共查询到20条相似文献,搜索用时 15 毫秒
1.
The disulfide bonding pattern in ficolin multimers 总被引:3,自引:0,他引:3
Ficolin is a plasma lectin, consisting of a short N-terminal multimerization domain, a middle collagen domain, and a C-terminal fibrinogen-like domain. The collagen domains assemble the subunits into trimers, and the N-terminal domain assembles four trimers into 12-mers. Two cysteine residues in the N-terminal domain are thought to mediate multimerization by disulfide bonding. We have generated three mutants of ficolin alpha in which the N-terminal cysteines were substituted by serines (Cys4, Cys24, and Cys4/Cys24). The N-terminal cysteine mutants were produced in a mammalian cell expression system, purified by affinity chromatography, and analyzed under nondenaturing conditions to resolve the multimer structure of the native protein and under denaturing conditions to resolve the disulfide-linked structure. Glycerol gradient sedimentation and electron microscopy in nondenaturing conditions showed that plasma and recombinant wild-type protein formed 12-mers. The Cys4 mutant also formed 12-mers, but Cys24 and Cys4/Cys24 mutants formed only trimers. This means that protein interfaces containing Cys4 are stable as noncovalent protein-protein interactions and do not require disulfides, whereas those containing Cys24-Cys24 require the disulfides for stability. Proteins were also analyzed by nonreducing SDS-PAGE to show the covalent structure under denaturing conditions. Wild-type ficolin was covalently linked into 12-mers, whereas elimination of either Cys4 or Cys24 gave dimers and monomers. We present a model in which symmetric Cys24-Cys24 disulfide bonds between trimers are the basis for multimerization. The model may also be relevant to collectin multimers. 相似文献
2.
C van Kraaij E Breukink H S Rollema R S Bongers H A Kosters B de Kruijff O P Kuipers 《European journal of biochemistry》2000,267(3):901-909
The antimicrobial peptide nisin contains the uncommon amino acid residues lanthionine and methyl-lanthionine, which are post-translationally formed from Ser, Thr and Cys residues. To investigate the importance of these uncommon residues for nisin activity, a mutant was designed in which Thr13 was replaced by a Cys residue, which prevents the formation of the thioether bond of ring C. Instead, Cys13 couples with Cys19 via an intramolecular disulfide bridge, a bond that is very unusual in lantibiotics. NMR analysis of this mutant showed a structure very similar to that of wild-type nisin, except for the configuration of ring C. The modification was accompanied by a dramatic reduction in antimicrobial activity to less than 1% of wild-type activity, indicating that the lanthionine of ring C is very important for this activity. The nisin Z mutants S5C and M17C were also isolated and characterized; they are the first lantibiotics known that contain an additional Cys residue that is not involved in bridge formation but is present as a free thiol. Secretion of these peptides by the lactococcal producer cells, as well as their antimicrobial activity, was found to be strongly dependent on a reducing environment. Their ability to permeabilize lipid vesicles was not thiol-dependent. Labeling of M17C nisin Z with iodoacetamide abolished the thiol-dependence of the peptide. These results show that the presence of a reactive Cys residue in nisin has a strong effect on the antimicrobial properties of the peptide, which is probably the result of interaction of these residues with thiol groups on the outside of bacterial cells. 相似文献
3.
The multisubunit structure of synaptophysin. Relationship between disulfide bonding and homo-oligomerization 总被引:9,自引:0,他引:9
Synaptophysin, a major membrane protein of synaptic vesicles, contains four transmembrane regions and two intravesicular loops. Synaptophysin monomers associate into homopolymers that have the potential to form channels in the synaptic vesicle membrane. Here we show that in native synaptophysin, homopolymers are linked by noncovalent forces. The molecule contains unstable intramolecular disulfide bonds that undergo disulfide exchange during solubilization, thereby covalently cross-linking neighboring synaptophysin molecules. The locations of the intramolecular disulfide bonds in synaptophysin were determined, revealing that each of the two intravesicular loops of synaptophysin is circularized by a single disulfide bond. Cross-linking of synaptophysin by disulfide bonds can be triggered in synaptic vesicles and in intact cells by a cycle of reduction and oxidation, suggesting that native synaptophysin is a homomultimer in situ. In addition, chemical cross-linking of native synaptophysin demonstrates that a low molecular weight protein is specifically associated with synaptophysin complexes and is lost upon reduction of the intramolecular disulfide bonds. These data suggest that native synaptophysin forms a noncovalent homomultimeric complex whose structure and interaction with other proteins are dependent on the integrity of its intramolecular disulfide bonds and phospholipid environment. 相似文献
4.
The human growth hormone receptor. Secretion from Escherichia coli and disulfide bonding pattern of the extracellular binding domain 总被引:11,自引:0,他引:11
G Fuh M G Mulkerrin S Bass N McFarland M Brochier J H Bourell D R Light J A Wells 《The Journal of biological chemistry》1990,265(6):3111-3115
A gene fragment encoding the extracellular domain of the human growth hormone (hGH) receptor from liver was cloned into a plasmid under control of the Escherichia coli alkaline phosphatase promoter and the heat-stable enterotoxin (StII) signal peptide sequence. Strains of E. coli expressing properly folded hGH binding protein were identified by blotting colonies with 125I-hGH. The E. coli strain capable of highest expression (KS330) secreted 10 to 20 mg/liter of culture of properly processed and folded hGH receptor fragment into the periplasmic space. The protein was purified to near homogeneity in 70 to 80% yield (in tens of milligram amounts) using ammonium sulfate precipitation, hGH affinity chromatography, and gel filtration. The unglycosylated extracellular domain of the hGH receptor has virtually identical binding properties compared to its natural glycosylated counterpart isolated from human serum, suggesting glycosylation is not important for binding of hGH. The extracellular binding domain codes for 7 cysteines, and we show that six of them form three disulfide bonds. Peptide mapping studies show these disulfides are paired sequentially to produce short loops (10-15 residues long) as follows: Cys38-Cys48, Cys83-Cys94, and Cys108-Cys122. Cys241 is unpaired, and mutagenic analysis shows that the extreme carboxyl end of the receptor fragment (including Cys241) is not essential for folding or binding of the protein to hGH. High level expression of this receptor binding domain and its homologs in E. coli will greatly facilitate their detailed biophysical and structural analysis. 相似文献
5.
Chemical synthesis of La1 isolated from the venom of the scorpion Liocheles australasiae and determination of its disulfide bonding pattern 下载免费PDF全文
Junya Nagao Masahiro Miyashita Yoshiaki Nakagawa Hisashi Miyagawa 《Journal of peptide science》2015,21(8):636-643
La1 is a 73‐residue cysteine‐rich peptide isolated from the scorpion Liocheles australasiae venom. Although La1 is the most abundant peptide in the venom, its biological function remains unknown. Here, we describe a method for efficient chemical synthesis of La1 using the native chemical ligation (NCL) strategy, in which three peptide components of less than 40 residues were sequentially ligated. The peptide thioester necessary for NCL was synthesized using an aromatic N‐acylurea approach with Fmoc‐SPPS. After completion of sequential NCL, disulfide bond formation was carried out using a dialysis method, in which the linear peptide dissolved in an acidic solution was dialyzed against a slightly alkaline buffer to obtain correctly folded La1. Next, we determined the disulfide bonding pattern of La1. Enzymatic and chemical digests of La1 without reduction of disulfide bonds were analyzed by liquid chromatography/mass spectrometry (LC/MS), which revealed two of four disulfide bond linkages. The remaining two linkages were assigned based on MS/MS analysis of a peptide fragment containing two disulfide bonds. Consequently, the disulfide bonding pattern of La1 was found to be similar to that of a von Willebrand factor type C (VWC) domain. To our knowledge, this is the first report of the experimental determination of the disulfide bonding pattern of peptides having a single VWC domain as well as their chemical synthesis. La1 synthesized in this study will be useful for investigation of its biological role in the venom. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
6.
The free thiols of platelet thrombospondin (TSP) were derivatized with labeled N-ethylmaleimide (NEM) or iodoacetamide (IAM). When Ca2+ was chelated with EDTA, 2.9 mol of NEM or 2.6 mol of IAM reacted/mol of native TSP. No additional thiols were found after denaturation with urea. Since TSP has three apparently identical polypeptide chains, this suggests one free thiol/polypeptide chain. Ca2+ protected all of the thiols from reaction with IAM. In Ca2+ about half the thiols reacted normally with NEM and the others were unreactive, indicating that the thiols of TSP are not identical. The number of reactive thiols as a function of [Ca2+] revealed a sigmoidal curve with a transition midpoint of 207 microM. The ability of analogs of NEM to compete for derivatization of the thiols with labeled NEM was greater with larger, more hydrophobic agents. Gel electrophoretic separation of labeled TSP that had been partially digested with thrombin and trypsin indicated that some of the label was in the C-terminal tryptic fragment but that most was in the adjacent trypsin-sensitive region. After cyanogen bromide cleavage of the labeled and reduced protein, four labeled fractions were obtained from a gel filtration column. With subsequent combinations of tryptic digestion and reversed-phase high performance liquid chromatography, labeled peptides were purified from these four fractions, and the amino acid sequences were determined. Twelve labeled cysteines were identified, each with a specific radioactivity less than that of the thiol labeling reagent, indicating that only a fraction of that cysteine in a population of TSP molecules was a free thiol at the time of derivatization. While 2 labeled cysteines are in the non-repeating C-terminal portion of the molecule, the other 10 labeled cysteines are in the adjacent trypsin-sensitive type 3 repeats proposed (Lawler, J., and Hynes, R. O. (1986) J. Cell. Biol. 103, 1635-1648) as the calcium-binding region of the molecule. The disulfide bonds most sensitive to reduction by dithioerythritol were also stabilized by Ca2+, implying location in the Ca2(+)-sensitive part of the molecule. It is proposed that one equivalent of free thiol/polypeptide chain is distributed among 12 different cysteine residues through an intramolecular thioldisulfide isomerization. 相似文献
7.
8.
Prochymosin contains three disulfide bonds linking Cys45 to Cys50, Cys206 to Cys210, and Cys250 to Cys283. To analyze the disulfide bonding pattern between domain sequences in the recombinant prochymosin molecule solubilized from inclusion bodies by 8 M urea (designated as solubilized prochymosin), a simple peptide mapping method was established. This process consists of thiol alkylation, cleavage with cyanogen bromide, diagonal electrophoresis on polyacrylamide gel, and N-terminal sequencing. By using this procedure it was found that Cys45 and Cys50 located in the N-terminal domain are not mispaired with the cysteine residues, located in the C-terminal domain, in the solubilized wild-type prochymosin and its mutants. This result implies that Cys45 and Cys50, the partners of a native disulfide, are restricted in some ordered structures existing in inclusion bodies and remaining after solubilization. These native structural elements act as folding nuclei to initiate and facilitate correct refolding. The strategy of preserving the native-like structures including native disulfide in the solubilized inclusion bodies to enhance renaturation efficiency may be applicable to other recombinant proteins.Both authors contributed equally to this work 相似文献
9.
Thermophilic organisms flourish in varied high-temperature environmental niches that are deadly to other organisms. Recently, genomic evidence has implicated a critical role for disulfide bonds in the structural stabilization of intracellular proteins from certain of these organisms, contrary to the conventional view that structural disulfide bonds are exclusively extracellular. Here both computational and structural data are presented to explore the occurrence of disulfide bonds as a protein-stabilization method across many thermophilic prokaryotes. Based on computational studies, disulfide-bond richness is found to be widespread, with thermophiles containing the highest levels. Interestingly, only a distinct subset of thermophiles exhibit this property. A computational search for proteins matching this target phylogenetic profile singles out a specific protein, known as protein disulfide oxidoreductase, as a potential key player in thermophilic intracellular disulfide-bond formation. Finally, biochemical support in the form of a new crystal structure of a thermophilic protein with three disulfide bonds is presented together with a survey of known structures from the literature. Together, the results provide insight into biochemical specialization and the diversity of methods employed by organisms to stabilize their proteins in exotic environments. The findings also motivate continued efforts to sequence genomes from divergent organisms. 相似文献
10.
NMR determination of the global structure of the 113Cd derivative of desulforedoxin: investigation of the hydrogen bonding pattern at the metal center. 下载免费PDF全文
B. J. Goodfellow F. Rusnak I. Moura T. Domke J. J. Moura 《Protein science : a publication of the Protein Society》1998,7(4):928-937
Desulforedoxin (Dx) is a simple homodimeric protein isolated from Desulfovibrio gigas (Dg) containing a distorted rubredoxin-like center with one iron coordinated by four cysteinyl residues (7.9 kDa with 36 amino acids per monomer). In order to probe the geometry and the H-bonding at the active site of Dx, the protein was reconstituted with 113Cd and the solution structure determined using 2D NMR methods. The structure of this derivative was initially compared with the NMR solution structure of the Zn form (Goodfellow BJ et al., 1996, J Biol Inorg Chem 1:341-353). Backbone amide protons for G4, D5, G13, L11 NH, and the Q14 NH side-chain protons, H-bonded in the X-ray structure, were readily exchanged with solvent. Chemical shift differences observed for amide protons near the metal center confirm the H-bonding pattern seen in the X-ray model (Archer M et al., 1995, J Mol Biol 251:690-702) and also suggest that H-bond lengths may vary between the Fe, Zn, and 113Cd forms. The H-bonding pattern was further probed using a heteronuclear spin echo difference (HSED) experiment; the results confirm the presence of NH-S H-bonds inferred from D2O exchange data and observed in the NMR family of structures. The presence of "H-bond mediated" coupling in Dx indicates that the NH-S H-bonds at the metal center have significant covalent character. The HSED experiment also identified an intermonomer "through space" coupling for one of the L26 methyl groups, indicating its proximity to the 113Cd center in the opposing monomer. This is the first example of an intermonomer "through space" coupling. Initial structure calculations produced subsets of NMR families with the S of C28 pointing away from or toward the L26 methyl: only the subset with the C28 sulfur pointing toward the L26 methyl could result in a "through space" coupling. The HSED result was therefore included in the structure calculations. Comparison of the Fe, Zn, and 113Cd forms of Dx suggests that the geometry of the metal center and the global fold of the protein does not vary to any great extent, although the H-bond network varies slightly when Cd is introduced. The similarity between the H-bonding pattern seen at the metal center in Dx, Rd (including H-bonded and through space-mediated coupling), and many zinc-finger proteins suggests that these H-bonds are structurally vital for stabilization of the metal centers in these proteins. 相似文献
11.
二硫键与蛋白质的结构 总被引:3,自引:0,他引:3
二硫键是肽链上2个半胱氨酸残基的巯基基团发生氧化反应形成的共价键.具有链内二硫键和链间二硫键2种形式。与氨基酸的氨基氮原子之间形成的稳定共价键不同.二硫键容易被还原而断裂,断裂后可再次氧化重新形成二硫键,因而是可以动态变化的化学键。二硫键是参与一级结构也是形成高级结构的重要化学键,对蛋白质折叠和高级结构的形成与维持十分重要。讨论了二硫键的形成和特征及其与蛋白质结构和功能之间的关系,并讨论了生物学教学中关于二硫键的一些疑问. 相似文献
12.
Tong Xie Linda Yu Martin W Bader James C A Bardwell Chang-An Yu 《The Journal of biological chemistry》2002,277(3):1649-1652
Disulfide bond (Dsb) formation is catalyzed in the periplasm of prokaryotes by the Dsb proteins. DsbB, a key enzyme in this process, generates disulfides de novo by using the oxidizing power of quinones. To explore the mechanism of this newly described enzymatic activity, we decided to study the ubiquinone-protein interaction and identify the ubiquinone-binding domain in DsbB by cross-linking to photoactivatable quinone analogues. When purified Escherichia coli DsbB was incubated with an azidoubiquinone derivative, 3-azido-2-methyl-5-[(3)H]methoxy-6-decyl-1,4-benzoquinone ([(3)H]azido-Q), and illuminated with long wavelength UV light, the decrease in enzymatic activity correlated with the amount of 3-azido-2-methyl-5-methoxy-6-decyl-1,4-benzoquinone (azido-Q) incorporated into the protein. One azido-Q-linked peptide with a retention time of 33.5 min was obtained by high performance liquid chromatography of the V8 digest of [(3)H]azido-Q-labeled DsbB. This peptide has a partial NH(2)-terminal amino acid sequence of NH(2)-HTMLQLY corresponding to residues 91-97. This sequence occurs in the second periplasmic domain of the inner membrane protein DsbB in a loop connecting transmembrane helices 3 and 4. We propose that the quinone-binding site is within or very near to this sequence. 相似文献
13.
Enhancement of stability of immobilized glucose oxidase by modification of free thiols generated by reducing disulfide bonds and using additives 总被引:1,自引:0,他引:1
Stability of glucose oxidase (GOD) immobilized with lysozyme has been considerably enhanced by modification of free thiols generated by reducing disulfide bonds using beta-mercaptoethanol and N-ethylmaleimide in conjunction with additives like antibiotics and salts. Thermal stability of immobilized GOD was quantified by means of the transition temperature, Tm and the operational stability by half-life t1/2 at 70 degrees C. Modification of the free thiols in the enzyme coupled with the presence of kanamycin, NaCl, and K2SO4, led to increase in Tm, to 80, 82 and 84 degrees C (compared to 75 degrees C in control) and t1/2 by 7.7-, 11- and 22-fold, respectively, indicating that this method can be effectively used for enhancing the stability of enzymes. 相似文献
14.
15.
Flavoridin and echistatin, isolated from the venom of Trimeresurus flavoviridis and Echis carinatus, respectively, belong to the disintegrin family of integrin beta 1 and beta 3 inhibitors of low molecular weight RGD-containing, cysteine-rich peptides. Since disulfide bonds are critical for expression of biological activity, we sought to determine their location in these two proteins. In flavoridin, direct evidence for the existence of linkage between Cys4-Cys19 and between Cys45 and Cys64 was obtained by analysis of proteolytic products, and indirect evidence suggests links between Cys6-Cys14 and Cys13-Cys36. In echistatin, links between Cys8-Cys37 and Cys20-Cys39 were identified by direct chemical analysis. 相似文献
16.
Hirudin, the thrombin-specific inhibitor from the leech Hirudo medicinalis, is a single-chain polypeptide (65 amino-acid residues) linked by three disulfide bridges. Localization of the three disulfide bonds could be assigned on the basis of the structures of cystine peptides derived by high performance liquid chromatography separations of thermolysinolytic digest of native hirudin. By characterization of the nine major fragments by amino-acid analysis, N-terminal amino-acid determination and sequence analysis, the following disulfide linkages were identified: Cys6-Cys14, Cys16-Cys28 and Cys22-Cys39. Due to the lack of any closer sequence homology and topological structural homology to other serine proteinase inhibitor proteins, hirudin seems to be unique in its primary structure and hence designates an unknown inhibitor family. 相似文献
17.
18.
19.
EDTA-containing buffer solubilizes thymus leukemia antigens (TLa) from crude thymocyte membrane fractions. The TL antigens consist mainly of molecules of a size similar to immunoglobulin G when gel chromatography analyses were performed under physiological conditions. A single component of TLa was apparent on sucrose density gradient ultracentrifugation of solubilized thymocyte membrane macromolecules as monitored by indirect immunoprecipitation. The sedimentation constant for the TL antigens (5.8 S) was considerably less than that for immunoglobulin G. The gel chromatography and ultracentrifugation data suggest an apparent molecular weight for TLa of about 120000. TLa isolated by indirect immunoprecipitation is composed of two types of polypeptide chains. The smaller subunit was identified as beta2-microglobulin. The larger polypeptide chain carried the alloantigenic determinants and displayed a molecular weight of about 50000 after reduction and alkylation. TLa subjected to molecular weight determination under denaturing conditions was composed of two components. The smaller component was beta2-microglobulin which evidently is linked to the larger polypeptide chain by noncovalent interactions only. The larger component had a size greater than reduced and alkylated immunoglobulin G heavy chains. Upon reduction and alkylation of the latter component its size was reduced and it appeared to have a molecular weight of about 50000. Consequently, TLa is composed of two disulfide linked heavy polypeptide chains and two beta2-microglobulin molecules. TLa solubilized by papain digestion comprises two polypeptide chains, one of which is beta2-microglobulin. The larger 37000-dalton subunit is a fragment of the heavy polypeptide chain. This was demonstrated by digesting solubilized 120000-dalton TLa with papain. The proteolytic fragments obtained were indistinguishable from those directly released from the cell surface by proteolysis. The papain-derived TLa fragment exhibited most if not all the alloantigenic determinants. 相似文献
20.
Merewether LA Le J Jones MD Lee R Shimamoto G Lu HS 《Archives of biochemistry and biophysics》2000,375(1):101-110
Recombinant human osteoprotegerin chimera is a 90-kDa protein containing a human IgG Fc domain fused to human osteoprotegerin. The molecule is a dimer linked by two intermolecular disulfide bonds and contains eleven intramolecular disulfide bonds per monomer. A cysteine-rich region in osteoprotegerin contains nine disulfide bridges homologous to the cysteine-rich signature structure of the tumor necrosis factor receptor/nerve growth factor receptor superfamily. In this report, we have developed peptide mapping procedures suitable to generate disulfide-containing peptides for disulfide structure assignment of the fusion molecule. The methods employed included proteolytic digestion using endoproteinases Glu-C and Lys-C in combination followed by LC-MS analyses. Disulfide linkages of peptide fragments containing a single disulfide bond were assigned by sequence analysis via detection of (phenylthiohydantoinyl) cystine and/or by MS analysis. Disulfide bonds of a large, core fragment containing three peptide sequences linked by four disulfides were assigned after generation of smaller disulfide-linked peptides by a secondary thermolysin digestion. Disulfide structures of peptide fragments containing two disulfide bonds were assigned using matrix-assisted laser desorption ionization mass spectrometry with postsource decay. Both the inter- and intramolecular disulfide linkages of the chimeric dimer were confirmed. 相似文献