首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The taxonomic and evolutionary affinities of Southern hemisphere smooth‐shelled blue mussels are unclear, with studies using different marker types having identified different relationships among various geographic regions. Using an existing and a new molecular assay, the present study builds on previous work to test the distribution of blue mussels native to and introduced to the Southern hemisphere. Populations of Mytilus were sampled from New Zealand, Australia, and Chile. The nuclear‐DNA marker Me 15/16 was used to identify the taxonomic status of 484 individuals. A new restriction fragment length polymorphism (RFLP) assay was used to identify the hemisphere of origin for a subset of Mytilus galloprovincialis. The Me15/16 marker identified 478 pure M. galloprovincialis from Southern hemisphere sites and six Mytilus edulis/M. galloprovincialis hybrids from the Auckland Islands (New Zealand) and Chile. A cytoplasmic RFLP identified Northern hemisphere M. galloprovincialis in almost every Southern hemisphere region. The presence of native M. galloprovincialis at high latitudes (up to 52°S) has implications for our understanding of environmentally induced selective constraints considered to determine species distributions. Widespread occurrence of invasive Northern hemisphere blue mussels in the Southern hemisphere is documented for the first time. Identification of inter‐specific hybrids (M. edulis × M. galloprovincialis) in Chile and in the Auckland Islands (subantarctic New Zealand) illustrates that environments ranging from international ports to remote protected locations are vulnerable to bioinvasion. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 898–909.  相似文献   

2.
Human‐mediated biological transfers of species have substantially modified many ecosystems with profound environmental and economic consequences. However, in many cases, invasion events are very hard to identify because of the absence of an appropriate baseline of information for receiving sites/regions. In this study, use of high‐resolution genetic markers (single nucleotide polymorphisms – SNPs) highlights the threat of introduced Northern Hemisphere blue mussels (Mytilus galloprovincialis) at a regional scale to Southern Hemisphere lineages of blue mussels via hybridization and introgression. Analysis of a multispecies SNP dataset reveals hotspots of invasive Northern Hemisphere blue mussels in some mainland New Zealand locations, as well as the existence of unique native lineages of blue mussels on remote oceanic islands in the Southern Ocean that are now threatened by invasive mussels. Samples collected from an oil rig that has moved between South Africa, Australia, and New Zealand were identified as invasive Northern Hemisphere mussels, revealing the relative ease with which such non‐native species may be moved from region to region. In combination, our results highlight the existence of unique lineages of mussels (and by extension, presumably of other taxa) on remote offshore islands in the Southern Ocean, the need for more baseline data to help identify bioinvasion events, the ongoing threat of hybridization and introgression posed by invasive species, and the need for greater protection of some of the world's last great remote areas.  相似文献   

3.
Gamete-recognition proteins often evolve rapidly, but it is not known if their divergence occurs within species and corresponds with the evolution of reproductive isolation, or if divergence typically accumulates between already isolated lineages. We examined the evolution of a candidate gamete-recognition protein in several sympatric and allopatric populations of Mytilus blue mussels, species that hybridize in nature. Within a single species, Mytilus galloprovincialis, we found adaptive divergence of Lysin-M7, a sperm acrosomal protein that dissolves the egg vitelline envelope during fertilization. Mytilus galloprovincialis Lysin-M7 alleles group into two distinct clades (termed G and G(D)), and individual alleles in these clades are separated from each other by at least three and up to eleven amino-acid substitutions. Maximum-likelihood estimates of selective pressure (dN/dS =omega) implicate selection in the divergence between M. galloprovincialis Lysin-M7 clades, and within the G(D) clade. Exact tests of population differentiation indicate that the relative frequency of G and G(D) Lysin-M7 alleles differs significantly among M. galloprovincialis populations. Compared with allopatric Mediterranean samples, Lysin-M7 alleles in the G(D) clade are found at elevated frequency in samples from the East Atlantic and California, areas of secondary contact and hybridization between Mytilus species, and Australia, an area of unknown species composition. Adaptive divergence between the alleles most common in allopatry and those found at elevated frequency in samples from sympatry suggests that selection pressures acting in hybridizing populations, likely following Pleistocene secondary contact with M. edulis in the East Atlantic, drove the divergence of Lysin-M7 in M. galloprovincialis.  相似文献   

4.
Smooth‐shelled blue mussels of the Mytilus edulis species complex are widely distributed bivalve molluscs whose introductions threaten native marine biodiversity (non‐indigenous species – NIS). The aim of the present study was to identify the species and hybrids of Mytilus present in the Magellan Region (southern Chile). Results indicate that three mussel species of the Mytilus edulis complex are found in the region – M. edulis, M. chilensis (or the Southern Hemisphere lineage of Mytilus galloprovincialis), and M. galloprovincialis of Northern Hemisphere origin. For the first time, alleles of the introduced M. trossulus are reported from the Southern Hemisphere. In the Strait of Magellan the native Pacific blue mussel, Mytilus chilensis and the native Atlantic blue mussel, Mytilus edulis, meet and mix at a natural hybrid zone (about 125 km in length). This is the first record of a natural Mytilus hybrid zone in the Southern Hemisphere and is also the first record of the co‐occurrence of genes from all four Mytilus species in any one region. These results contribute to the knowledge of the biodiversity and delimitation of mussel species in southern South America, and highlight how introduced species may threaten the genetic integrity of native species through hybridization and introgression.  相似文献   

5.
Mussels of the genus Mytilus have two types of mitochondrial DNA (mtDNA). The M type is transmitted paternally and the F type is transmitted maternally. RFLP analysis is used to assess phylogenetic relationships and nucleotide diversity and divergence for both mtDNA genomes in European populations of M. edulis and Atlantic and Mediterranean forms of M. galloprovincialis. Ten restriction endonucleases were used to assay variation in regions of the ND2 and COIII genes for a total of 77 individuals. F and M genomes show a concordant phylogenetic split into two major divergent clades, one specific to Mediterranean M. galloprovincialis and the other containing haplotypes from the three taxa. For both genomes, the geographical distribution of mtDNA variation suggests: (i) extensive levels of mtDNA introgression; (ii) asymmetric mtDNA gene flow from Atlantic to Mediterranean populations; and (iii) recurrent historical hybridization events. Significantly higher mtDNA diversity and divergence are observed for the M than F genome in all three Mytilus taxa, although the evolutionary forces responsible for these differences cannot be resolved. The extensive mtDNA gene flow between European Mytilus taxa conflicts with the restricted mtDNA introgression observed in American mussels , implying geographical variation in the nature of nuclear/mtDNA interactions regulating biparental inheritance.  相似文献   

6.
Mussels ( Mytilus sp.) from Sanriku Bay, NE Honshu, Japan were examined using morphological characters and electrophoretically detectable enzyme polymorphisms. Using both sets of criteria, the mussels were identified as M. galloprovincialis , the mediterranean mussel. This confirms an earlier opinion, which was based on morphological criteria alone, that the mediterranean mussel occurs on the mainland coast of Japan. Investigation of some early Japanese literature suggests that mussels did not occur in this area earlier this century, and M. galloprovincialis may have been introduced to the region of Kobe, around 1930–1935. The present-day distribution of M. edulis and M. galloprovincialis in the Japanese archipelago may be explained by sea-surface temperatures in the region.  相似文献   

7.
Smooth-shelled mussels, Mytilus spp., have an antitropical distribution. In the Northern Hemisphere, the M. edulis complex of species is composed of three genetically well delineated taxa: M. edulis, M. galloprovincialis and M. trossulus. In the Southern Hemisphere, morphological characters, allozymes and intron length polymorphisms suggest that Mytilus spp. populations from South America and Kerguelen Islands are related to M. edulis and those from Australasia to M. galloprovincialis. On the other hand, a phylogeny of the 16S rDNA mitochondrial locus demonstrates a clear distinctiveness of southern mussels and suggests that they are related to Mediterranean M. galloprovincialis. Here, we analysed the faster-evolving cytochrome oxidase subunit I locus. The divergence between haplotypes of populations from the two hemispheres was confirmed and was found to predate the divergence between haplotypes of northern M. edulis and M. galloprovincialis. In addition, strong genetic structure was detected among the southern samples, revealing three genetic entities that correspond to (1) South America and Kerguelen Island, (2) Tasmania, (3) New Zealand. Using the trans-Arctic interchange as a molecular clock calibration, we estimated the time since divergence of populations from the two hemispheres to be between 0.5 million years (MY) and 1.3 MY (average 0.84 MY). The contrasting patterns observed for the nuclear and the organelle genomes suggested two alternative, complex scenarios: two trans-equatorial migrations and the existence of differential barriers to mitochondrial and nuclear gene flow, or a single trans-equatorial migration and a view of the composition of the nuclear genome biased by taxonomic preconception.  相似文献   

8.
Previous surveys of allozyme variation in smooth-shell Mytilus spp. mussels have reported the presence in the Southern Hemisphere of both Mytilus edulis and Mytilus galloprovincialis mussels. In the present study, nuclear DNA markers mac-1 and Glu-5 '/ Glu-3 ', both diagnostic for Northern-Hemisphere M. edulis and M. galloprovincialis , were used to further characterize the nuclear genomes of M. edulis from Kerguelen and M. galloprovincialis from Tasmania. Genomic reticulation was observed, with typical M. edulis allelomorphs fixed in both populations at locus mac-1 whereas, at locus Glu-5 '/ Glu-3 ', allelomorphs characteristic of M. galloprovincialis were present in Kerguelen and nearly fixed in Tasmania. Kerguelen mussels had a genome of mixed M. edulis and M. galloprovincialis ancestry without evidence of barriers to merging as shown by Hardy–Weinberg and linkage equilibrium. Tasmanian mussels possessed a predominantly M. galloprovincialis genomic background introgressed by M. edulis allelomorphs at locus mac-1 . Genetic drift superimposed on ancient hybridization and introgression may explain the genomic reticulation observed in both Kerguelen and Tasmanian mussels. There was no evidence of a recent introduction of Northern-Hemisphere M. galloprovincialis or M. edulis to Kerguelen or Tasmania.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 747–754.  相似文献   

9.
Samples of mussels ( Mytilus ) were collected from 17 localities within hybrid zones of Mytilus edulis and Mytilus galloprovincialis in south-west and north-east England. The study of two polymorphic allozyme loci ( esterase-D and octopine dehydrogenase ), which are partially diagnostic for the two forms of mussel, reveal the existence of widespread length-dependent allele frequency variation. Larger mussels tend to have a higher frequency of alleles characteristically at high frequency in Mytilus galloprovincialis. Also at a given shell length galloprovincialis alleles have a higher frequency higher up the shore. Computer simulation is used to demonstrate that length-dependent variation may be generated not only by differential mortality but also by differential growth and in models including or excluding immigration. Evidence supports the hypothesis that selective mortality acting in favour of the galloprovincialis phenotype within hybrid populations in Britain is balanced by immigration of the more abundant Mytilus edulis.  相似文献   

10.
A number of studies have claimed that recombination occurs in animal mtDNA, although this evidence is controversial. Ladoukakis and Zouros (2001) provided strong evidence for mtDNA recombination in the COIII gene in gonadal tissue in the marine mussel Mytilus galloprovincialis from the Black Sea. The recombinant molecules they reported had not however become established in the population from which experimental animals were sampled. In the present study, we provide further evidence of the generality of mtDNA recombination in Mytilus by reporting recombinant mtDNA molecules in a related mussel species, Mytilus trossulus, from the Baltic. The mtDNA region studied begins in the 16S rRNA gene and terminates in the cytochrome b gene and includes a major noncoding region that may be analogous to the D-loop region observed in other animals. Many bivalve species, including some Mytilus species, are unusual in that they have two mtDNA genomes, one of which is inherited maternally (F genome) the other inherited paternally (M genome). Two recombinant variants reported in the present study have population frequencies of 5% and 36% and appear to be mosaic for F-like and M-like sequences. However, both variants have the noncoding region from the M genome, and both are transmitted to sperm like the M genome. We speculate that acquisition of the noncoding region by the recombinant molecules has conferred a paternal role on mtDNA genomes that otherwise resemble the F genome in sequence.  相似文献   

11.
Marine invertebrate sperm proteins are particularly interesting because they are characterized by positive selection and are likely to be involved in prezyogotic isolation and, thus, speciation. Here, we present the first survey of interspecific and intraspecific variation of a bivalve sperm protein among a group of species that regularly hybridize in nature. M7 lysin is found in sperm acrosomes of mussels and dissolves the egg vitelline coat, permitting fertilization. We sequenced multiple alleles of the mature protein-coding region of M7 lysin from allopatric populations of mussels in the Mytilus edulis species group (M. edulis, M. galloprovincialis, and M. trossulus). A significant McDonald-Kreitman test showed an excess of fixed amino acid replacing substitutions between species, consistent with positive selection. In addition, Kolmogorov-Smirnov tests showed significant heterogeneity in polymorphism to divergence ratios for both synonymous variation and combined synonymous and nonsynonymous variation within M. galloprovincialis. These results indicate that there has been adaptive evolution at M7 lysin and, furthermore, show that positive selection on sperm proteins can occur even when postzygotic reproductive isolation is incomplete.  相似文献   

12.
The unusual mode of mitochondrial DNA inheritance, with two separate: maternal (F) and paternal (M) lineages, gives unique opportunities to study the evolution of the mitochondrial genome. This system was first discovered in the marine mussels Mytilus. The three related species: Mytilus edulis, Mytilus galloprovincialis and Mytilus trossulus form a complex in which the divergence of M and F lineages pre-dates the speciation. The complete mitochondrial genomes of both lineages were known for all species except Pacific M. trossulus. Here we report, for the first time, the complete sequences of both mitochondrial genomes of Pacific M. trossulus, filling the gap. While the reported M and F genomes are highly diverged (26%), they have similar organisation. The only difference is the translocation of one tRNA gene into the long, mosaic control region of the F genome. Consistent presence of an ORF which most likely represents the atp8 gene was confirmed in both genomes. The predicted protein has characteristics expected of the functional atp8 even though the M and F versions are markedly different in length. Comparative analysis involving all three species led to the conclusion that the cause of a faster evolution of atp8 and Mytilus mtDNA in general is most likely the Compensation-Draft Feedback process coupled with relatively relaxed selection in the M lineage. Thus, we postulate that the adaptive changes may have played a role in the emergence of highly diverged, barely recognizable atp8 in Mytilus mussels.  相似文献   

13.
Successful fertilization in free-spawning marine organisms depends on the interactions between genes expressed on the surfaces of eggs and sperm. Positive selection frequently characterizes the molecular evolution of such genes, raising the possibility that some common deterministic process drives the evolution of gamete recognition genes and may even be important for understanding the evolution of prezygotic isolation and speciation in the marine realm. One hypothesis is that gamete recognition genes are subject to selection for prezygotic isolation, namely, reinforcement. In a previous study, positive selection on the gene coding for the acrosomal sperm protein M7 lysin was demonstrated among allopatric populations of mussels in the Mytilus edulis species group (M. edulis, Mytilus galloprovincialis, and Mytilus trossulus). Here, we expand sampling to include M7 lysin haplotypes from populations where mussel species are sympatric and hybridize to determine whether there is a pattern of reproductive character displacement (RCD), which would be consistent with reinforcement driving selection on this gene. We do not detect a strong pattern of RCD; neither are there unique haplotypes in sympatry nor is there consistently greater population structure in comparisons involving sympatric populations. One distinct group of haplotypes, however, is strongly affected by natural selection, and this group of haplotypes is found within M. galloprovincialis populations throughout the Northern Hemisphere concurrent with haplotypes common to M. galloprovincialis and M. edulis. We suggest that balancing selection, perhaps resulting from sexual conflicts between sperm and eggs, maintains old allelic diversity within M. galloprovincialis.  相似文献   

14.
A novel form of mitochondrial DNA (mtDNA) inheritance has previously been documented for the blue mussel (Mytilus edulis). Female mussels inherit their mtDNA solely from their mother while males inherit mtDNA from both their mother and their father. In males, the paternal mtDNA is preferentially amplified so that the male gonad is highly enriched for the paternal mtDNA that is then transmitted from fathers to sons. We demonstrate that this mode of mtDNA inheritance also operates in the closely related species M. galloprovincialis and M. trossulus. The evolutionary relationship between the male and female mtDNA lineages is estimated by phylogenetic analysis of 455 nucleotides from the large subunit ribosomal RNA gene. We have found that the male and female lineages are highly divergent; the divergence of these lineages began prior to the speciation of the three species of blue mussels. Further, the separation between the male and female lineages is estimated to have occurred between 5.3 and 5.7 MYA.   相似文献   

15.
In Mytilus mussels, paternal mitochondrial DNA (mtDNA) from sperm is known to be transmitted to offspring. This phenomenon is called doubly uniparental inheritance (DUI). Under DUI, sperm mtDNA (M type) is inherited only by males. Female mussels receive maternal mtDNA (F type). However, in our previous study, we showed female and unfertilized eggs have both F and M types. We hypothesized that the two M types both from sperm and unfertilized eggs were transmitted to offspring. To test the hypothesis, we examined the number of M type haplotypes in mature M. galloprovincialis. The M type in larvae was compared with those of the parents. Cross experiments were carried out to test the inheritance of M type. In six of 20 mature mussels, two M types were detected by sequence analysis and polymerase chain reaction-restriction fragment length polymorphism. In cross experiments of larval samples from five of 12 crosses, double peak wave was observed by single nucleotide polymorphisms analysis. In these larval samples, the higher peak wave was identical to the parental M type. Larvae received much more paternal M type than the maternal ones. We demonstrated that two M types from sperm and unfertilized eggs were transmitted to offspring in M. galloprovincialis.  相似文献   

16.
Hybrid zones are fascinating systems to investigate the structure of genetic barriers. Marine hybrid zones deserve more investigation because of the generally high dispersion potential of planktonic larvae which allows migration on scales unrivalled by terrestrial species. Here we analyse the genetic structure of the mosaic hybrid zone between the marine mussels Mytilus edulis and M. galloprovincialis, using three length-polymorphic PCR loci as neutral and diagnostic markers on 32 samples along the Atlantic coast of Europe. Instead of a single genetic gradient from M. galloprovincialis on the Iberian Peninsula to M. edulis populations in the North Sea, three successive transitions were observed in France. From South to North, the frequency of alleles typical of M. galloprovincialis first decreases in the southern Bay of Biscay, remains low in Charente, then increases in South Brittany, remains high in most of Brittany, and finally decreases again in South Normandy. The two enclosed patches observed in the midst of the mosaic hybrid zone in Charente and Brittany, although predominantly M. edulis-like and M. galloprovincialis-like, respectively, are genetically original in two respects. First, considering only the various alleles typical of one species, the patches show differentiated frequencies compared to the reference external populations. Second, each patch is partly introgressed by alleles of the other species. When introgression is taken into account, linkage disequilibria appear close to their maximum possible values, indicating a strong genetic barrier within all transition zones. Some pre- or postzygotic isolation mechanisms (habitat specialization, spawning asynchrony, assortative fertilization and hybrid depression) have been documented in previous studies, although their relative importance remains to be evaluated. We also provided evidence for a recent migratory 'short-cut' connecting M. edulis-like populations of the Charente patch to an external M. edulis population in Normandy and thought to reflect artificial transfer of spat for aquaculture.  相似文献   

17.
Blue mussels of the genus Mytilus have an unusual mode of mitochondrial DNA inheritance termed doubly uniparental inheritance (DUI). Females are homoplasmic for the F mitotype which is inherited maternally, whereas males are heteroplasmic for this and the paternally inherited M mitotype. In areas where species distributions overlap a varying degree of hybridization occurs; yet genetic differences between allopatric populations are maintained. Observations from natural populations and previous laboratory experiments suggest that DUI may be disrupted by hybridization, giving rise to heteroplasmic females and homoplasmic males. We carried out controlled laboratory crosses between Mytilus edulis and M. galloprovincialis to produce pure species and hybrid larvae of known parentage. DNA markers were used to follow the fate of the F and M mitotypes through larval development. Disruption of the mechanism which determines whether the M mitotype is retained or eliminated occurred in an estimated 38% of M. edulis x M. galloprovincialis hybrid larvae, a level double that previously observed in adult mussels from a natural M. edulis x M. galloprovincialis hybrid population. Furthermore, reciprocal hybrid crosses exhibited contrasting types of DUI disruption. The results indicate that disruption of DUI in hybrid mussels may be associated with increased mortality and hence could be a factor in the maintenance of genetic integrity for each species.  相似文献   

18.
Genetic variation was assayed electrophoretically at 13–16 loci in Modiolus modiolus, Mytilus edulis, and Mytilus galloprovincialis. High genetic distance ( D ) values were observed between Modiolus modiolus and Mytilus edulis (1.516 ± 0.523) and between Modiolus modiolus and Mytilus galloprovincialis (1.564 ± 0.539), whereas the distance between Mytilus edulis and M. galloprovincialis (0.167 ± 0.118) was rather low. The systematic status ot Mytilus edulis and M. galloprovincialis is discussed in relation to these lindings and the genetic distance values are used to estimate divergence times which in turn are compared with paleontological estimates. The observations of high average heterozygosity in Modiolus modiolus, and high correlations of locus heterozygosity between taxa are discussed briefly.  相似文献   

19.
Abstract The blue mussels Mytilus edulis and M. galloprovincialis hybridize in southwestern England. Within this hybrid zone environmentally based directional selection favors individuals with alleles specific to M. galloprovincialis . What forces are countering this directional selection and allowing for the maintenance of a stable hybrid population are unknown. We used both the genetics of recently settled larvae and a fine-scale model of the physical oceanography of the region to determine the patterns of larval dispersal throughout the hybrid zone and the bordering parental populations. Evidence from both the model and the genetics suggests that the hybrid zone lies between two barriers to dispersal. Start Point separates the M. edulis population from the hybrid zone and allows minimal dispersal from the hybrid zone into the M. edulis population, but none in the other direction. Likewise, the M. galloprovincialis populations along the northern coast of Cornwall regularly receive immigrating larvae from the hybrid zone, but larvae from the M. galloprovincialis population do not enter the hybrid zone. However, larvae settling at hybrid zone sites have high frequencies of alleles specific to M. edulis , suggesting that reproductive barriers, selection in the larval stage, or gene flow from an undetermined source is effectively balancing the directional selection observed in the adults.  相似文献   

20.
In Mytilus mussels, paternal mitochondrial DNA (M type) from sperm is known to be transmitted to offspring. This phenomenon is called doubly uniparental inheritance (DUI). Under DUI, it has been reported that female mussels generally have only maternal mtDNA (F type). In this study, we examined the mode of mtDNA transmission in Mytilus galloprovincialis using M and F type-specific primer sets. The ratio of M and F types were measured in each sample by SNaPshot. The M type was detected in the adductor muscle and female gonad of all females. In unfertilized eggs spawned by 84.6% of females (22/26), M type was also detected. The F type was more abundant than the M type in all females. Although the ratio of M type in females was very low, all females contained the M type. From these results, we propose a new possibility about DUI inheritance. The presence of M type in unfertilized eggs indicates that the M type of eggs may also contribute to M type inheritance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号