首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BMP4 maintains self-renewal of mouse embryonic stem cells (ESCs) in collaboration with LIF. Here, we report the identification of a novel key BMP target gene, cochlin (Coch) in mouse ESCs. Coch can be significantly up-regulated by BMP4 specifically in ESCs but not in somatic differentiated cells, and this up-regulation is dependent on the BMP signaling mediators Smad1/5 and Smad4. Overexpression of Coch can partially substitute BMP4 to promote self-renewal of mouse ESCs together with LIF, whereas knockdown of Coch impairs self-renewal marker gene expression even in the presence of both BMP4 and LIF. Further studies showed that COCH could mimic BMP4 in repressing neural differentiation of mouse ESCs upon LIF withdrawal and the inhibitory effect of BMP4 on neural differentiation is compromised by Coch knockdown. Taken together, our data suggest that COCH is a part of the downstream target network of BMP signaling and serves as another important effector to fine-tune mouse ESC fates.  相似文献   

2.
Pluripotent embryonic stem cells (ESCs) must select between alternative fates of self-renewal and lineage commitment at each division during continuous proliferation. Heparan sulfate (HS) is a highly sulfated polysaccharide and is present abundantly on the ESC surface. In this study, we investigated the role of HS in ESC self-renewal by examining Ext1−/− ESCs that are deficient in HS. We found that Ext1−/− ESCs retained their self-renewal potential but failed to transit from self-renewal to differentiation upon removal of leukemia inhibitory factor. Furthermore, we found that the aberrant cell fate commitment is caused by defects in fibroblast growth factor signaling, which directly retained high expression of the pluripotency gene Nanog in Ext1−/− ESCs. Therefore, our studies identified and defined HS as a novel factor that controls ESC fate commitment and also delineates that HS facilitates fibroblast growth factor signaling, which, in turn, inhibits Nanog expression and commits ESCs to lineage differentiation.  相似文献   

3.
Mammalian embryonic stem cells (ESCs) are characterized by an ability to self-renew and give rise to each of the three germ layers. ESCs are a pluripotential source of numerous primitive progenitors and committed lineages and can make stoichiometric decisions leading to either asymmetric or symmetric cell division. Several genes have been identified as essential for maintenance of self-renewal, but few non-lineage specific genes have been identified as essential for differentiation. We selected the chromatin factor Ctbp2 from microarray data for its enriched expression in stem cells, in comparison to committed progenitors. RNA interference (RNAi) was used to knockdown gene expression in mouse ESCs and the potential for transduced cells to self-renew and differentiate was assessed in ESC and mesodermal assays. Here, we demonstrate an important role for Ctbp2 in stem cell maintenance and regulation of differentiation using an in vitro system. The knockdown of Ctbp2 increases the prevalence of ESCs in culture, delays differentiation induced by LIF withdrawal, and introduces developmental changes in mesodermal differentiation. A model is presented for the importance of Ctbp2 in maintaining a balance in decisions to self-renewal and differentiate.  相似文献   

4.
Embryonic stem cells (ESCs) are pluripotent cells derived from the inner cell mass (ICM) that are able to self-renew or undergo differentiation depending on a complex interplay of extracellular signals and intracellular factors. However, the feedback regulation of differentiation-dependent ESC self-renewal is poorly understood. Retinoic acid (RA), a derivative of vitamin A, plays a critical role in ESC differentiation and embryogenesis. In the present study, we demonstrate that short-term treatment of murine (m) ESCs with RA during the early differentiation stage prevented spontaneous differentiation of mESCs. The RA-treated cells maintained self-renewal capacity and could differentiate into neuronal cells, cardiomyocytes, and visceral endoderm cells derived from three germ layers. The differentiation-inhibitory effect of RA was mimicked by conditioned medium from RA-treated ESCs and was accompanied with up-regulated expression of leukemia inhibitory factor (LIF), Wnt3a, Wnt5a, and Wnt6. Such RA-induced prevention of ESC differentiation was attenuated by a neutralizing antibody against LIF or by a specific Wnt antagonist Fz8-Fc and was totally reversed in the presence of both of them. Furthermore, knock-down of beta-catenin, a component of the Wnt signaling pathway, by small interfering RNA counteracted the effect of RA. In addition, RA treatment enhanced expression of endodermal markers GATA4 and AFP but inhibited expression of primitive ectodermal marker Fgf-5 and mesodermal marker Brachyury. These findings reveal a novel role of RA in ESC self-renewal and provide new insight into the regulatory mechanism of differentiation-dependent self-renewal of ESCs, in which Wnt proteins and LIF induced by RA have the synergistic action. The short-term treatment of ESCs with RA also offers a unique model system for study of the regulatory mechanism that controls self-renewal and specific germ-layer differentiation of ESCs.  相似文献   

5.
6.

Background

REST is abundantly expressed in mouse embryonic stem cells (ESCs). Many genome-wide analyses have found REST to be an integral part of the ESC pluripotency network. However, experimental systems have produced contradictory findings: (1) REST is required for the maintenance of ESC pluripotency and loss of REST causes increased expression of differentiation markers, (2) REST is not required for the maintenance of ESC pluripotency and loss of REST does not change expression of differentiation markers, and (3) REST is not required for the maintenance of ESC pluripotency but loss of REST causes decreased expression of differentiation markers. These reports highlight gaps in our knowledge of the ESC network.

Methods

Employing biochemical and genome-wide analyses of various culture conditions and ESC lines, we have attempted to resolve some of the discrepancies in the literature.

Results

We show that Rest+/− and Rest−/− AB-1 mutant ESCs, which did not exhibit a role of REST in ESC pluripotency when cultured in the presence of feeder cells, did show impaired self-renewal when compared with the parental cells under feeder-free culture conditions, but only in early passage cells. In late passage cells, both Rest+/− and Rest−/− AB-1 ESCs restored pluripotency, suggesting a passage and culture condition-dependent response. Genome-wide analysis followed by biochemical validation supported this response and further indicated that the restoration of pluripotency was associated by increased expression of the ESC pluripotency factors. E14Tg2a.4 ESCs with REST-knockdown, which earlier showed a REST-dependent pluripotency when cultured under feeder-free conditions, as well as Rest−/− AB-1 ESCs, showed no REST-dependent pluripotency when cultured in the presence of either feeder cells or laminin, indicating that extracellular matrix components can rescue REST''s role in ESC pluripotency.

Conclusions

REST regulates ESC pluripotency in culture condition- and ESC line-dependent fashion and ESC pluripotency needs to be evaluated in a context dependent manner.  相似文献   

7.
8.
9.
10.
11.
Embryonic stem cell (ESC) pluripotency is orchestrated by distinct signaling pathways that are often targeted to maintain ESC self-renewal or their differentiation to other lineages. We showed earlier that inhibition of PKC signaling maintains pluripotency in mouse ESCs. Therefore, in this study, we investigated the importance of protein kinase C signaling in the context of rat ESC (rESC) pluripotency. Here we show that inhibition of PKC signaling is an efficient strategy to establish and maintain pluripotent rESCs and to facilitate reprogramming of rat embryonic fibroblasts to rat induced pluripotent stem cells. The complete developmental potential of rESCs was confirmed with viable chimeras and germ line transmission. Our molecular analyses indicated that inhibition of a PKCζ-NF-κB-microRNA-21/microRNA-29 regulatory axis contributes to the maintenance of rESC self-renewal. In addition, PKC inhibition maintains ESC-specific epigenetic modifications at the chromatin domains of pluripotency genes and, thereby, maintains their expression. Our results indicate a conserved function of PKC signaling in balancing self-renewal versus differentiation of both mouse and rat ESCs and indicate that targeting PKC signaling might be an efficient strategy to establish ESCs from other mammalian species.  相似文献   

12.
13.
14.
MicroRNAs play important roles in controlling the embryonic stem cell (ESC) state. Although much is known about microRNAs maintaining ESC state, microRNAs that are responsible for promoting ESC differentiation are less reported. Here, by screening 40 microRNAs pre-selected by their expression patterns and predicted targets in Dgcr8-null ESCs, we identify 14 novel differentiation-associated microRNAs. Among them, miR-27a and miR-24, restrained by c-Myc in ESC, exert their roles of silencing self-renewal through directly targeting several important pluripotency-associated factors, such as Oct4, Foxo1 and Smads. CRISPR/Cas9-mediated knockout of all miR-27/24 in ESCs leads to serious deficiency in ESC differentiation in vitro and in vivo. Moreover, depleting of them in mouse embryonic fibroblasts can evidently promote somatic cell reprogramming. Altogether, our findings uncover the essential role of miR-27 and miR-24 in ESC differentiation and also demonstrate novel microRNAs responsible for ESC differentiation.  相似文献   

15.
16.
17.
Embryonic Stem cells (ESCs) can be differentiated into ectoderm, endoderm, and mesoderm derivatives, producing the majority of cell types. In regular culture conditions, ESCs'' self-renewal is maintained through molecules that inhibit spontaneous differentiation enabling long-term cellular expansion. This undifferentiating condition is characterized by multiple metastable states that fluctuate between self-renewal and differentiation balance. Here, we aim to characterize the high-pluripotent ESC metastate marked by the expression of Zscan4 through a supervised machine learning framework based on an ensemble of support vector machine (SVM) classifiers. Our study revealed a leukaemia inhibitor factor (Lif) dependent not-canonical pluripotency signature (AF067063, BC061212, Dub1, Eif1a, Gm12794, Gm13871, Gm4340, Gm4850, Tcstv1/3, and Zfp352), that specifically marks Zscan4 ESCs'' fluctuation. This novel ESC metastate is enhanced by high-pluripotency culture conditions obtained through Extracellular signal Regulated-Kinase (ERK) and Glycogen synthase kinase-3 (Gsk-3) signaling inhibition (2i). Significantly, we reported that the conditional ablation of the novel ESC metastate marked by the expression of Gm12794 is required for ESCs self-renewal maintenance. In conclusion, we extend the comprehension of ESCs biology through the identification of a novel molecular signature associated to pluripotency programming.  相似文献   

18.
Embryonic stem cells (ESCs) are self-renewing pluripotent cells, capable of differentiating into all somatic cell types. The molecular control of self-renewal is relatively well-characterized, whereas how ESCs exit pluripotent state to differentiate is poorly understood. Here we identify two genes are required for differentiation and dozens of intergenic regions that potentially regulate ESC differentiation. We used PiggyBac (PB) transposon-based approach to randomly mutate the genome of ESCs, and generated hundreds of clones that resisted differentiation signals. Each clone was sequenced to determine genomic regions mutated by PB insertion. Intriguingly, many mutations were localized among intergenic regions and we identified two genes are required for differentiation. This study should facilitate further exploration of novel molecular determinants of embryonic stem cell differentiation.  相似文献   

19.
Embryonic stem cells (ESCs) depend on extensive regulatory networks to coordinate their self-renewal and differentiation. The polyamine pathway regulator AMD1 was recently implicated in ESC self-renewal and directed differentiation of ESCs to neural precursor cells (NPCs). The polyamines spermine and spermidine are essential for a wide range of biological processes, and their levels are tightly regulated. Here, we review the polyamine pathway and discuss how it can impact polyamine levels, cellular methylation and hypusinated EIF5A levels. We discuss how it could feed into regulation of ESC self-renewal and directed differentiation. We show that in addition to AMD1, a second rate-limiting enzyme in the polyamine pathway, ODC1, can also promote ESC self-renewal, and that both Amd1 and Odc1 can partially substitute for Myc during cellular reprogramming. We propose that both Amd1 and Odc1 are essential regulators of ESCs and function to ensure high polyamine levels to promote ESC self-renewal.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号