首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Organogenesis》2013,9(4):263-269
The kidney represents an excellent model system for learning the principles of organogenesis. It is intermediate in complexity, and employs many commonly used developmental processes. As such, kidney development has been the subject of intensive study, using a variety of techniques, including in situ hybridization, organ culture and gene targeting, revealing many critical genes and pathways. Nevertheless, proper organogenesis requires precise patterns of cell type specific differential gene expression, involving very large numbers of genes. This review is focused on the use of global profiling technologies to create an atlas of gene expression codes driving development of different mammalian kidney compartments. Such an atlas allows one to select a gene of interest, and to determine its expression level in each element of the developing kidney, or to select a structure of interest, such as the renal vesicle, and to examine its complete gene expression state. Novel component specific molecular markers are identified, and the changing waves of gene expression that drive nephrogenesis are defined. As the tools continue to improve for the purification of specific cell types and expression profiling of even individual cells it is possible to predict an atlas of gene expression during kidney development that extends to single cell resolution.  相似文献   

2.
3.
Human embryogenesis includes an integrated set of complex yet coordinated development of different organs and tissues, which is regulated by the spatiotemporal expression of many genes. Deciphering the gene regulation profile is essential for understanding the molecular basis of human embryo development. While molecular and genetic studies in mouse have served as a valuable tool to understand mammalian development, significant differences exists in human and mouse development at morphological and genomic levels. Thus it is important to carry out research directly on human embryonic development. Here we will review some recent studies on gene regulation during human embryogenesis with particular focus on the period of organogenesis, which had not been well studied previously. We will highlight a gene expression database of human embryos from the 4(th) to the 9(th) week. The analysis of gene regulation during this period reveals that genes functioning in a given developmental process tend to be coordinately regulated during human embryogenesis. This feature allows us to use this database to identify new genes important for a particular developmental process/pathway and deduce the potential function of a novel gene during organogenesis. Such a gene expression atlas should serve as an important resource for molecular study of human development and pathogenesis.  相似文献   

4.
5.
6.
7.
Ballas N  Grunseich C  Lu DD  Speh JC  Mandel G 《Cell》2005,121(4):645-657
Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to neural stem/progenitor cell and from progenitor to mature neuron. In the transition to progenitor cell, REST is degraded to levels just sufficient to maintain neuronal gene chromatin in an inactive state that is nonetheless poised for expression. As progenitors differentiate into neurons, REST and its co-repressors dissociate from the RE1 site, triggering activation of neuronal genes. In some genes, the level of expression is adjusted further in neurons by CoREST/MeCP2 repressor complexes that remain bound to a site of methylated DNA distinct from the RE1 site. Expression profiling based on this mechanism indicates that REST defines a gene set subject to plasticity in mature neurons. Thus, a multistage repressor mechanism controls the orderly expression of genes during development while still permitting fine tuning in response to specific stimuli.  相似文献   

8.
The kidney is widely used to study the mechanisms of organogenesis. Its development involves fundamental processes, such as epithelial branching, induced morphogenesis and cytodifferentiation, which are common to the development of many other organs. Gene-targeting experiments have greatly improved our understanding of kidney development, and have revealed many important genes that regulate early kidney organogenesis, some of which have a role in inherited human kidney disorders. Although our understanding of how the kidney is assembled is still limited, these studies are beginning to provide insights into the genetic and cellular interactions that regulate early organogenesis.  相似文献   

9.
The challenge of developing an atlas that catalogs all the functionally important genomic changes associated with the development of luminal-type breast cancer is discussed in this article. The development of genome-wide techniques such as expression profiling, array-based comparative genomic hybridization and unbiased sequencing have put a cancer genome atlas within reach. However these techniques have revealed that the somatic DNA alterations associated with the development of a common solid tumor such as breast cancer are extremely complex. For example, large scale tumor DNA resequencing projects, focused on a small number of cell lines and the analysis of many genes, suggest that as many as 100 somatic mutations may have accumulated by the time a diagnosis is made. Similarly, array comparative hybridization experiments have uncovered multiple gene amplification and deletion events. Dealing with this complexity requires access to tumor and matched normal DNA from a large number of cases, with sufficient material to complete a spectrum of analytical techniques. Second, an acceptable approach to patient consent or sample de-identification must be in place if DNA sequencing traces are to be entered into public databases. Third, samples must be linked to detailed information on disease outcomes in order to identify lesions associated with aggressive clinical behavior. We conclude that samples from neoadjuvant endocrine therapy clinical protocols offer the best sample sets to initiate a luminal breast cancer genome atlas because these studies are amongst the few in which investigators have obtained high quality frozen tumor samples associated with both short term information on the estrogen dependence of individual ER+ tumors, as well as conventional data on long-term cancer survival.  相似文献   

10.
11.
The sea urchin embryo is a classical model system for studying the role of the cytoskeleton in such events as fertilization, mitosis, cleavage, cell migration and gastrulation. We have conducted an analysis of gene models derived from the Strongylocentrotus purpuratus genome assembly and have gathered strong evidence for the existence of multiple gene families encoding cytoskeletal proteins and their regulators in sea urchin. While many cytoskeletal genes have been cloned from sea urchin with sequences already existing in public databases, genome analysis reveals a significantly higher degree of diversity within certain gene families. Furthermore, genes are described corresponding to homologs of cytoskeletal proteins not previously documented in sea urchins. To illustrate the varying degree of sequence diversity that exists within cytoskeletal gene families, we conducted an analysis of genes encoding actins, specific actin-binding proteins, myosins, tubulins, kinesins, dyneins, specific microtubule-associated proteins, and intermediate filaments. We conducted ontological analysis of select genes to better understand the relatedness of urchin cytoskeletal genes to those of other deuterostomes. We analyzed developmental expression (EST) data to confirm the existence of select gene models and to understand their differential expression during various stages of early development.  相似文献   

12.
13.
Chick embryos are good models for vertebrate development due to their accessibility and manipulability. Recent large increases in available genomic data from both whole genome sequencing and EST projects provide opportunities for identifying many new developmentally important chicken genes. Traditional methods of documenting when and where specific genes are expressed in embryos using wholemount and section in-situ hybridisation do not readily allow appreciation of 3-dimensional (3D) patterns of expression, but this can be accomplished by the recently developed microscopy technique, Optical Projection Tomography (OPT). Here we show that OPT data on the developing chick wing from different labs can be reliably integrated into a common database, that OPT is efficient in capturing 3D gene expression domains and that such domains can be meaningfully compared. Novel protocols are used to compare 3D expression domains of 7 genes known to be involved in chick wing development. This reveals previously unappreciated relationships and demonstrates the potential, using modern genomic resources, for building a large scale 3D atlas of gene expression. Such an atlas could be extended to include other types of data, such as fate maps, and the approach is also more generally applicable to embryos, organs and tissues.  相似文献   

14.
15.
16.
Kidney development is distinguished by the sequential formation of three structures of putatively equivalent function from the intermediate mesoderm, the pronephros, mesonephros, and metanephros. While these organs differ morphologically, their basic structural organization exhibits important similarities. The earliest form of the kidney, the pronephros, is the primary blood filtration and osmoregulatory organ of fish and amphibian larvae. Simple organization and rapid formation render the Xenopus pronephric kidney an ideal model for research on the molecular and cellular mechanisms dictating early kidney organogenesis. A prerequisite for this is the identification of genes critical for pronephric kidney development. This review describes the emerging framework of genes that act to establish the basic components of the pronephric kidney: the corpuscle, tubules, and the duct. Systematic analysis of marker gene expression, in temporal and spatial resolution, has begun to reveal the molecular anatomy underlying pronephric kidney development. Furthermore, the emerging evidence indicates extensive conservation of gene expression between pronephric and metanephric kidneys, underscoring the importance of the Xenopus pronephric kidney as a simple model for nephrogenesis. Given that Xenopus embryos allow for easy testing of gene function, the pathways that direct cell fate decisions in the intermediate mesoderm to make the diverse spectrum of cell types of the pronephric kidney may become unraveled in the future.  相似文献   

17.
18.
Here we characterize the expression of the full system of genes which control the segmentation morphogenetic field of Drosophila at the protein level in one dimension. The data used for this characterization are quantitative with cellular resolution in space and about 6 min in time. We present the full quantitative profiles of all 14 segmentation genes which act before the onset of gastrulation. The expression patterns of these genes are first characterized in terms of their average or typical behavior. At this level, the expression of all of the genes has been integrated into a single atlas of gene expression in which the expression levels of all genes in each cell are specified. We show that expression domains do not arise synchronously, but rather each domain has its own specific dynamics of formation. Moreover, we show that the expression domains shift position in the direction of the cephalic furrow, such that domains in the anlage of the segmented germ band shift anteriorly while those in the presumptive head shift posteriorly. The expression atlas of integrated data is very close to the expression profiles of individual embryos during the latter part of the blastoderm stage. At earlier times gap gene domains show considerable variation in amplitude, and significant positional variability. Nevertheless, an average early gap domain is close to that of a median individual. In contrast, we show that there is a diversity of developmental trajectories among pair-rule genes at a variety of levels, including the order of domain formation and positional accuracy. We further show that this variation is dynamically reduced, or canalized, over time. As the first quantitatively characterized morphogenetic field, this system and its behavior constitute an extraordinarily rich set of materials for the study of canalization and embryonic regulation at the molecular level.  相似文献   

19.
20.
MOTIVATION: Gene expression profiling is a powerful approach to identify genes that may be involved in a specific biological process on a global scale. For example, gene expression profiling of mutant animals that lack or contain an excess of certain cell types is a common way to identify genes that are important for the development and maintenance of given cell types. However, it is difficult for traditional computational methods, including unsupervised and supervised learning methods, to detect relevant genes from a large collection of expression profiles with high sensitivity and specificity. Unsupervised methods group similar gene expressions together while ignoring important prior biological knowledge. Supervised methods utilize training data from prior biological knowledge to classify gene expression. However, for many biological problems, little prior knowledge is available, which limits the prediction performance of most supervised methods. RESULTS: We present a Bayesian semi-supervised learning method, called BGEN, that improves upon supervised and unsupervised methods by both capturing relevant expression profiles and using prior biological knowledge from literature and experimental validation. Unlike currently available semi-supervised learning methods, this new method trains a kernel classifier based on labeled and unlabeled gene expression examples. The semi-supervised trained classifier can then be used to efficiently classify the remaining genes in the dataset. Moreover, we model the confidence of microarray probes and probabilistically combine multiple probe predictions into gene predictions. We apply BGEN to identify genes involved in the development of a specific cell lineage in the C. elegans embryo, and to further identify the tissues in which these genes are enriched. Compared to K-means clustering and SVM classification, BGEN achieves higher sensitivity and specificity. We confirm certain predictions by biological experiments. AVAILABILITY: The results are available at http://www.csail.mit.edu/~alanqi/projects/BGEN.html.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号