首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reliably differentiating brown adipose tissue (BAT) from other tissues using a non-invasive imaging method is an important step toward studying BAT in humans. Detecting BAT is typically confirmed by the uptake of the injected radioactive tracer 18F-Fluorodeoxyglucose (18F-FDG) into adipose tissue depots, as measured by positron emission tomography/computed tomography (PET-CT) scans after exposing the subject to cold stimulus. Fat-water separated magnetic resonance imaging (MRI) has the ability to distinguish BAT without the use of a radioactive tracer. To date, MRI of BAT in adult humans has not been co-registered with cold-activated PET-CT. Therefore, this protocol uses 18F-FDG PET-CT scans to automatically generate a BAT mask, which is then applied to co-registered MRI scans of the same subject. This approach enables measurement of quantitative MRI properties of BAT without manual segmentation. BAT masks are created from two PET-CT scans: after exposure for 2 hr to either thermoneutral (TN) (24 °C) or cold-activated (CA) (17 °C) conditions. The TN and CA PET-CT scans are registered, and the PET standardized uptake and CT Hounsfield values are used to create a mask containing only BAT. CA and TN MRI scans are also acquired on the same subject and registered to the PET-CT scans in order to establish quantitative MRI properties within the automatically defined BAT mask. An advantage of this approach is that the segmentation is completely automated and is based on widely accepted methods for identification of activated BAT (PET-CT). The quantitative MRI properties of BAT established using this protocol can serve as the basis for an MRI-only BAT examination that avoids the radiation associated with PET-CT.  相似文献   

2.
In the era of genomics and proteomics, metabolomics offers a unique way to probe the underlying biochemistry of malignant transformations. In the context of oncological metabolomics, the study of the global variation of metabolites involved in the development and progression of cancers, few existing techniques offer as much potential to discover biomarkers as nuclear magnetic resonance techniques. The most fundamental magnetic resonance methodologies with regard to human prostate cancer are magnetic resonance spectroscopy and magnetic resonance spectroscopic imaging. Recent in vivo explorations have examined crucial metabolites that may indicate cancerous lesions and have the potential to direct treatment; while ex vivo studies of prostatic fluids and tissues have defined novel diagnostic parameters and indicated that magnetic resonance methodologies will be paramount in future prostate cancer management.  相似文献   

3.
Function analysis of rodent respiratory skeletal muscles, particularly the diaphragm, is commonly performed by isolating muscle strips using invasive surgical procedures. Although this is an effective method of assessing in vitro diaphragm activity, it involves non-survival surgery. The application of non-invasive ultrasound imaging as an in vivo procedure is beneficial since it not only reduces the number of animals sacrificed, but is also suitable for monitoring disease progression in live mice. Thus, our ultrasound imaging method may likely assist in the development of novel therapies that alleviate muscle injury induced by various respiratory diseases. Particularly, in clinical diagnoses of obstructive lung diseases, ultrasound imaging has the potential to be used in conjunction with other standard tests to detect the early onset of diaphragm muscle fatigue. In the current protocol, we describe how to accurately evaluate diaphragm contractility in a mouse model using a diagnostic ultrasound imaging technique.  相似文献   

4.
Complementary structural and functional neuroimaging techniques used to examine the Default Mode Network (DMN) could potentially improve assessments of psychiatric illness severity and provide added validity to the clinical diagnostic process. Recent neuroimaging research suggests that DMN processes may be disrupted in a number of stress-related psychiatric illnesses, such as posttraumatic stress disorder (PTSD).Although specific DMN functions remain under investigation, it is generally thought to be involved in introspection and self-processing. In healthy individuals it exhibits greatest activity during periods of rest, with less activity, observed as deactivation, during cognitive tasks, e.g., working memory. This network consists of the medial prefrontal cortex, posterior cingulate cortex/precuneus, lateral parietal cortices and medial temporal regions.Multiple functional and structural imaging approaches have been developed to study the DMN. These have unprecedented potential to further the understanding of the function and dysfunction of this network. Functional approaches, such as the evaluation of resting state connectivity and task-induced deactivation, have excellent potential to identify targeted neurocognitive and neuroaffective (functional) diagnostic markers and may indicate illness severity and prognosis with increased accuracy or specificity. Structural approaches, such as evaluation of morphometry and connectivity, may provide unique markers of etiology and long-term outcomes. Combined, functional and structural methods provide strong multimodal, complementary and synergistic approaches to develop valid DMN-based imaging phenotypes in stress-related psychiatric conditions. This protocol aims to integrate these methods to investigate DMN structure and function in PTSD, relating findings to illness severity and relevant clinical factors.  相似文献   

5.
Creatine kinase (CK)-catalysed ATP-phosphocreatine (PCr) exchange is considered to play a key role in energy homeostasis of the brain. This study assessed the metabolic and anatomical consequences of partial or complete depletion of this system in transgenic mice without cytosolic B-CK (B-CK-/-), mitochondrial ubiquitous CK (UbCKmit-/-), or both isoenzymes (CK -/-), using non-invasive quantitative magnetic resonance (MR) imaging and spectroscopy. MR imaging revealed an increase in ventricle size in a subset of B-CK-/- mice, but not in animals with UbCKmit or compound CK mutations. Mice lacking single CK isoenzymes had normal levels of high-energy metabolites and tissue pH. In the brains of CK double knockouts pH and ATP and Pi levels were also normal, even though PCr had become completely undetectable. Moreover, a 20-30% decrease was observed in the level of total creatine and a similar increase in the level of neuronal N-acetyl-aspartate compounds. Although CKs themselves are not evenly distributed throughout the CNS, these alterations were uniform and concordant across different brain regions. Changes in myo-inositol and glutamate peaks did appear to be mutation type and brain area specific. Our results challenge current models for the biological significance of the PCr-CK energy system and suggest a multifaceted role for creatine in the brain.  相似文献   

6.
Summary Here we present a systematic application of magnetic resonance imaging (in the following called MRI) and magnetic resonance spectroscopy (MRS) to the White Stork. The main aim was to demonstrate the annual cycle of fat deposition in the same individuals for comparison to wild conspecifics, to clarify the energy metabolism of this migratory species. To obtain sharp, high-contrast images of the interior of the body, the birds were kept still by enclosing them in simple plastic tubes with additional fixation of legs and head, avoiding the problematic sedation with drugs. Altogether 12 test birds (young storks) were monitored systematically for 15 months, to follow seasonal changes in the internal organs (mainly breast muscles) and tissues (mainly fat depots). At each examination 22 high-contrast pixel images representing serial dorsoventral sections through the body were generated with the computer program MatLab, after which the pixels per section image were converted to tissue components in cm2 and the distances between consecutive sections used to calculate the tissue volumes in cm3. To measure the fat in the breast muscle spectroscopy was used to determine the fat : water ratio, from which changes in fat content could be derived. The study revealed pronounced seasonal changes in the visceral and cutaneous/subcutaneous fat depots, which precisely paralleled the annual variation in body weight of the birds (see also the preceding paper, Berthold et al. 2001). The breast muscles exhibited the prolonged growth typical of the juveniles of large species but no conspicuous change at the migration periods. In this project MRI and MRS proved to be successful methods that show great promise.
Magnet-Resonanz-Tomographie und -Spektroskopie der jahreszeitlichen Muster der Körperzusammensetzung: Eine methodische Pilotstudie am Weißstorch (Ciconia ciconia)
Zusammenfassung In der vorliegenden Arbeit stellen wir eine systematische Anwendung der Magnet-Resonanz-Tomographie (Kernspin-Tomographie, im Folgenden MRT) und der Magnet-Resonanz-Spektroskopie (im Folgenden MRS) am Weißstorch vor. Hauptaufgabe war es, die Jahresperiodik der Fettdeposition an denselben Individuen zu ermitteln, um Aufschluss über den Energiehaushalt dieser Zugvogelart durch Vergleiche mit freilebenden Vögeln zu bekommen. Die erforderliche Ruhigstellung der Vögel zum Erreichen scharfer kontrastreicher Bilder des Körperinneren war in einfachen Plastikröhren mit zusätzlicher Fixierung von Beinen und Kopf möglich, so dass auf die problematische Sedierung mit Narkotika verzichtet werden konnte. Insgesamt 12 Versuchsvögel (Jungstörche) wurden 15 Monate lang systematisch auf jahresperiodische Veränderungen von inneren Organen (v. a. Brustmuskeln) und Geweben (v. a. Fettdepots) untersucht. Aus je 22 seriellen kontrastreichen dorsoventralen Schnittbildern durch den Vogelkörper ließen sich mit dem Computerprogramm MatLab Pixelbilder erstellen und dann die Pixel pro Schnittbild in Gewebeanteile in cm2 umrechnen und anschließend aus den aufeinander folgenden Schnittbildern die Gewebevolumina in cm3 ermitteln. Für die Fettbestimmung im Brustmuskel wurde durch Spektroskopie das Verhältnis von Fett: Wasser bestimmt, aus dem Veränderungen des Fettgehalts abgeleitet wurden. Die Studie ergab ausgeprägte jahresperiodische Änderungen der viszeralen und kutanen/subkutanen Fettdepots, die genau parallel zum Jahresgang des Körpergewichts der Vögel verliefen (s. auch die vorangehende Arbeit, Berthold et al. 2001). Für die Brustmuskeln ergab sich ein für Jungvögel großer Arten typisches lang anhaltendes Wachstum, aber keine auffallende Veränderung zu den Zugperioden. MRT und MRS erwiesen sich in dieser Arbeit als erfolgreich und vielversprechend.
  相似文献   

7.
磁共振波谱分析在颅脑胶质瘤分级中的应用研究   总被引:1,自引:0,他引:1  
目的 分析脑胶质瘤的氢质子磁共振波谱(proton magnetic resonance spectroscopy,1H-MRS)表现及其临床意义;探讨脑胶质瘤的1H-MRS特点与其病理级别相关性.方法 搜集经临床手术、病理证实的脑胶质瘤病例49例,按照WHO诊断标准分成两组:低级别脑胶质瘤组、高级别脑胶质瘤组.所有患者在术前行1H-MRs检查,均在MR非增强成像的基础上获得.使用Philips Achieva 1.5T超导磁共振扫描仪,单体素或多体素扫描,点分辨法,检测不同区域代谢物变化.结果 脑胶质瘤的1H-MRS表现:肌酸(Cr)轻度下降,N-乙酰天门冬氨酸(NAA)显著下降,胆碱(Cho)显著增高.低、高级别脑胶质瘤的肿瘤组织与对侧止常脑组织的NAA、Cho、NAA/Cr、NAA/Cho值存在显著性差异(P〈0.05);低级别和高级别脑胶质瘤的肿瘤组织的NAA/Cr、NAA/Cho值存在显著性差异(P〈0.05).脑胶质瘤的NAA/Cho、Cho/Cr、NAA/Cr值与病理级别相关,其中NAA/Cho和NAA/Cr值反映肿瘤级别较稳定;NAA/Cr、NAA/Cho值呈负相关关系,Cho/Cr值呈正相关关系.结论 :1H-MRS结合MKI能提高脑胶质瘤术前诊断的准确性.1H-MRS能对胶质瘤进行分级,反映胶质瘤代谢特性以及肿瘤生长潜能.  相似文献   

8.
Various bio-medical applications of magnetic nanoparticles have been explored during the past few decades. As tools that hold great potential for advancing biological sciences, magnetic nanoparticles have been used as platform materials for enhanced magnetic resonance imaging (MRI) agents, biological separation and magnetic drug delivery systems, and magnetic hyperthermia treatment. Furthermore, approaches that integrate various imaging and bioactive moieties have been used in the design of multi-modality systems, which possess synergistically enhanced properties such as better imaging resolution and sensitivity, molecular recognition capabilities, stimulus responsive drug delivery with on-demand control, and spatio-temporally controlled cell signal activation. Below, recent studies that focus on the design and synthesis of multi-mode magnetic nanoparticles will be briefly reviewed and their potential applications in the imaging and therapy areas will be also discussed.  相似文献   

9.
Multimodal, molecular imaging allows the visualization of biological processes at cellular, subcellular, and molecular-level resolutions using multiple, complementary imaging techniques. These imaging agents facilitate the real-time assessment of pathways and mechanisms in vivo, which enhance both diagnostic and therapeutic efficacy. This article presents the protocol for the synthesis of biofunctionalized Prussian blue nanoparticles (PB NPs) - a novel class of agents for use in multimodal, molecular imaging applications. The imaging modalities incorporated in the nanoparticles, fluorescence imaging and magnetic resonance imaging (MRI), have complementary features. The PB NPs possess a core-shell design where gadolinium and manganese ions incorporated within the interstitial spaces of the PB lattice generate MRI contrast, both in T1 and T2-weighted sequences. The PB NPs are coated with fluorescent avidin using electrostatic self-assembly, which enables fluorescence imaging. The avidin-coated nanoparticles are modified with biotinylated ligands that confer molecular targeting capabilities to the nanoparticles. The stability and toxicity of the nanoparticles are measured, as well as their MRI relaxivities. The multimodal, molecular imaging capabilities of these biofunctionalized PB NPs are then demonstrated by using them for fluorescence imaging and molecular MRI in vitro.  相似文献   

10.
脑动静脉畸形的MRA诊断技术及诊断价值   总被引:1,自引:0,他引:1  
目的:回顾性分析脑动静脉畸形(AVM)的MRA诊断方法厦诊断价值。方法:51例AVM病人,男30人,女21人,年龄为9—66岁。均进行MR平扫压3D—TOFMBA或3D—PCMBA扫描。结果:删能清晰显示瘤巢压AVM的继发改变,MBA可基本显示AVM的全貌。结论:船认是诊断AVM的有效方法,但常需结合DSA。  相似文献   

11.
目的:回顾性分析脑动静脉畸形(AVM)的MRA诊断方法及诊断价值。方法:51例AVM病人,男30人,女21人,年龄为9-66岁。均进行MR平扫及3D-TOF MRA或3D-PC MRA扫描。结果:MRI能清晰显示瘤巢及AVM的继发改变,MRA可基本显示AVM的全貌。结论:MRA是诊断AVM的有效方法,但常需结合DSA。  相似文献   

12.
Visual cortex is retinotopically organized so that neighboring populations of cells map to neighboring parts of the visual field. Functional magnetic resonance imaging allows us to estimate voxel-based population receptive fields (pRF), i.e., the part of the visual field that activates the cells within each voxel. Prior, direct, pRF estimation methods1 suffer from certain limitations: 1) the pRF model is chosen a-priori and may not fully capture the actual pRF shape, and 2) pRF centers are prone to mislocalization near the border of the stimulus space. Here a new topographical pRF estimation method2 is proposed that largely circumvents these limitations. A linear model is used to predict the Blood Oxygen Level-Dependent (BOLD) signal by convolving the linear response of the pRF to the visual stimulus with the canonical hemodynamic response function. PRF topography is represented as a weight vector whose components represent the strength of the aggregate response of voxel neurons to stimuli presented at different visual field locations. The resulting linear equations can be solved for the pRF weight vector using ridge regression3, yielding the pRF topography. A pRF model that is matched to the estimated topography can then be chosen post-hoc, thereby improving the estimates of pRF parameters such as pRF-center location, pRF orientation, size, etc. Having the pRF topography available also allows the visual verification of pRF parameter estimates allowing the extraction of various pRF properties without having to make a-priori assumptions about the pRF structure. This approach promises to be particularly useful for investigating the pRF organization of patients with disorders of the visual system.  相似文献   

13.
The analysis of melarsoprol in whole blood, plasma, urine and cerebrospinal fluid is described. Extraction was made with a mixture of chloroform and acetonitrile followed by back-extraction into phosphoric acid. A reversed-phase liquid chromatography system with ultraviolet detection was used. The relative standard deviation was 1% at concentrations around 10 μmol/l and 3–6% at the lower limit of determination (9 nmol/l in plasma, 93 nmol/l in whole blood, 45 nmol/l in urine and 10 nmol/l in cerebrospinal fluid). Melarsoprol is not a stable compound and samples to be stored for longer periods of time should be kept at −70°C. Plasma samples can be stored at −20°C for upt to 2 months. Chromatography showed that melarsoprol contains two components. Using nuclear magnetic resonance spectroscopy the two components were shown to be diastereomers which slowly equilibrate by inversion of the configuration at the As atom.  相似文献   

14.
15.
Deuterium magnetic resonance (2H-NMR) and Raman spectroscopy are used to investigate order and fluidity at the terminal methyl position in 16-d3, 16′-d3 dipalmitoylphosphatidylcholine (16-d6 DPPC) multibilayers. These methods reveal substantial motion and disorder in the gel phase, 5–10°C below the gel-liquid crystal phase transition temperature (Tm). The phase transition is sensed in the 2H-NMR spectrum as a reduction in the quadrupole splitting from 14 kHz to 3 kHz. In contrast, the Raman parameter used to characterize the CD3 vibrations is quite insensitive to the melting process, although an analogous parameter does sense disordering at Tm at the 10 and 10′ position in 10-d2, 10′-d2 DPPC. The difference in the response of the NMR and Raman parameters may arise because the vibrational spectrum of the CD3 group is inhomogenously broadened and is therefore quite sensitive to alterations in the local environment around the methyl group. In contrast, the NMR quadrupole splitting is sensitive to both local motion of the methyl group and, near Tm, to motions of the CD2 group induced by transgauche isomerizations further up the chain. The difficulties that arise when results from different spectroscopic techniques are compared are demonstrated.  相似文献   

16.
Additional tools to analyze follicle development would be highly advantageous because current methods require sacrifice of animals at specific times and time-consuming sectioning of tissues for histologic analysis. Magnetic resonance imaging (MRI) may provide a less involved, faster and more cost-effective method to analyze follicles in whole ovaries. Fixed ovaries were collected at different stages of the estrus cycle and after stimulation with gonadotrophins (24 and 48 h post pregnant mares serum (PMSG), and 10 and 24 h post human chorionic gonadotrophin (hCG)) with or without administration of the contrast agent gadodiamide. The MR images were generated using a vertical-bore, 11.7 Tesla MR system. Analysis of the MR images revealed large antral follicles in fixed ovaries with the oocyte and cumulus mass identifiable within preovulatory follicles. The use of gadodiamide had no impact on the quality of MR images obtained. The fixed ovaries were paraffin embedded, sectioned, and hematoxylin stained. Follicles were counted using the MR images and the histology sections. Preovulatory follicle numbers determined using MR images were comparable to those using histology; however counts of smaller follicles were inconsistent. MRI of gonadotrophin-stimulated ovaries in situ did not reveal discernable ovarian structures. Therefore, MRI is a useful tool for studying whole fixed ovaries leaving the ovary intact for additional analyses or for selection of samples based on morphology. The MRI is also useful for identifying preovulatory follicles, although analysis of smaller follicles is not possible, and thus the potential exists for cyst analysis in mouse models of polycystic ovarian syndrome (PCOS).  相似文献   

17.
Calcarine sulcal cortex possibly contributes to semantic recognition memory in early blind (EB). We assessed a recognition memory role using vibrotactile rhythms and a retrieval success paradigm involving learned “old” and “new” rhythms in EB and sighted. EB showed no activation differences in occipital cortex indicating retrieval success but replicated findings of somatosensory processing. Both groups showed retrieval success in primary somatosensory, precuneus, and orbitofrontal cortex. The S1 activity might indicate generic sensory memory processes.  相似文献   

18.
19.
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood 33. To help improve this understanding, proton magnetic resonance spectroscopy (1H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner 41. In fact, a recent study demonstrated that 1H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration 34. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with 1H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices 27,30,31. Methodological factors to consider and possible modifications to the protocol are also discussed.  相似文献   

20.
Accurate assessment of cutaneous tissue oxygenation and vascular function is important for appropriate detection, staging, and treatment of many health disorders such as chronic wounds. We report the development of a dual-mode imaging system for non-invasive and non-contact imaging of cutaneous tissue oxygenation and vascular function. The imaging system integrated an infrared camera, a CCD camera, a liquid crystal tunable filter and a high intensity fiber light source. A Labview interface was programmed for equipment control, synchronization, image acquisition, processing, and visualization. Multispectral images captured by the CCD camera were used to reconstruct the tissue oxygenation map. Dynamic thermographic images captured by the infrared camera were used to reconstruct the vascular function map. Cutaneous tissue oxygenation and vascular function images were co-registered through fiduciary markers. The performance characteristics of the dual-mode image system were tested in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号