首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fibrillins are the major constituents of extracellular microfibrils. How fibrillin molecules assemble into microfibrils is not known. Sequential extractions and pulse-chase labeling of organ cultures of embryonic chick aortae revealed rapid formation of disulfide-cross-linked aggregates containing fibrillin-1. These results demonstrated that intermolecular disulfide bond formation is an initial step in the assembly process. To identify free cysteine residues available for intermolecular cross-linking, small recombinant peptides of fibrillin-1 harboring candidate cysteine residues were analyzed. Results revealed that the first four cysteine residues in the unique N terminus form intramolecular disulfide bonds. One cysteine residue (Cys(204)) in the first hybrid domain of fibrillin-1 was found to occur as a free thiol and is therefore a good candidate for intermolecular disulfide bonding in initial steps of the assembly process. Furthermore, evidence indicated that the comparable cysteine residue in fibrillin-2 (Cys(233)) also occurs as a free thiol. These free cysteine residues in fibrillins are readily available for intermolecular disulfide bond formation, as determined by reaction with Ellman's reagent. In addition to these major results, the cleavage site of the fibrillin-1 signal peptide and the N-terminal sequence of monomeric authentic fibrillin-1 from conditioned fibroblast medium were determined.  相似文献   

2.
The reversible thiol/disulfide exchange is an important regulatory mechanism of protein enzymatic activity. Many protein enzymes are susceptible to S-thiolation induced by reactive oxygen species (ROS); and the glutathione (GSH) and free amino acid cysteine (Cys) are critical cellular thiol anti-oxidants, protecting proteins from irreversible oxidative damage. In this study, we found that aldo–keto reductase family 1 member B10 (AKR1B10) contains 4 Cys residues, i.e., Cys45, Cys187, Cys200, and Cys299. Exposing AKR1B10 to ROS mixtures resulted in significant decrease of its free sulfhydryl groups, up to 40–50% in the presence of physiological thiol cysteine at 0.5 or 1.0 mM; and accordingly, AKR1B10 enzymatic activity was reversibly decreased, in parallel with the oxidation of the sulfhydryl groups. ROS-induced thiolation also affected the sensitivity of AKR1B10 to inhibitors EBPC, epalrestat, and statil. Together our results showed for the first time that AKR1B10's enzymatic activity and inhibitor sensitivity are modulated by thiol/disulfide exchanges.  相似文献   

3.
Very little is known about the character or functional relevance of hydrogen-bonded cysteine sulfhydryl (S-H) groups in proteins. The Raman S-H band is a unique and sensitive probe of the local S-H environment. Here, we report the use of Raman spectroscopy combined with site-specific mutagenesis to document the existence of five distinguishable hydrogen-bonded states of buried cysteine sulfhydryl groups in a native protein. The 666 residue subunit of the Salmonella typhimurium bacteriophage P22 tailspike contains eight cysteine residues distributed through the elongated structure. The tailspike cysteine residues display an unusual Raman S-H band complex (2500-2600 cm(-1) interval) indicative of diverse S-H hydrogen-bonding interactions in the native trimeric structure. To resolve specific Cys contributions to the complex Raman band we characterized a set of tailspike proteins with each cysteine replaced by a serine. The mutant proteins, once folded, were structurally and functionally indistinguishable from wild-type tailspikes, except for their Raman S-H signatures. Comparison of the Raman spectra of the mutant and wild-type proteins reveals the following hydrogen-bond classes for cysteine sulfhydryl groups. (i) Cys613 forms the strongest S-H...X bond of the tailspike, stronger than any heretofore observed for a protein. (ii) Cys267, Cys287 and Cys458 form robust S-H...X bonds. (iii) Moderate S-H...X bonding occurs for Cys169 and Cys635. (iv) Cys290 and Cys496 form weak hydrogen bonds. (v) It is remarkable that Cys287 contributes two Raman S-H markers, indicating the population of two distinct hydrogen-bonding states. The sum of the S-H Raman signatures of all eight mutants accurately reproduces the composite Raman band of the wild-type tailspike. The diverse cysteine states may be an outcome of the folding and assembly pathway of the tailspike, which though lacking disulfide bonds in the native state, utilizes transient disulfide bonds in the maturation pathway. This Raman study represents the first detailed assessment of local S-H hydrogen bonding in a native protein and provides information not obtainable directly by other structural probes. The method employed here should be applicable to a wide range of cysteine-containing proteins.  相似文献   

4.
The nucleocapsid, or core particle, of hepatitis B virus is formed by 180 subunits of the core protein, which contains Cys at positions 48, 61, 107 and 183, the latter constituting the C terminus. Upon adventitious oxidation, some or all of these cysteine residues participate in the formation of disulphide bridges, leading to polymerization of the subunits within the particle. To utilize the cysteine residues as topological probes, we reduced the number of possible intersubunit crosslinks by replacing these residues individually, or in all combinations, by serine. A corresponding set of variants was constructed within the context of an assembly-competent core protein variant that lacks the highly basic C-terminal region. Analysis, by polyacrylamide gel electrophoresis under non-reducing conditions, of the oxidative crosslinking products formed by the wild-type and mutant proteins expressed in Escherichia coli, revealed a clear distinction between the three N-proximal, and the C-terminal Cys: N-proximal Cys formed intermolecular disulphide bonds only with other N-proximal cysteine residues, leading to dimerization. Cys48 and Cys61, in contrast to Cys107, could be crosslinked to the homologous cysteine residues in a second subunit, and are therefore located at the dimer interface. Cys 183 predominantly formed disulphide bonds with Cys183 in subunits other than those crosslinked by the N-proximal cysteine residues. Hence, the polymers generated by oxidation of the wild-type protein are S-S-linked dimeric N-terminal domains interconnected via Cys183/Cys183 disulphide bonds. The intermolecular crosslinks between the N-proximal cysteine residues were apparently the same in the C-terminally truncated and in the full-length proteins, corroborating the model in which the N-terminal domain and the C terminus of the HBV core protein form two distinct and structurally independent entities. The strong tendency of the N-terminal domain for dimeric interactions suggests that core protein dimers are the major intermediates in hepatitis B virus nucleocapsid assembly.  相似文献   

5.
Combinatorial approach to hepadnavirus-like particle vaccine design   总被引:3,自引:0,他引:3       下载免费PDF全文
The particulate hepatitis core protein (HBcAg) represents an efficient carrier platform with many of the characteristics uniquely required for the delivery of weak immunogens to the immune system. Although the HBcAg is highly immunogenic, the existing HBcAg-based platform technology has a number of theoretical and practical limitations, most notably the "preexisting immunity" and "assembly" problems. To address the assembly problem, we have developed the core protein from the woodchuck hepadnavirus (WHcAg) as a new particulate carrier platform system. WHcAg appears to tolerate insertions of foreign epitopes at a greater number of positions than HBcAg. For example, both within the external loop region and outside the loop region a total of 17 insertion sites were identified on WHcAg. Importantly, the identification of an expanded number of insertion sites was dependent on additional modifications to the C terminus that appear to stabilize the various internal insertions. Indeed, 21 separate C-terminal modifications have been generated that can be used in combination with the 17 insertion sites to ensure efficient hybrid WHcAg particle assembly. This combinatorial technology is also dependent on the sequence of the heterologous insert. Therefore, the three variables of insert position, C terminus, and epitope sequence are relevant in the design of hybrid WHcAg particles for vaccine purposes.  相似文献   

6.
The hepatitis B virus core protein (HBcAg) is a uniquely immunogenic particulate antigen and as such has been used as a vaccine carrier platform. The use of other hepadnavirus core proteins as vaccine carriers has not been explored. To determine whether the rodent hepadnavirus core proteins derived from the woodchuck (WHcAg), ground squirrel (GScAg), and arctic squirrel (AScAg) viruses possess immunogen characteristics similar to those of HBcAg, comparative antigenicity and immunogenicity studies were performed. The results indicate that (i) the rodent core proteins are equal in immunogenicity to or more immunogenic than HBcAg at the B-cell and T-cell levels; (ii) major histocompatibility complex (MHC) genes influence the immune response to the rodent core proteins (however, nonresponder haplotypes were not identified); (iii) WHcAg can behave as a T-cell-independent antigen in athymic mice; (iv) the rodent core proteins are not significantly cross-reactive with the HBcAg at the antibody level (however, the nonparticulate "eAgs" do appear to be cross-reactive); (v) the rodent core proteins are only partially cross-reactive with HBcAg at the CD4+ T-cell level, depending on MHC haplotype; and (vi) the rodent core proteins are competent to function as vaccine carrier platforms for heterologous, B-cell epitopes. These results have implications for the selection of an optimal hepadnavirus core protein for vaccine design, especially in view of the "preexisting" immunity problem that is inherent in the use of HBcAg for human vaccine development.  相似文献   

7.
Hen ovalbumin contains one cystine disulfide (Cys73-Cys120) and four cysteine sulfhydryl groups (Cys11, Cys30, Cys367, and Cys382) in a single polypeptide chain of 385 amino acid residues. To investigate whether or not such a structure is shared by related avian species, the contents of disulfide-involved half-cystine residues and their positions in the primary structure of ovalbumins from five species were compared with those of hen ovalbumin. Ovalbumins were alkylated with a fluorescent dye, IAEDANS, under disulfide-reduced and disulfide-intact conditions and digested with a number of proteolytic enzymes. The sequences were deduced from peptides containing half-cystine residues labeled with the fluorescent dye. The results showed that the number of free cysteine sulfhydryl groups of ovalbumins was different among the species, three for guinea fowl and turkey (Cys11, Cys367, and Cys382); and two for Pekin duck, mallard duck, and Emden goose (Cys11 and Cys331). On the other hand, a single intrachain disulfide bond could be identified from ovalbumins of five species using a combination of peptide mapping and N-terminal amino acid sequencing analysis under reduced and non-reduced conditions, in which the intrachain disulfide bond was like that of hen ovalbumin (Cys73-Cys120). The results also indicated that the variations in amino acid sequences on these peptides containing half-cystine residues bear a close relationship with the phylogeny of the six species.  相似文献   

8.
Erv2p is a small, dimeric FAD-dependent sulfhydryl oxidase that generates disulfide bonds in the lumen of the endoplasmic reticulum. Mutagenic and structural studies suggest that Erv2p uses an internal thiol-transfer relay between the FAD-proximal active site cysteine pair (Cys121-Cys124) and a second cysteine pair (Cys176-Cys178) located in a flexible, substrate-accessible C-terminal tail of the adjacent dimer subunit. Here, we demonstrate that Cys176 and Cys178 are the only amino acids in the tail region required for disulfide transfer and that their relative positioning within the tail peptide is important for activity. However, intragenic suppressor mutations could be isolated that bypass the requirement for Cys176 and Cys178. These mutants were found to disrupt Erv2p dimerization and to increase the activity of Erv2p for thiol substrates such as glutathione. We propose that the two Erv2p subunits act together to direct the disulfide transfer to specific substrates. One subunit provides the catalytic domain composed of the active site cysteine residues and the FAD cofactor, while the second subunit appears to have two functions: it facilitates disulfide transfer to substrates via the tail cysteine residues, while simultaneously shielding the active site cysteine residues from non-specific reactions.  相似文献   

9.
P Reddy  A Sparvoli  C Fagioli  G Fassina    R Sitia 《The EMBO journal》1996,15(9):2077-2085
Exposed thiols act as intracellular retention elements for unassembled secretory molecules. Yet, some free Ig lambda light chains are secreted despite the presence of an unpaired cysteine (Cys214). This is due largely to the presence of a flanking acidic residue: substitution of Asp213 for Gly or Lys increases pre-Golgi retention and degradation of free lambda. Secretion is restored by exogenous reducing agents or by assembly with heavy chains. In the endoplasmic reticulum (ER), lambda chains form covalent complexes with many proteins through Cys214. These complexes are absent from the Golgi. They are more abundant in transfectants expressing the lambdaGly2I3 and lambdaLys213 mutants that are poorly secreted. Radioactive N-ethylmaleimide labels some monomeric lambda chains isolated from the ER, but not from the Golgi or from the medium, indicating that the Cys214 thiol is masked during ER-Golgi transport. Mass spectrometry reveals the presence of a free cysteine residue disulfide-linked to Cys214. We suggest that thiol-mediated retention involves the formation of reversible disulfide bonds with the protein matrix of the ER. The presence of an acidic residue next to the critical cysteine may allow the masking of the thiol and transport to the Golgi.  相似文献   

10.
Core 2 beta1,6-N-acetylglucosaminyltransferase I (C2GnT-I) plays a pivotal role in the biosynthesis of mucin-type O-glycans that serve as ligands in cell adhesion. To elucidate the three-dimensional structure of the enzyme for use in computer-aided design of therapeutically relevant enzyme inhibitors, we investigated the participation of cysteine residues in disulfide linkages in a purified murine recombinant enzyme. The pattern of free and disulfide-bonded Cys residues was determined by liquid chromatography/electrospray ionization tandem mass spectrometry in the absence and presence of dithiothreitol. Of nine highly conserved Cys residues, under both conditions, one (Cys217) is a free thiol, and eight are engaged in disulfide bonds, with pairs formed between Cys59-Cys413, Cys100-Cys172, Cys151-Cys199, and Cys372-Cys381. The only non-conserved residue within the beta1,6-N-acetylglucosaminyltransferase family, Cys235, is also a free thiol in the presence of dithiothreitol; however, in the absence of reductant, Cys235 forms an intermolecular disulfide linkage. Biochemical studies performed with thiolreactive agents demonstrated that at least one free cysteine affects enzyme activity and is proximal to the UDP-GlcNAc binding site. A Cys217 --> Ser mutant enzyme was insensitive to thiol reactants and displayed kinetic properties virtually identical to those of the wild-type enzyme, thereby showing that Cys217, although not required for activity per se, represents the only thiol that causes enzyme inactivation when modified. Based on the pattern of free and disulfide-linked Cys residues, and a method of fold recognition/threading and homology modeling, we have computed a three-dimensional model for this enzyme that was refined using the T4 bacteriophage beta-glucosyltransferase fold.  相似文献   

11.
Prochymosin contains three disulfide bonds linking Cys45 to Cys50, Cys206 to Cys210, and Cys250 to Cys283. To analyze the disulfide bonding pattern between domain sequences in the recombinant prochymosin molecule solubilized from inclusion bodies by 8 M urea (designated as solubilized prochymosin), a simple peptide mapping method was established. This process consists of thiol alkylation, cleavage with cyanogen bromide, diagonal electrophoresis on polyacrylamide gel, and N-terminal sequencing. By using this procedure it was found that Cys45 and Cys50 located in the N-terminal domain are not mispaired with the cysteine residues, located in the C-terminal domain, in the solubilized wild-type prochymosin and its mutants. This result implies that Cys45 and Cys50, the partners of a native disulfide, are restricted in some ordered structures existing in inclusion bodies and remaining after solubilization. These native structural elements act as folding nuclei to initiate and facilitate correct refolding. The strategy of preserving the native-like structures including native disulfide in the solubilized inclusion bodies to enhance renaturation efficiency may be applicable to other recombinant proteins.Both authors contributed equally to this work  相似文献   

12.
Bacterial glutathione transferases appear to represent an evolutionary link between the thiol:disulfide oxidoreductase and glutathione transferase superfamilies. In particular, the observation of a mixed disulfide in the active site of Proteus mirabilis glutathione transferase B1-1 is a feature that links the two families. This peculiar mixed disulfide between Cys10 and one GSH molecule has been studied by means of ESR spectroscopy, stopped-flow kinetic analysis, radiochemistry, and site-directed mutagenesis. This disulfide can be reduced by dithiothreitol but even a thousand molar excess of GSH is poorly effective due to an unfavorable equilibrium constant of the redox reaction (K(eq) = 2 x 10(-4)). Although Cys10 is partially buried in the crystal structure, in solution it reacts with several thiol reagents at a higher or comparable rate than that shown by the free cysteine. Kinetics of the reaction of Cys10 with 4,4'-dithiodipyridine at variable pH values is consistent with a pK(a) of 8.0 +/- 0.1 for this residue, a value about 1 unit lower than that of the free cysteine. The 4,4'-dithiodipyridine-modified enzyme reacts with GSH in a two-step mechanism involving a fast precomplex formation, followed by a slower chemical step. The natural Cys10-GSH mixed disulfide exchanges rapidly with free [3H]GSH in a futile redox cycle in which the bound GSH is continuously replaced by the external GSH. Our data suggest that the active site of the bacterial enzyme has intermediate properties between those of the recently evolved glutathione transferases and those of the thiol:disulfide oxidoreductase superfamily.  相似文献   

13.
Although the angiogenic proteins acidic fibroblast growth factor (FGF-1) and basic fibroblast growth factor (FGF-2) both interact with the transition metal copper, itself a putative modulator of angiogenesis, a role for copper in FGF function has not been established. Using nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, we detect the complete conversion of recombinant forms of human FGF-1 monomer protein to FGF-1 homodimers after exposure to copper ions. In contrast, not all forms of bovine FGF-1 isolated from bovine brain or a recombinant preparation of human FGF-2 completely formed homodimers after exposure to copper ions under similar conditions. Since the copper-induced FGF-1 homodimers reverted to the monomer form in the presence of dithiothreitol, specific alkylation of cysteine residues by pyridylethylation prevented FGF-1 homodimer formation, and preformed FGF-1 homodimers could not be dissociated by the metal chelator EDTA, FGF-1 dimer formation appeared to result from the formation of intermolecular disulfide bonds by copper-induced oxidation of sulfhydryl residues. FGF-1 homodimers bound with similar apparent affinity as FGF-1 monomers to immobilized copper ions, both eluting at 60 mM imidazole. Both human FGF-1 monomer and dimer forms had a 6-fold higher apparent affinity for immobilized copper ions, as compared with human FGF-2, which eluted in the monomer form at 10 mM imidazole. Further, in contrast to FGF-1 monomers, which dissociate from immobilized heparin in 1.0 M NaCl, preformed FGF-1 homodimers had reduced apparent affinity for immobilized heparin and eluted at 0.4 M NaCl. In contrast, the apparent affinity of human FGF-2 for immobilized heparin was unaffected after exposure to copper ions. Heparin appeared to modulate the formation of copper-induced intermolecular disulfide bonds for FGF-1 but not FGF-2, since co-incubation of heparin and copper with FGF-1 monomers resulted in dimers and other oligomeric complexes. FGF-1 copper-induced homodimers failed to induce mitogenesis in [3H]thymidine incorporation assays, an effect which could be reversed by treatment with dithiothreitol, whereas FGF-2-induced mitogenic activity was relatively unaffected by pretreatment with copper. The differences between human FGF-1 and FGF-2 in protein-copper interactions may be due to differing free thiol content and arrangement between the two proteins. A recombinant human FGF-1 mutant containing the two cysteines conserved throughout the FGF family of proteins but lacking a cysteine residue (Cys 131) present in wild-type human FGF-1 but not human FGF-2 readily formed copper-induced dimers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
A novel strategy combining Edman degradation and thiol modification was developed to assign the three disulfides of huwentoxin-II (HWTX-II), an insecticidal peptide purified from the venom of the spider Selenocosmia huwena. Phenylthiohydantoin (Pth) derivatives of Cys and the elimination product, dehydroalanine (DeltaSer), can be observed in the Cys cycles during Edman degradation of native HWTX-II. The appearance of two products indicates that the disulfides of HWTX-II were split and that the free thiol group of the second half cystine has been generated. Information about the nature of the disulfide bridges of HWTX-II could be obtained from the sequencing signal if the nascent thiols were modified stepwise by 4-vinylpyridine. Using this method the disulfide bridges of HWTX-II were assigned as Cys4-Cys18, Cys8-Cys29 and Cys23-Cys34, which is different from that seen in HWTX-I, a neurotoxic peptide from the same spider. Using this strategy, one can assign the disulfide bonds of small proteins by sequencing and modification n - 1 times, where n is the number of disulfide bonds in the protein. The above assignment of the disulfide bonds of HWTX-II was confirmed by MALDI-TOF MS of tryptic fragments of HWTX-II. Some disulfide interchanging during proteolysis was observed by monitoring the kinetics of proteolysis of HWTX-II by MALDI-TOF MS.  相似文献   

15.
A complex between secretory component and an immunoglobulin A (IgA) myeloma dimer has been studied in vitro as a model to elucidate the mechanism of the formation of disulfide bonds during assembly in vivo of secretory immunoglobin A. A small amount of free thiol groups, totally about 0.4 groups per mole of protein, were shown to be present on both the heavy and light chains of the IgA dimer, but not on its J-chain, while no such groups could be demonstrated on free secretory component. The SH-groups on IgA most likely exist as a result of incomplete oxidation of some intra-or interchain disulfide bonds of the molecule, analogous to what has been suggested for IgG. Several types of evidence indicated that the disulfide bonds between secretory component and IgA are formed after the noncovalent association of the two proteins by a sulfhydryl group-disulfide bond exchange reaction, in which the small amount of free sulfhydryl groups on the IgA dimer initiate the reaction by reducing a reactive disulfide bond on secretory component. This exchange reaction, which thus proceeds by the mechanism of so-called disulfide interchange reactions, requires certain conformational features of one or both of the proteins and leads to the formation of presumably two new interchain disulfide bonds between secretory component and IgA. The reaction does not progress to completion, however, but ends in an equilibrium so that a small proportion of the secretory component molecules always are unattached by disulfide bonds.  相似文献   

16.
Manganese superoxide dismutase (Mn-SOD) has been purified with a high yield (320 mg) from human liver (2 kg) and crystallized. Low-angle laser light scattering of the enzyme has shown that native enzyme is a tetrametic form. Four of the eight cysteine residues in the tetramer reacted with 5,5'-dithiobis(2-nitrobenzoic acid) or with iodoacetamide. The others were only reactive in protein heated with SDS or urea after reduction with dithiothreitol or 2-mercaptoethanol. The reactive sulfhydryl group was found to be located at Cys196 by amino acid sequence analysis of Nbs2-reactive peptides isolated by activated thiol-Sepharose covalent chromatography. Incubation of Mn-SOD in 1% SDS for 2 or 3 days at 25 degrees C or 5 min at 100 degrees C gave material showing two prominent components on polyacrylamide gel electrophoresis in the presence of 0.1% SDS. The major component had a molecular mass of 23 kDa; the other, 25 kDa. Reduction of the protein by dithiothreitol or 2-mercaptoethanol heated in SDS produced only the 25-kDa monomer species. Essentially, no thiol groups were detected in the 23-kDa form, in which two cysteine residues appear to have been oxidized to form an intrasubunit disulfide. This indicates that Cys196 has a reactive sulfhydryl and appears to be a likely candidate for a mixed disulfide formation in vivo.  相似文献   

17.
Sulfhydryl oxidase isolated from bovine skim milk membrane vesicles catalyzes de novo formation of disulfide bonds with the substrates cysteine, cysteine-containing peptides, and reduced proteins using molecular oxygen as the electron acceptor. Initial rates for sulfhydryl oxidase-catalyzed oxidation of reduced ribonuclease exhibited typical Michaelis-Menten kinetics at low substrate concentrations. Substrate inhibition of the oxidative activity was observed at ribonuclease concentrations greater than 40 microM, similar to that observed with reduced glutathione or other small thiol substrates. The inhibition was more pronounced when ribonuclease activity was used to monitor the rates, presumably due to concentration-dependent formation of nonnative disulfide bonds. Thus, a maximum in the rate of regain of ribonuclease activity was observed at a 40 microM concentration, while optimum recovery was observed at 30 microM. The Michaelis constant obtained with reduced ribonuclease is 17.4 microM which corresponds to a sulfhydryl concentration of 0.14 mM, a value that compares favorably with the best small thiol substrate, reduced glutathione. Disulfide-containing intermediates in the oxidation pathway, as determined by ion-exchange chromatography of alkylated reaction mixtures, appeared to be similar for air oxidation and enzyme-catalyzed oxidation of the protein. The pH optimum, tissue location, and kinetic characteristics of sulfhydryl oxidase are compatible with a suggested physiological function of direct catalysis of disulfide bond formation in secretory proteins or indirect participation through provision of oxidized glutathione for protein disulfide-isomerase-catalyzed thiol/disulfide interchange.  相似文献   

18.
The fluorescence signal of the single tryptophan residue (Trp69) of Fusarium solani pisi cutinase is highly quenched. However, prolonged irradiation of the enzyme in the tryptophan absorption band causes an increase of the tryptophan fluorescence quantum yield by an order of magnitude. By using a combination of NMR spectroscopy and chemical detection of free thiol groups with a sulfhydryl reagent we could unambiguously show that the unusual fluorescence behaviour of Trp69 in cutinase is caused by the breaking of the disulfide bond between Cys31 and Cys109 upon irradiation, while the amide-aromatic hydrogen bond between Ala32 and Trp69 remains intact. This is the first example of tryptophan mediated photoreduction of a disulfide bond in proteins.  相似文献   

19.
Human UDP-GlcNAc: Galbeta1-3GalNAc- (GlcNAc to GalNAc) beta1,6-GlcNAc-transferase (C2GnT1) is a member of a group of beta6-GlcNAc-transferases that belongs to CAZy family 14. One of the striking features of these beta6-GlcNAc-transferases is the occurrence of nine completely conserved cysteine residues that are located throughout the catalytic domain. We have expressed the soluble catalytic domain of human C2GnT1 in insect cells, and isolated active enzyme as a secreted protein. beta-Mercaptoethanol (beta-ME) and dithiothreitol (DTT) were found to stimulate the enzyme activity up to 20-fold, indicating a requirement for a reduced sulfhydryl for activity. When the enzyme was subjected to nonreducing PAGE, the migration of the protein was identical to the migration in reducing gels, demonstrating the absence of intermolecular disulfide bonds. This suggested that the monomer is the active form of the enzyme. Sulfhydryl reagents such as 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) and N-ethylmaleimide (NEM) inactivated the enzyme, and the inactivation was partially prevented by prior addition of donor or acceptor substrate and by sulfhydryl reducing agents. We therefore investigated the role of all nine conserved cysteine residues in enzyme stability and activity by site-directed mutagenesis where individual cysteine residues were changed to serine. All of the mutants were expressed as soluble proteins. Seven of the Cys mutants were found to be inactive, while C100S and C217S mutants had 10% and 41% activity, respectively, when compared to the wild-type enzyme. Wild-type and C217S enzymes had similar K(M) and V(max) values for acceptor substrate Galbeta1-3GalNAcalpha-p-nitrophenyl (GGApnp), but the K(M) value for UDP-GlcNAc was higher for C217S than for the wild-type enzyme. In contrast to wild-type enzyme, C217S was not stimulated by reducing agents and was not inhibited by sulfhydryl specific reagents. These results suggest that Cys-217 is a free sulfhydryl in active wild-type enzyme and that Cys-217, although not required for activity, is in or near the active site of the protein. Since seven of the mutations were totally inactive, it is likely that these seven Cys residues play a role in maintaining an active conformation of soluble C2GnT1 by forming disulfide bonds. These bonds are only broken at high concentrations of disulfide reducing agents.  相似文献   

20.
Cysteine residues can complicate the folding and storage of proteins due to improper formation of disulfide bonds or oxidation of residues that are natively reduced. Wild‐type Rop is a homodimeric four‐helix bundle protein and an important model for protein design in the understanding of protein stability, structure and folding kinetics. In the native state, Rop has two buried, reduced cysteine residues in its core, but these are prone to oxidation in destabilized variants, particularly upon extended storage. To circumvent this problem, we designed and characterized a Cys‐free variant of Rop, including solving the 2.3 Å X‐ray crystal structure. We show that the C38A C52V variant has similar structure, stability and in vivo activity to wild‐type Rop, but that it has dramatically faster unfolding kinetics like virtually every other mutant of Rop that has been characterized. This cysteine‐free Rop has already proven useful for studies on solution topology and on the relationship of core mutations to stability. It also suggests a general strategy for removal of pairs of Cys residues in proteins, both to make them more experimentally tractable and to improve their storage properties for therapeutic or industrial purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号