by nonuniform surface imprints performed by high load nanoindentation.  相似文献   

9.
Structural stability of the extracellular matrix is primarily a consequence of fibrillar collagen and the extent of cross-linking. The relationship between collagen self-assembly, consequent fibrillar shape and mechanical properties remains unclear. Our laboratory developed a model system for the preparation of self-assembled type I collagen fibers with fibrillar substructure mimicking the hierarchical structures of tendon. The present study evaluates the effects of pH and temperature during self-assembly on fibrillar structure, and relates the structural effects of these treatments on the uniaxial tensile mechanical properties of self-assembled collagen fibers. Results of the analysis of fibril diameter distributions and mechanical properties of the fibers formed under the different incubation conditions indicate that fibril diameters grow via the lateral fusion of discrete approximately 4 nm subunits, and that fibril diameter correlates positively with the low strain modulus. Fibril diameter did not correlate with either the ultimate tensile strength or the high strain elastic modulus, which suggests that lateral aggregation and consequently fibril diameter influences mechanical properties during small strain mechanical deformation. We hypothesize that self-assembly is mediated by the formation of fibrillar subunits that laterally and linearly fuse resulting in fibrillar growth. Lateral fusion appears important in generating resistance to deformation at low strain, while linear fusion leading to longer fibrils appears important in the ultimate mechanical properties at high strain.  相似文献   

10.
Measurements of the solubility of calf-skin tropocollagen in neutral phosphate buffers in the temperature range 20-37 degrees C show that native collagen fibril formation is an endothermic process made thermodynamically favourable by a large positive entropy of precipitation associated with structural changes in the surrounding solvent. The effect of inorganic ions and small solute molecules on precipitation seems to be correlated with their structural effects on liquid water. Heterogeneity in the precipitation properties of the collagen solutions may be related to changes in the configurational entropy of the macromolecules due to intramolecular cross-linking.  相似文献   

11.
W D Comper  A Veis 《Biopolymers》1977,16(10):2133-2142
Heat precipitation fibril formation in collagen solutions depends upon the prior thermal history of the solution. Collagen solutions were heat precipitated to various extents at 30°C, cooled, and then brought to a second precipitation. Kinetic analysis of the secondary precipitation demonstrated that only the nucleation phase of the precipitation was affected, not the fibril growth phase. Thermal history, or memory, is thus related to the formation of low-temperature-stable nuclei. A range of nuclei sizes is evident, supporting the concept of a homogeneous nucleation process. Schiffs base formation and establishment of cross-linkages play no role in the in vitro nucleation: thiosemicarbazide treated collagen behaves identically to untreated collagen in kinetics of assembly to fibrils. Low-temperature-stable nuclei formed at neutral pH are dissociated in the cold in acetic acid at pH 4. Pronase and pepsin susceptible molecular end regions are important in establishing the low-temperature-stable nuclei. Pronase treatment completely abolishes the acquisition of memory of prior thermal history in collagen solutions. We speculate that biological control mechanisms for fibril formation in vivo relate to specific interactions between non-helical, enzyme susceptible regions on collagen molecules.  相似文献   

12.
The influence of phenolic compounds with different numbers of hydroxy groups (phenol, pyrocatechol, resorcinol, and pyrogallol) on the kinetics of in vitro fibrillogenesis of collagen and on fibril structure has been studied. It has been shown that these phenols accelerate fibril formation mainly by shortening the lag phase, presumably facilitating the formation of collagen dimers and their subsequent association to linear aggregates. The accelerating activity of phenols is proportional to the number of hydroxy groups in the molecule. It increases in the series: phenol < resorcinol < pyrogallol. Therefore, the ability of phenols to accelerate fibril formation is likely to stem from the formation of hydrogen bonds with amino-acid residues in collagen chains. The hydrogen bonds may stabilize the structure of the intermediates, facilitating their interaction during fibrillogenesis.  相似文献   

13.
In vitro interactions of benzo[a]pyrene (BaP) with acid-soluble type I collagen from rat tail tendon have been investigated. The fluorescence of BaP increases in the presence of collagen. Bound BaP inhibits the formation of collagen fibrils in solution. When BaP-collagen complexes are irradiated in air with UV (365 nm) light, BaP rapidly undergoes photooxidation with the further inhibition of fibril formation. Viscosity and circular dichroism (CD) studies show that neither BaP nor further UV-irradiation alters the size or helical conformation of the protein. During thermal denaturation of collagen, BaP fluorescence changes. Collagen from young rat tail tendon shows a pronounced drop at about 38 degrees C, whereas that from old rat tail tendon exhibits an increase with a plateau in the same temperature range. These anomalous changes are observed when tyrosine residues, present only in the non-helical terminal telopeptides of collagen, are excited at 275 nm, but not by direct BaP excitation at 387 nm. These findings suggest that the specific hydrophobic telopeptide region, which plays an important role in fibril formation, are affected by bound BaP.  相似文献   

14.
Type V collagen controls the initiation of collagen fibril assembly   总被引:1,自引:0,他引:1  
Vertebrate collagen fibrils are heterotypically composed of a quantitatively major and minor fibril collagen. In non-cartilaginous tissues, type I collagen accounts for the majority of the collagen mass, and collagen type V, the functions of which are poorly understood, is a minor component. Type V collagen has been implicated in the regulation of fibril diameter, and we reported recently preliminary evidence that type V collagen is required for collagen fibril nucleation (Wenstrup, R. J., Florer, J. B., Cole, W. G., Willing, M. C., and Birk, D. E. (2004) J. Cell. Biochem. 92, 113-124). The purpose of this study was to define the roles of type V collagen in the regulation of collagen fibrillogenesis and matrix assembly. Mouse embryos completely deficient in pro-alpha1(V) chains were created by homologous recombination. The col5a1-/- animals die in early embryogenesis, at approximately embryonic day 10. The type V collagen-deficient mice demonstrate a virtual lack of collagen fibril formation. In contrast, the col5a1+/- animals are viable. The reduced type V collagen content is associated with a 50% reduction in fibril number and dermal collagen content. In addition, relatively normal, cylindrical fibrils are assembled with a second population of large, structurally abnormal collagen fibrils. The structural properties of the abnormal matrix are decreased relative to the wild type control animals. These data indicate a central role for the evolutionary, ancient type V collagen in the regulation of fibrillogenesis. The complete dependence of fibril formation on type V collagen is indicative of the critical role of the latter in early fibril initiation. In addition, this fibril collagen is important in the determination of fibril structure and matrix organization.  相似文献   

15.
Inactivation of the perlecan gene leads to perinatal lethal chondrodysplasia. The similarity to the phenotypes of the Col2A1 knock-out and the disproportionate micromelia mutation suggests perlecan involvement in cartilage collagen matrix assembly. We now present a mechanism for the defect in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional to the content of the 4,6-disulfated disaccharide in the different cartilage extracts, with growth plate cartilage glycosaminoglycan being the most efficient enhancer. These findings demonstrate a role for perlecan chondroitin sulfate side chains in cartilage extracellular matrix assembly and provide an explanation for the perlecan-null chondrodysplasia.  相似文献   

16.
Modulation of collagen fibrillogenesis by tenascin-X and type VI collagen   总被引:5,自引:0,他引:5  
Tenascin-X (TNX) is an extracellular matrix glycoprotein. We previously demonstrated that TNX regulates the expression of type VI collagen. In this study, we investigated the binding of TNX to type I collagen as well as to type VI collagen and the effects of these proteins on fibrillogenesis of type I collagen. Full-length recombinant TNX, which is expressed in and purified from mammalian cell cultures, and type VI collagen purified from bovine placenta were used. Solid-phase assays revealed that TNX or type VI collagen bound to type I collagen, although TNX did not bind to type VI collagen, fibronectin, or laminin. The rate of collagen fibril formation and its quantity, measured as increased turbidity, was markedly increased by the presence of TNX, whereas type VI collagen did not increase the quantity but accelerated the rate of collagen fibril formation. Combined treatment of both had an additive effect on the rate of collagen fibril formation. Furthermore, deletion of the epidermal growth factor-like (EGF) domain or fibrinogen-like domain of TNX attenuated the initial rate of collagen fibril formation. Finally, we observed abnormally large collagen fibrils by electron microscopy in the skin from TNX-deficient (TNX-/-) mice during development. These findings demonstrate a fundamental role for TNX and type VI collagen in regulation of collagen fibrillogenesis in vivo and in vitro.  相似文献   

17.
Tendon and corneal decorins are differently iduronated dermatan sulphate/proteoglycan (DS/PG) and the biochemical parameter that differentiates type I collagens is the hydroxylysine glycoside content. We have examined the effect of tendon and corneal decorins on the individual phases (tlag, dA/dt) of differently glycosylated type I collagens fibril formation, at molar ratios PG:collagen monomer ranging from 0.15 : 1 to 0.45 : 1. The results obtained indicate that decorins exert a different effect on the individual phases of fibril formation, correlated to the degree of glycosylation of collagen: at the same PG:collagen ratio the fibril formation of highly glycosylated corneal collagen is more efficiently inhibited than that of the poorly glycosylated one (tendon). Moreover tendon and corneal decorins exert a higher control on the fibrillogenesis of homologous collagen with respect to the heterologous one. These data suggest a possible tissue-specificity of the interaction decorin/type I collagen correlated to the structure of the PG and collagen present in extracellular matrices. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

18.
The molecular packing arrangement within collagen fibrils has a significant effect on the tensile properties of tissues. To date, most studies have focused on homotypic fibrils composed of type I collagen. This study investigates the packing of type I/III collagen molecules in heterotypic fibrils of colonic submucosa using a combination of X-ray diffraction data, molecular model building, and simulated X-ray diffraction fibre diagrams. A model comprising a 70-nm-diameter D- (approximately 65 nm) axial periodic structure containing type I and type III collagen chains was constructed from amino acid scattering factors organised in a liquid-like lateral packing arrangement simulated using a classical Lennard-Jones potential. The models that gave the most accurate correspondence with diffraction data revealed that the structure of the fibril involves liquid-like lateral packing combined with a constant helical inclination angle for molecules throughout the fibril. Combinations of type I:type III scattering factors in a ratio of 4:1 gave a reasonable correspondence with the meridional diffraction series. The attenuation of the meridional intensities may be explained by a blurring of the electron density profile of the D period caused by nonspecific or random interactions between collagen types I and III in the heterotypic fibril.  相似文献   

19.
Summary Suspensions of collagen fibrils obtained from derma of Elasmobranchia and Actinopterygia of different body sizes and developmental stages were examined by transmission electron microscopy. Fibril diameters were measured and classified into groups comprising a 20 nm diameter interval. Diagrams showing fibril populations of each fish were made. The measurements were averaged and their confidence intervals and standard errors determined. For each species other diagrams were plotted in which the mean diameters were correlated to the body length of each sample. The results show that: 1) a correlation exists between an increase in diameter of collagen fibrils and somatic growth until sexual maturity is reached; 2) fibril populations are subsequently spread over a wider range due to the presence in the derma of classes of newly formed and therefore thinner fibrils. The deposition of new fibrils is possibly influenced by individual factors; 3) no relationship exists between mean fibril diameter and body size; 4) no relationship exists between phylogenetic position and pattern of diameter distribution.Research supported by a grant from C.N.R. Roma (69.02087.0115.1150)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号