首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lung cancer mortality after exposure to radon decay products (RDP) among 16,236 male Eldorado uranium workers was analyzed. Male workers from the Beaverlodge and Port Radium uranium mines and the Port Hope radium and uranium refinery and processing facility who were first employed between 1932 and 1980 were followed up from 1950 to 1999. A total of 618 lung cancer deaths were observed. The analysis compared the results of the biologically-based two-stage clonal expansion (TSCE) model to the empirical excess risk model. The spontaneous clonal expansion rate of pre-malignant cells was reduced at older ages under the assumptions of the TSCE model. Exposure to RDP was associated with increase in the clonal expansion rate during exposure but not afterwards. The increase was stronger for lower exposure rates. A radiation-induced bystander effect could be a possible explanation for such an exposure response. Results on excess risks were compared to a linear dose-response parametric excess risk model with attained age, time since exposure and dose rate as effect modifiers. In all models the excess relative risk decreased with increasing attained age, increasing time since exposure and increasing exposure rate. Large model uncertainties were found in particular for small exposure rates.  相似文献   

2.
Radon is recognized as a public health concern for indoor exposure. Precise quantification derived from occupational exposure in miners is still needed for estimating the risk and the factors that modify the dependence on cumulated exposure. The present paper reports on relationship between radon exposure and lung cancer risk in French and Czech cohorts of uranium miners (n = 10,100). Miners from these two cohorts are characterized by low levels of exposure (average cumulated exposure of less than 60 WLM) protracted over a long period (mean duration of exposure of 10 years) and by a good quality of individual exposure estimates (95% of annual exposures based on radon measurements). The modifying effect of the quality of exposure on the risk is analyzed. A total of 574 lung cancer deaths were observed, which is 187% higher than expected from the national statistics. This significantly elevated risk is strongly associated with cumulated radon exposure. The estimated overall excess relative risk per WLM is 0.027 (95% CI: 0.017-0.043, related to measured exposures). For age at exposure of 30 and 20 years since exposure, the ERR/WLM is 0.042, and this value decreases by approximately 50% for each 10-year increase in age at exposure and time since exposure. The present study emphasizes that the quality of exposure estimates is an important factor that may substantially influence results. Time since exposure and simultaneously age at exposure were the most important effect modifiers. No inverse exposure-rate effect below 4 WL was observed. The results are consistent with estimates of the BEIR VI report using the concentration model at an exposure rate below 0.5 WL.  相似文献   

3.
Data from the German uranium miners cohort study were analyzed to investigate the radon-related risk of mortality from cancer and cardiovascular diseases. The Wismut cohort includes 58,987 men who were employed for at least 6 months from 1946 to 1989 at the former Wismut uranium mining company in Eastern Germany. By the end of 2003, a total of 3,016 lung cancer deaths, 3,355 deaths from extrapulmonary cancers, 5,141 deaths from heart diseases and 1,742 deaths from cerebrovascular diseases were observed. Although a number of studies have already been published on various endpoints in the Wismut cohort, the aim of the present analyses is to provide a direct comparison of the magnitude of radon-related risk for different cancer sites and cardiovascular diseases using the same data set, the same follow-up period and the same statistical methods. A specific focus on a group of cancers of the extrathoracic airways is also made here, due to the assumed high organ doses from absorbed radon progeny. Internal Poisson regression was used to estimate the excess relative risk (ERR) per unit of cumulative exposure to radon in working level months (WLM) and its 95% confidence limits (CI). There was a statistically significant increase in the risk of lung cancer with increasing radon exposure (ERR/WLM = 0.19%; 95% CI: 0.17%; 0.22%). A smaller, but also statistically significant excess was found for cancers of the extrathoracic airways and trachea (ERR/WLM = 0.062%; 95% CI: 0.002%; 0.121%). Most of the remaining nonrespiratory cancer sites showed a positive relationship with increasing radon exposure, which, however, did not reach statistical significance. No increase in risk was noted for coronary heart diseases (ERR/WLM = 0.0003%) and cerebrovascular diseases (ERR/WLM = 0.001%). The present data provide clear evidence of an increased radon-related risk of death from lung cancer, some evidence for an increased radon-related risk of death from cancers of the extrathoracic airways and some other extrapulmonary cancers, and no evidence for mortality from cardiovascular diseases. These findings are consistent with the results of other miner studies and dosimetric calculations for radon-related organ doses.  相似文献   

4.
A combined analysis of three case-control studies nested in three European uranium miner cohorts was performed to study the joint effects of radon exposure and smoking on lung cancer death risk. Occupational history and exposure data were available from the cohorts. Smoking information was reconstructed using self-administered questionnaires and occupational medical archives. Linear excess relative risk models adjusted for smoking were used to estimate the lung cancer risk associated with radon exposure. The study includes 1046 lung cancer cases and 2492 controls with detailed radon exposure data and smoking status. The ERR/WLM adjusted for smoking is equal to 0.008 (95% CI: 0.004-0.014). Time since exposure is shown to be a major modifier of the relationship between radon exposure and lung cancer risk. Fitting geometric mixture models yielded arguments in favor of a sub-multiplicative interaction between radon and smoking. This combined study is the largest case-control study to investigate the joint effects of radon and smoking on lung cancer risk among miners. The results confirm that the lung carcinogenic effect of radon persists even when smoking is adjusted for, with arguments in favor of a sub-multiplicative interaction between radon and smoking.  相似文献   

5.
The adverse health effects of radon on uranium miners, especially on their lungs, are well documented, but few studies have considered the effects of other radiation exposures. This study examined the mortality risks associated with exposure to radon, external γ rays and long-lived radionuclides (LLR) in the French "post-55" sub-cohort, which includes uranium miners first employed between 1956 and 1990 for whom all three types of exposure were assessed individually. Exposure-risk relationships were estimated with linear excess relative risk models and a 5-year lag time. The post-55 sub-cohort includes 3377 miners, contributing 89,405 person-years, followed up through the end of 1999 with a mean follow-up of 26.5 years. Mean cumulative exposure was 17.8 WLM for radon, 54.7 mSv for γ rays, and 1,632 Bq.m(-3).h for LLR. Among the 611 deaths observed, 66 were due to lung cancer. Annual individual exposures were significantly correlated. Increased mortality was observed for lung cancer (SMR = 1.30; 95% CI: 1.01, 1.65) and for brain and central nervous system (CNS) cancer (SMR = 2.00; 95% CI: 1.09, 3.35). Cumulative exposure to radon, γ rays and LLR was associated only with a significant risk of lung cancer. These new results could suggest an association between lung cancer and exposure to γ rays and LLR. They must nonetheless be interpreted with caution because of the correlation between the types of exposure. The calculation of organ doses received by each of these exposures would reduce the collinearity.  相似文献   

6.
The aim of this study was to assess the risk of lung cancer death associated with cumulative lung doses from exposure to α-particle emitters, including radon gas, radon short-lived progeny, and long-lived radionuclides, and to external γ rays among French uranium miners. The French "post-55" sub-cohort included 3,377 uranium miners hired from 1956, followed up through the end of 1999, and contributing to 89,405 person-years. Lung doses were calculated with the ICRP Human Respiratory Tract Model (Publication 66) for 3,271 exposed miners. The mean "absorbed lung dose" due to α-particle radiation was 78 mGy, and that due to the contribution from other types of radiation (γ and β-particle radiation) was 56 mGy. Radon short-lived progeny accounted for 97% of the α-particle absorbed dose. Out of the 627 deaths, the cause of death was identified for 97.4%, and 66 cases were due to lung cancer. A significant excess relative risk (ERR) of lung cancer death was associated with the total absorbed lung dose (ERR/Gy = 2.94, 95% CI 0.80, 7.53) and the α-particle absorbed dose (4.48, 95% CI 1.27, 10.89). Assuming a value of 20 for the relative biological effectiveness (RBE) of α particles for lung cancer induction, the ERR/Gy-Eq for the total weighted lung dose was 0.22 (95% CI: 0.06, 0.53).  相似文献   

7.
In spite of the extensive use of cytogenetic analysis of human peripheral blood lymphocytes in the biomonitoring of exposure to various mutagens and carcinogens, the long-term effects of an increased frequency of chromosomal aberrations in individuals are still uncertain. Few epidemiologic studies have addressed this issue, and a moderate risk of cancer in individuals with an elevated frequency of chromosomal aberrations has been observed.In the present study, we analyzed data on 1323 cytogenetic assays and 225 subjects examined because of occupational exposures to radon (range of exposure from 1.7 to 662.3 working level month (WLM)). Seventy-five subjects were non-smokers. We found 36 cases of cancer in this cohort.Chromatid breaks were the most frequently observed type of aberrations (mean frequency 1.2 per 100 cells), which statistically significantly correlated with radon exposure (Spearman's correlation coefficient R=0.22, P<0.001). Also, the frequency of aberrant cells (median of 2.5%) correlated with radon exposure (Spearman's correlation coefficient R=0.16, P<0.02). Smoking and silicosis were not associated with results of cytogenetic analyses.The Cox regression models, which accounted for the age at time of first cytogenetic assay, radon exposure, and smoking showed strong and statistically significant associations between cancer incidence and frequency of chromatid breaks and frequency of aberrant cells, respectively. A 1% increase in the frequency of aberrant cells was paralleled by a 62% increase in risk of cancer (P<0.000). An increase in frequency of chromatid breaks by 1 per 100 cells was followed by a 99% increase in risk of cancer (P<0.000). We obtained similar results when we analyzed the incidence of lung cancer and the incidence other than lung cancer separately.Contrary to frequency of chromatid breaks and frequency of aberrant cells, the frequency of chromatid exchanges, and chromosome-type aberrations were not predictive of cancer.  相似文献   

8.
9.
This study is a comprehensive analysis of the latest follow-up of the Colorado uranium miners cohort using the two-stage clonal expansion model with particular emphasis on effects related to age and exposure. The model provides a framework in which the hazard function for lung cancer mortality incorporates detailed information on exposure to radon and radon progeny from hard rock and uranium mining together with information on cigarette smoking. Even though the effect of smoking on lung cancer risk is explicitly modeled, a significant birth cohort effect is found which shows a linear increase in the baseline lung cancer risk with birth year of the miners in the cohort. The analysis based on the two-stage clonal expansion model suggests that exposure to radon affects both the rate of initiation of intermediate cells in the pathway to cancer and the rate of proliferation of intermediate cells. However, in contrast to the promotional effect of radon, which is highly significant, the effect of radon on the rate of initiation is found to be not significant. The model is also used to study the inverse dose-rate effect. This effect is evident for radon exposures typical for mines but is predicted to be attenuated, and for longer exposures even reversed, for the more protracted and lower radon exposures in homes. The model also predicts the drop in risk with time after exposure ceases. For residential exposures, lung cancer risks are compared with the estimates from the BEIR VI report. While the risk estimates are in agreement with those derived from residential studies, they are about two- to fourfold lower than those reported in the BEIR VI report.  相似文献   

10.
Results have been inconsistent between studies of lung cancer risk and ionizing radiation exposures among workers at the Portsmouth Naval Shipyard (PNS). The purpose of this nested case-control study was to evaluate the relationship between lung cancer risk and external ionizing radiation exposure while adjusting for potential confounders that included gender, radiation monitoring status, smoking habit surrogates (socioeconomic status and birth cohort), welding fumes and asbestos. By incidence density sampling, we age-matched 3,291 controls selected from a cohort of 37,853 civilian workers employed at PNS between 1952 and 1992 with 1,097 lung cancer deaths from among the same cohort. Analyses using conditional logistic regression were conducted in various model forms: log-linear (main), linear excess relative risk (ERR), and categorical. Lung cancer risk was positively associated with occupational dose (OR = 1.02 at 10 mSv; 95% CI 0.99- 1.04) but flattened after the inclusion of work-related medical X-ray doses (OR = 1.00; 95% CI 0.98-1.03) in multivariate analyses. Similar risk estimates were observed in the linear ERR model at 10 mSv of cumulative exposure with a 15-year lag.  相似文献   

11.
12.
A two-mutation carcinogenesis model was used to calculate the expected lung cancer incidence caused by both smoking and exposure to radon in two populations, i.e. those of the Netherlands and Sweden. The model parameters were taken from a previous analysis of lung cancer in smokers and uranium miners and the model was applied to the two populations taking into account the smoking habits and exposure to radon. For both countries, the smoking histories and indoor radon exposure data for the period 1910-1995 were reconstructed and used in the calculations. Compared with the number of lung cancer cases observed in 1995 among both males and females in the two countries, the calculations show that between 72% and 94% of the registered lung cancer cases may be attributable to the combined effects of radon and smoking. In the Netherlands, a portion of about 4% and in Sweden, a portion of about 20% of the lung cancer cases (at ages 0-80 years) may be attributable to radon exposure, the numbers for males being slightly lower than for females. In the Netherlands, the proportions of lung cancers attributable to smoking are 91% for males and 71% for females; in Sweden, the figures are 70% and 56%, respectively. The risk from radon exposure is dependent on gender and cigarette smoking: the excess absolute risk for continuous exposure to 100 Bq m-3 ranges between 0.003 and 0.006 and compares well with current estimates, e.g. 0.0043 of the International Commission on Radiological Protection (ICRP). The excess relative risk for continuous exposure to 100 Bq m-3 shows a larger variation, ranging generally between 0.1 for smokers and 1.0 for non-smokers. The results support the assumption that exposure to (indoor) radon, even at a level as low as background radiation, causes lung cancer proportional to the dose and is consistent with risk factors derived from the miners data.  相似文献   

13.
Measurement error (ME) can lead to bias in the analysis of epidemiologic studies. Here a simulation study is described that is based on data from the French Uranium Miners’ Cohort and that was conducted to assess the effect of ME on the estimated excess relative risk (ERR) of lung cancer death associated with radon exposure. Starting from a scenario without any ME, data were generated containing successively Berkson or classical ME depending on time periods, to reflect changes in the measurement of exposure to radon (222Rn) and its decay products over time in this cohort. Results indicate that ME attenuated the level of association with radon exposure, with a negative bias percentage on the order of 60% on the ERR estimate. Sensitivity analyses showed the consequences of specific ME characteristics (type, size, structure, and distribution) on the ERR estimates. In the future, it appears important to correct for ME upon analyzing cohorts such as this one to decrease bias in estimates of the ERR of adverse events associated with exposure to ionizing radiation.  相似文献   

14.
The cohort of nuclear workers at the Mayak Production Association, located in the Russian Federation, is a unique resource for providing information on the health effects of exposure to plutonium as well as the effects of protracted external dose. Lung cancer mortality risks were evaluated in 21,790 Mayak workers, a much larger group than included in previous evaluations of lung cancer risks in this cohort. These analyses, which included 655 lung cancer deaths occurring in the period 1955-2000, were the first to evaluate both excess relative risk (ERR) and excess absolute risk (EAR) models and to give detailed attention to the modifying effects of gender, attained age and age at hire. Lung cancer risks were found to be significantly related to both internal dose to the lung from plutonium and external dose, and risks were described adequately by linear functions. For internal dose, the ERR per gray for females was about four times higher than that for males, whereas the EAR for females was less than half that for males; the ERR showed a strong decline with attained age, whereas the EAR increased with attained age until about age 65 and then decreased. Parallel analyses of lung cancer mortality risks in Mayak workers and Japanese A-bomb survivors were also conducted. Efforts currently under way to improve both internal and external dose estimates, and to develop data on smoking, should result in more accurate risk estimates in the future.  相似文献   

15.
Radon is classified as a known pulmonary carcinogen in humans. A better understanding of the effects of low exposure and time-dependent factors, modifying the lung cancer risk is of continued interest. We present analyses of the exposure–risk relationship in the French cohort of uranium miners updated until 1999 and including five additional years of follow-up. These new analyses provide a better opportunity to look at low radon exposures with longer follow-up intervals, and allow consideration of new modifying factors, such as physical activity, mine location and job type. The cohort includes 5,086 miners, and 159 lung cancer deaths have been observed among these over a follow-up of more than 30 years. The exposure–risk relationship was estimated using excess relative risk models, which allow investigation of several modifying factors such as period of exposure, time since exposure, age at exposure, duration of exposure, exposure rate, job type, mine type and physical activity. The analysis confirms the association between radon exposure and lung cancer risk (ERR per 100 WLM = 0.58, P < 0.01). Period of exposure and physical activity appear as major modifying factors. Higher risks are observed for hard physical activity works. The effect of hard physical activity persists when the period of exposure is taken into account (ERR per 100 WLM = 2.95, P < 0.01).  相似文献   

16.
Radon is the second leading cause of lung cancer after smoking. Since the previous quantitative risk assessment of indoor radon conducted in France, input data have changed such as, estimates of indoor radon concentrations, lung cancer rates and the prevalence of tobacco consumption. The aim of this work was to update the risk assessment of lung cancer mortality attributable to indoor radon in France using recent risk models and data, improving the consideration of smoking, and providing results at a fine geographical scale. The data used were population data (2012), vital statistics on death from lung cancer (2008–2012), domestic radon exposure from a recent database that combines measurement results of indoor radon concentration and the geogenic radon potential map for France (2015), and smoking prevalence (2010). The risk model used was derived from a European epidemiological study, considering that lung cancer risk increased by 16% per 100 becquerels per cubic meter (Bq/m3) indoor radon concentration. The estimated number of lung cancer deaths attributable to indoor radon exposure is about 3000 (1000; 5000), which corresponds to about 10% of all lung cancer deaths each year in France. About 33% of lung cancer deaths attributable to radon are due to exposure levels above 100 Bq/m3. Considering the combined effect of tobacco and radon, the study shows that 75% of estimated radon-attributable lung cancer deaths occur among current smokers, 20% among ex-smokers and 5% among never-smokers. It is concluded that the results of this study, which are based on precise estimates of indoor radon concentrations at finest geographical scale, can serve as a basis for defining French policy against radon risk.  相似文献   

17.
18.
A 15-Country collaborative cohort study was conducted to provide direct estimates of cancer risk following protracted low doses of ionizing radiation. Analyses included 407,391 nuclear industry workers monitored individually for external radiation and 5.2 million person-years of follow-up. A significant association was seen between radiation dose and all-cause mortality [excess relative risk (ERR) 0.42 per Sv, 90% CI 0.07, 0.79; 18,993 deaths]. This was mainly attributable to a dose-related increase in all cancer mortality (ERR/Sv 0.97, 90% CI 0.28, 1.77; 5233 deaths). Among 31 specific types of malignancies studied, a significant association was found for lung cancer (ERR/Sv 1.86, 90% CI 0.49, 3.63; 1457 deaths) and a borderline significant (P = 0.06) association for multiple myeloma (ERR/Sv 6.15, 90% CI <0, 20.6; 83 deaths) and ill-defined and secondary cancers (ERR/Sv 1.96, 90% CI -0.26, 5.90; 328 deaths). Stratification on duration of employment had a large effect on the ERR/Sv, reflecting a strong healthy worker survivor effect in these cohorts. This is the largest analytical epidemiological study of the effects of low-dose protracted exposures to ionizing radiation to date. Further studies will be important to better assess the role of tobacco and other occupational exposures in our risk estimates.  相似文献   

19.
Recently a high radon concentration was detected in the underground coal mine of Figueira, located in the south of Brazil. This coal mine has been operating since 1942 without taking cognizance of the high radon environment. In order to assess possible radon-related health effects on the workers, a retrospective (1979-2002) mortality study of 2,856 Brazilian coal miners was conducted, with 2,024 underground workers potentially exposed to radon daughters. Standard mortality ratio (SMR) analysis hints at lower mortality from all causes for both underground (SMR = 88, 95% CI = 78-98) and surface workers (SMR = 96, 95% CI = 80-114). A high statistically significant SMR for lung cancer mortality was observed only in the underground miners (SMR = 173, 95% CI = 102-292), with a statistically significant trend reflecting the duration of underground work. High statistically significant SMRs were observed for pneumonia as a cause of death between both surface (SMR = 304, 95% CI = 126-730) and underground miners (SMR = 253, 95% CI = 140-457). Because mortality from smoking-related cancers other than lung cancer was not found elevated in underground workers and because diesel equipments were not used in this mine, it can be concluded that the enhanced lung cancer mortality observed for underground miners is associated with exposure to radon and radon daughters, rather than other confounding risk factors.  相似文献   

20.
The assessment of the relative biological effectiveness (RBE) for alpha-radiation was held in the cases of inhalation of radon progeny and incorporation of plutonium in lungs. It is based on simulation of lung cancer radiation risk for different types of radiation. Specific radiation risk models developed according to the results of direct epidemiological studies are used for the simulation. These include two published risk models for uranium miners and nuclear workers of the Mayak facilities in the former Soviet Union. Additionally two lung cancer risk models are developed and described for the following cases: population indoor radon exposure and low-linear-energy-transfer reference radiation exposure. By the results of lifetime lung cancer risk simulation the RBE values range from 11 to 12 and from 1.7 to 4.9 for the cases of plutonium incorporation and of radon progeny exposure accordingly. The significant uncertainty of radiation risk models results in significant variation of RBE assessments. Rough estimations of RBE values 90% confidence interval are from unit fraction to 25 and from 2 to 50 for the cases of radon progeny exposure and plutonium incorporation accordingly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号