首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 563 毫秒
1.
The All Birds Barcoding Initiative aims to assemble a DNA barcode database for all bird species, but the 648-bp 'barcoding' region of cytochrome c oxidase subunit I (COI) can be difficult to amplify in Southeast Asian perching birds (Aves: Passeriformes). Using COI sequences from complete mitochondrial genomes, we designed a primer pair that more reliably amplifies and sequences the COI barcoding region of Southeast Asian passerine birds. The 655-bp region amplified with these primers overlaps the COI region amplified with other barcoding primer pairs, enabling direct comparison of sequences with previously published DNA barcodes.  相似文献   

2.
Digeneans and cestodes are species‐rich taxa and can seriously impact human health, fisheries, aqua‐ and agriculture, and wildlife conservation and management. DNA barcoding using the COI Folmer region could be applied for species detection and identification, but both ‘universal’ and taxon‐specific COI primers fail to amplify in many flatworm taxa. We found that high levels of nucleotide variation at priming sites made it unrealistic to design primers targeting all flatworms. We developed new degenerate primers that enabled acquisition of the COI barcode region from 100% of specimens tested (n = 46), representing 23 families of digeneans and 6 orders of cestodes. This high success rate represents an improvement over existing methods. Primers and methods provided here are critical pieces towards redressing the current paucity of COI barcodes for these taxa in public databases.  相似文献   

3.
DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (~450 bp) representing ~100 morphospecies from ~650 collections of Agaricomycotina using several sets of new primers. Large introns (~1500 bp) at variable locations were detected in ~5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (~30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms.  相似文献   

4.
Universal primer cocktails for fish DNA barcoding   总被引:4,自引:0,他引:4  
Reliable recovery of the 5′ region of the cytochrome c oxidase 1 (COI) gene is critical for the ongoing effort to gather DNA barcodes for all fish species. In this study, we develop and test primer cocktails with a view towards increasing the efficiency of barcode recovery. Specifically, we evaluate the success of polymerase chain reaction amplification and the quality of resultant sequences using three primer cocktails on DNA extracts from representatives of 94 fish families. Our results show that M13‐tailed primer cocktails are more effective than conventional degenerate primers, allowing barcode work on taxonomically diverse samples to be carried out in a high‐throughput fashion.  相似文献   

5.
DNA barcoding involves the use of one or more short, standardized DNA fragments for the rapid identification of species. A 648‐bp segment near the 5′ terminus of the mitochondrial cytochrome c oxidase subunit I (COI) gene has been adopted as the universal DNA barcode for members of the animal kingdom, but its utility in mushrooms is complicated by the frequent occurrence of large introns. As a consequence, ITS has been adopted as the standard DNA barcode marker for mushrooms despite several shortcomings. This study employed newly designed primers coupled with cDNA analysis to examine COI sequence diversity in six species of Pleurotus and compared these results with those for ITS. The ability of the COI gene to discriminate six species of Pleurotus, the commonly cultivated oyster mushroom, was examined by analysis of cDNA. The amplification success, sequence variation within and among species, and the ability to design effective primers was tested. We compared ITS sequences to their COI cDNA counterparts for all isolates. ITS discriminated between all six species, but some sequence results were uninterpretable, because of length variation among ITS copies. By comparison, a complete COI sequences were recovered from all but three individuals of Pleurotus giganteus where only the 5′ region was obtained. The COI sequences permitted the resolution of all species when partial data was excluded for P. giganteus. Our results suggest that COI can be a useful barcode marker for mushrooms when cDNA analysis is adopted, permitting identifications in cases where ITS cannot be recovered or where it offers higher resolution when fresh tissue is. The suitability of this approach remains to be confirmed for other mushrooms.  相似文献   

6.
Accurate species-level identifications underpin many aspects of basic and applied biology;however,identifications can be hampered by a lack of discriminating morphological characters,taxonomic expertise or time.Molecular approaches,such as DNA"barcoding"of the cytochrome c oxidase(COI)gene,are argued to overcome these issues.However,nuclear encoding of mitochondrial genes(numts)and poor amplification success of suboptimally preserved specimens can lead to erroneous identifications.One insect group for which these molecular and morphological problems are significant are the dacine fruit flies(Diptera:Tephritidae:Dacini).We addressed these issues associated with COI barcoding in the dacines by first assessing several"universal"COI primers against public mitochondrial genome and numt sequences for dacine taxa.We then modified a set of four primers that more closely matched true dacine COI sequence and amplified two overlapping portions of the COI barcode region.Our new primers were tested alongside universal primers on a selection of dacine species,including both fresh preserved and decades-old dry specimens.Additionally,Bactrocera tiyoni mitochondrial and nuclear genomes were compared to identify putative numts.Four numt clades were identified,three of which were amplified using existing universal primers.In contrast,our new primers preferentially amplified the"true"mitochondrial COI barcode in all dacine species tested.The new primers also successfully amplified partial barcodes from dry specimens for which full length barcodes were unobtainable.Thus we recommend these new primers be incorporated into the suites of primers used by diagnosticians and quarantine labs for the accurate identification of dacine species.  相似文献   

7.
There are more than 47 species of holothurians used for bêche-de-mer production, many of which are locally overfished. With three exceptions, all bêche-de-mer species are Aspidochirotida and species identification of many of these is difficult. We analysed available genetic information and newly generated sequences to determine if genetic barcoding with the mitochondrial COI gene can be used to identify bêche-de-mer species. Although genetic data were available for ~50% of bêche-de-mer species, sufficient information and within-species replication were only available for six species. We generated 96 new COI sequences extending the existing database to cover most common species. COI unambiguously identified most bêche-de-mer species providing a genetic barcode for the identification of known species. In addition, conspecific (1.3%) variation and congeneric (16.9%) divergence were well separated ('barcoding-gap') albeit with a small overlap, which may lead to some error if genetic sampling alone was applied for species discovery. In addition to identification of adults, COI sequences were useful to identify juveniles that are often morphologically different. Sequence data showed that large (deep) and small (shallow) morphotypes of Holothuria atra are the same species, but suggested potential cryptic species within this taxon. For bêche-de-mer, the COI barcode proved useful in species clarification and discovery, but further genetic and taxonomic work is essential for several species. Some bêche-de-mer clades were problematic with morphologically disparate specimens sharing the same barcode. Our study indicated the presence of undescribed species (Bohadschia sp.) and species that constitute separate species in the Indian and Pacific Ocean (e.g. Holothuria fuscogilva).  相似文献   

8.
In this study, we verified the power of DNA barcodes to discriminate Neotropical birds using Bayesian tree reconstructions of a total of 7404 COI sequences from 1521 species, including 55 Brazilian species with no previous barcode data. We found that 10.4% of species were nonmonophyletic, most likely due to inaccurate taxonomy, incomplete lineage sorting or hybridization. At least 0.5% of the sequences (2.5% of the sampled species) retrieved from GenBank were associated with database errors (poor‐quality sequences, NuMTs, misidentification or unnoticed hybridization). Paraphyletic species (5.8% of the total) can be related to rapid speciation events leading to nonreciprocal monophyly between recently diverged sister species, or to absence of synapomorphies in the small COI region analysed. We also performed two series of genetic distance calculations under the K2P model for intraspecific and interspecific comparisons: the first included all COI sequences, and the second included only monophyletic taxa observed in the Bayesian trees. As expected, the mean and median pairwise distances were smaller for intraspecific than for interspecific comparisons. However, there was no precise ‘barcode gap’, which was shown to be larger in the monophyletic taxon data set than for the data from all species, as expected. Our results indicated that although database errors may explain some of the difficulties in the species discrimination of Neotropical birds, distance‐based barcode assignment may also be compromised because of the high diversity of bird species and more complex speciation events in the Neotropics.  相似文献   

9.
DNA barcoding using mitochondrial cytochrome c oxidase subunit I (COI) is regarded as a standard method for species identification. Recent reports have also shown extended applications of COI gene analysis in phylogeny and molecular diversity studies. The bee-eaters are a group of near passerine birds in the family Meropidae. There are 26 species worldwide; five of them are found in Saudi Arabia. Until now, GenBank included a COI barcode for only one species of bee-eater, the European bee-eater (Merops apiaster). We sequenced the 694-bp segment of the COI gene of the green bee-eater M. orientalis and compared the sequences with those of M. apiaster. Pairwise sequence comparison showed 66 variable sites across all the eight sequences from both species, with an interspecific genetic distance of 0.0362. Two and one within-species variable sites were found, with genetic distances of 0.0005 and 0.0003 for M. apiaster and M. orientalis, respectively. This is the first study reporting barcodes for M. orientalis.  相似文献   

10.

Background

The identification of free-living marine nematodes is difficult because of the paucity of easily scorable diagnostic morphological characters. Consequently, molecular identification tools could solve this problem. Unfortunately, hitherto most of these tools relied on 18S rDNA and 28S rDNA sequences, which often lack sufficient resolution at the species level. In contrast, only a few mitochondrial COI data are available for free-living marine nematodes. Therefore, we investigate the amplification and sequencing success of two partitions of the COI gene, the M1-M6 barcoding region and the I3-M11 partition.

Methodology

Both partitions were analysed in 41 nematode species from a wide phylogenetic range. The taxon specific primers for the I3-M11 partition outperformed the universal M1-M6 primers in terms of amplification success (87.8% vs. 65.8%, respectively) and produced a higher number of bidirectional COI sequences (65.8% vs 39.0%, respectively). A threshold value of 5% K2P genetic divergence marked a clear DNA barcoding gap separating intra- and interspecific distances: 99.3% of all interspecific comparisons were >0.05, while 99.5% of all intraspecific comparisons were <0.05 K2P distance.

Conclusion

The I3-M11 partition reliably identifies a wide range of marine nematodes, and our data show the need for a strict scrutiny of the obtained sequences, since contamination, nuclear pseudogenes and endosymbionts may confuse nematode species identification by COI sequences.  相似文献   

11.
DNA barcoding is an effective approach for species identification and for discovery of new and/or cryptic species. Sanger sequencing technology is the method of choice for obtaining standard 650 bp cytochrome c oxidase subunit I (COI) barcodes. However, DNA degradation/fragmentation makes it difficult to obtain a full-length barcode from old specimens. Mini-barcodes of 130 bp from the standard barcode region have been shown to be effective for accurate identification in many animal groups and may be readily obtained from museum samples. Here we demonstrate the application of an alternative sequencing technology, the four-enzymes single-specimen pyrosequencing, in rapid, cost-effective mini-barcode analysis. We were able to generate sequences of up to 100 bp from mini-barcode fragments of COI in 135 fresh and 50 old Lepidoptera specimens (ranging from 53-97 year-old). The sequences obtained using pyrosequencing were of high quality and we were able to robustly match all the tested pyro-sequenced samples to their respective Sanger-sequenced standard barcode sequences, where available. Simplicity of the protocol and instrumentation coupled with higher speed and lower cost per sequence than Sanger sequencing makes this approach potentially useful in efforts to link standard barcode sequences from unidentified specimens to known museum specimens with only short DNA fragments.  相似文献   

12.
MY Stoeckle  KC Kerr 《PloS one》2012,7(8):e43992
The accuracy of DNA barcode databases is critical for research and practical applications. Here we apply a frequency matrix to assess sequencing errors in a very large set of avian BARCODEs. Using 11,000 sequences from 2,700 bird species, we show most avian cytochrome c oxidase I (COI) nucleotide and amino acid sequences vary within a narrow range. Except for third codon positions, nearly all (96%) sites were highly conserved or limited to two nucleotides or two amino acids. A large number of positions had very low frequency variants present in single individuals of a species; these were strongly concentrated at the ends of the barcode segment, consistent with sequencing error. In addition, a small fraction (0.1%) of BARCODEs had multiple very low frequency variants shared among individuals of a species; these were found to represent overlooked cryptic pseudogenes lacking stop codons. The calculated upper limit of sequencing error was 8×10(-5) errors/nucleotide, which was relatively high for direct Sanger sequencing of amplified DNA, but unlikely to compromise species identification. Our results confirm the high quality of the avian BARCODE database and demonstrate significant quality improvement in avian COI records deposited in GenBank over the past decade. This approach has potential application for genetic database quality control, discovery of cryptic pseudogenes, and studies of low-level genetic variation.  相似文献   

13.
DNA barcoding Korean birds   总被引:6,自引:0,他引:6  
Yoo HS  Eah JY  Kim JS  Kim YJ  Min MS  Paek WK  Lee H  Kim CB 《Molecules and cells》2006,22(3):323-327
DNA barcoding, an inventory of DNA sequences from a standardized genomic region, provides a bio-barcode for identifying and discovering species. Several recent studies suggest that the sequence diversity in a 648 bp region of the mitochondrial gene for cytochrome c oxi- dase I (COI) might serve as a DNA barcode for identify- ing animal species such as North American birds, in- sects and fishes. The present study tested the effective- ness of a COI barcode in discriminating Korean bird species. We determined the 5' terminus of the COI bar- code for 92 species of Korean birds and found that spe- cies identification was unambiguous; the genetic differ- ences between closely related species were, on average, 25 times higher than the differences within species. We identified only one misidentified species out of 239 specimens in a genetic resource bank, so confirming the accuracy of species identification in the banking system. We also identified two potential composite species, calling for further investigation using more samples. The finding of large COI sequence differences between species confirms the effectiveness of COI barcodes for identifying Korean bird species. To bring greater reliability to the identification of species, increased in- tra- and interspecies sampling, as well as supplementa- tion of the mitochondrial barcodes with nuclear ones, is needed.  相似文献   

14.
Amphibians are one of the most threatened vertebrate classes, yet at the same time new species are being described every year, demonstrating that the number of existing species is grossly underestimated. In groups such as amphibians, with high extinction rates and poorly known species boundaries, DNA barcoding is a tool that can rapidly assess genetic diversity and estimate species richness for prioritizing conservation decisions. However, reliable recovery of the 5′ region of the cytochrome c oxidase subunit 1 (COI) gene is critical for the ongoing effort to gather DNA barcodes for all amphibian species. Here, we provide new PCR conditions and tested new primers that increase the efficiency of barcode recovery in amphibians. We found that a low extension temperature for PCR cycles significantly improves the efficiency of amplification for all combinations of primers. Combining low PCR extension temperature and primers AnF1 + AnR1, we were able to recover COI sequences for 100% of the species analysed (N = 161), encompassing ~15% of the species known from Brazil (representing 77 genera and 23 families), which is an important improvement over previous studies. The preliminary assessment of species diversity suggested that number of species might be underestimated by about 25%. We conclude that DNA barcoding is an efficient, simple, and standardized protocol for identifying cryptic diversity in amphibians and advocate for its use in biodiversity inventories and across widespread populations within known species.  相似文献   

15.
【目的】本研究旨在探讨DNA条形码对中国蛛缘蝽科(半翅目:缘蝽总科)物种界定的适用性。【方法】对中国蛛缘蝽科13属23种207个样本的线粒体COI基因DNA条形码序列进行扩增,并扩增稻缘蝽属Leptocorisa 3个物种的31条内转录间隔区1(ITS-1)序列作为辅助标记。使用MEGA 11软件计算种间和种内遗传距离(Kimura 2-parameter, K2P);采用邻接法(neighbor-joining, NJ)进行物种聚类分析;利用中介邻接网络算法构建单倍型网络图。【结果】基于线粒体COI DNA条形码序列得出测试的中国蛛缘蝽科所有23个种的种内平均K2P距离在2%以下,种间K2P距离在0.98%~23.98%之间(平均17.50%)。多数物种彼此能够被较好地分开,且支持率较高。其中,中稻缘蝽Leptocorisa chinensis和大稻缘蝽L. oratoria共享部分COI单倍型,造成COI条形码无法区分二者,可通过ITS-1序列在单倍型网络分析中将二者区分。【结论】本研究得出的中国蛛缘蝽科中绝大部分物种的DNA条形码数据分析结果与基于形态特征的分类单元一致。然而,对于其中亲缘关系极近的物种,单靠线粒体数据尤其是COI条形码序列无法进行准确界定,需引入其他DNA序列或其他类型数据进行区分。  相似文献   

16.
唐秀娟  姜立云  陈静  乔格侠 《昆虫学报》2015,58(11):1262-1272
【目的】粉毛蚜亚科昆虫是重要的林业害虫,但是由于蚜虫体型较小,形态特征趋于简化,可用于物种鉴定的有效特征非常有限,因此一般基于外部形态特征难以对蚜虫物种实现快速准确的鉴定。本研究获取该亚科2属10种的DNA条形码标准序列,解决部分物种的分类问题,同时比较了3种标记对粉毛蚜亚科(Pterocommatinae)物种快速鉴定的效率。【方法】基于蚜虫的线粒体细胞色素氧化酶C亚基I(cytochrome oxidase subunit I, COI)基因、细胞色素b(cytochrome b, Cytb)基因和蚜虫初级内共生菌Buchnera 6-磷酸葡萄糖酸脱氢酶(gluconate-6-phosphate dehydrogenase, gnd)基因,对2属10种共197号样品进行NJ分析、遗传距离的计算以及基于相似性的物种鉴定分析。【结果】与K-2P模型相比,基于p-distance模型计算得到的遗传距离更小,序列差异频次图上种内距离与种间距离的重叠区域也小于前者;COI序列的物种鉴定成功率最高。获取了粉毛蚜亚科近200条DNA条形码标准序列,并建立了基于3个标记的该亚科物种DNA条形码序列库。【结论】在粉毛蚜亚科DNA条形码研究中,p-distance模型要优于K-2P模型;COI序列具有最高的条形码分析效率;增毛卷粉毛蚜Plocamaphis assetacea可能为蜡卷粉毛蚜Plocamaphis flocculosa的同物异名。  相似文献   

17.
Identification of Birds through DNA Barcodes   总被引:37,自引:2,他引:35       下载免费PDF全文
Short DNA sequences from a standardized region of the genome provide a DNA barcode for identifying species. Compiling a public library of DNA barcodes linked to named specimens could provide a new master key for identifying species, one whose power will rise with increased taxon coverage and with faster, cheaper sequencing. Recent work suggests that sequence diversity in a 648-bp region of the mitochondrial gene, cytochrome c oxidase I (COI), might serve as a DNA barcode for the identification of animal species. This study tested the effectiveness of a COI barcode in discriminating bird species, one of the largest and best-studied vertebrate groups. We determined COI barcodes for 260 species of North American birds and found that distinguishing species was generally straightforward. All species had a different COI barcode(s), and the differences between closely related species were, on average, 18 times higher than the differences within species. Our results identified four probable new species of North American birds, suggesting that a global survey will lead to the recognition of many additional bird species. The finding of large COI sequence differences between, as compared to small differences within, species confirms the effectiveness of COI barcodes for the identification of bird species. This result plus those from other groups of animals imply that a standard screening threshold of sequence difference (10× average intraspecific difference) could speed the discovery of new animal species. The growing evidence for the effectiveness of DNA barcodes as a basis for species identification supports an international exercise that has recently begun to assemble a comprehensive library of COI sequences linked to named specimens.  相似文献   

18.
The standardized use of mitochondrial cytochrome c oxidase subunit I (COI) gene sequences as DNA barcodes has been widely promoted as a high-throughput method for species identification and discovery. Species delimitation has been based on the following criteria: (1) monophyletic association and less frequently (2) a minimum 10× greater divergence between than within species. Divergence estimates, however, can be inflated if sister species pairs are not included and the geographic extent of variation within any given taxon is not sampled comprehensively. This paper addresses both potential biases in DNA divergence estimation by sampling range-wide variation in several morphologically distinct, endemic butterfly species in the genus Heteropsis, some of which are sister taxa. We also explored the extent to which mitochondrial DNA from the barcode region can be used to assess the effects of historical rainforest fragmentation by comparing genetic variation across Heteropsis populations with an unrelated forest-associated taxon Saribia tepahi. Unexpectedly, generalized primers led to the inadvertent amplification of the endosymbiont Wolbachia, undermining the use of universal primers and necessitating the design of genus-specific COI primers alongside a Wolbachia-specific PCR assay. Regardless of the high intra-specific genetic variation observed, most species satisfy DNA barcoding criteria and can be differentiated in the nuclear phylogeny. Nevertheless, two morphologically distinguishable candidate species fail to satisfy the barcoding 10× genetic distance criterion, underlining the difficulties of applying a standard distance threshold to species delimitation. Phylogeographic analysis of COI data suggests that forest fragmentation may have played an important role in the recent evolutionary diversification of these butterflies. Further work on other Malagasy taxa using both mitochondrial and nuclear data will provide better insight into the role of historical habitat fragmentation in species diversification and may potentially contribute to the identification of priority areas for conservation.  相似文献   

19.
A PCR-based approach to sequencing complete mitochondrial genomes is described along with a set of 86 primers designed primarily for avian mitochondrial DNA (mtDNA). This PCR-based approach allows an accurate determination of complete mtDNA sequences that is faster than sequencing cloned mtDNA. The primers are spaced at about 500-base intervals along both DNA strands. Many of the primers incorporate degenerate positions to accommodate variation in mtDNA sequence among avian taxa and to reduce the potential for preferential amplification of nuclear pseudogenes. Comparison with published vertebrate mtDNA sequences suggests that many of the primers will have broad taxonomic utility. In addition, these primers should make available a wider variety of mitochondrial genes for studies based on smaller data sets.  相似文献   

20.
Several recent studies have proposed that partial DNA sequences of the cytochrome c oxidase I (COI) mitochondrial gene might serve as DNA barcodes for identifying and differentiating between animal species, such as birds, fish and insects. In this study, we tested the effectiveness of a COI barcode to identify true bugs from 139 species collected from Korea and adjacent regions (Japan, Northeastern China and Fareast Russia). All the species had a unique COI barcode sequence except for the genus Apolygus (Miridae), and the average interspecific genetic distance between closely related species was about 16 times higher than the average intraspecific genetic distance. DNA barcoding identified one probable new species of true bug and revealed identical or very recently divergent species that were clearly distinguished by morphological characteristics. Therefore, our results suggest that COI barcodes can reveal new cryptic true bug species and are able to contribute for the exact identification of the true bugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号