首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
These experiments examine changes in the agonist-induced conductance that occur when the agonist-receptor complex is perturbed. Voltage- clamped Electrophorus electroplaques are exposed to the photoisomerizable agonist trans-Bis-Q. A 1-microsecond laser flash photoisomerizes some trans-Bis-Q molecules bound to receptors; because the cis configuration is not an agonist, receptor channels close within a few hundred microseconds. This effect is called phase 1. We compare (a) the fraction of channels that close during phase 1 with (b) the fraction of trans-Bis-Q molecules that undergo trans leads to cis photoisomerization. Parameter a is measured as the fractional diminution in voltage-clamp currents during phase 1. Parameter b is measured by changes in the optical spectra of Bis-Q solutions caused by flashes. At low flash intensities, a is twice b, which shows that the channel can be closed by photoisomerizing either of two bound agonist molecules. Conventional dose-response studies with trans-Bis-Q also give a Hill coefficient of two. As a partial control for changes in the photochemistry caused by binding of Bis-Q to receptors, spectral measurements are performed on the photoisomerizable agonist QBr, covalently bound to solubilized acetylcholine receptors from Torpedo. The bound and free agonist molecules have the same photoisomerization properties. These results verify the concept that the open state of the acetylcholine receptor channel is much more likely to be associated with the presence of two bound agonist molecules than with a single such molecule.  相似文献   

2.
After disulphide bonds are reduced with dithiothreitol, trans-3- (α-bromomethyl)-3’-[α- (trimethylammonium)methyl]azobenzene (trans-QBr) alkylates a sulfhydryl group on receptors. The membrane conductance induced by this “tethered agonist” shares many properties with that induced by reversible agonists. Equilibrium conductance increases as the membrane potential is made more negative; the voltage sensitivity resembles that seen with 50 [mu]M carbachol. Voltage- jump relaxations follow an exponential time-course; the rate constants are about twice as large as those seen with 50 μM carbachol and have the same voltage and temperature sensitivity. With reversible agonists, the rate of channel opening increases with the frequency of agonist-receptor collisions: with tethered trans-Qbr, this rate depends only on intramolecular events. In comparison to the conductance induced by reversible agonists, the QBr-induced conductance is at least 10-fold less sensitive to competitive blockade by tubocurarine and roughly as sensitive to “open-channel blockade” bu QX-222. Light-flash experiments with tethered QBr resemble those with the reversible photoisomerizable agonist, 3,3’,bis-[α-(trimethylammonium)methyl]azobenzene (Bis-Q): the conductance is increased by cis {arrow} trans photoisomerizations and decreased by trans {arrow} cis photoisomerizations. As with Bis-Q, ligh-flash relaxations have the same rate constant as voltage-jump relaxations. Receptors with tethered trans isomer. By comparing the agonist-induced conductance with the cis/tans ratio, we conclude that each channel’s activation is determined by the configuration of a single tethered QBr molecule. The QBr-induced conductance shows slow decreases (time constant, several hundred milliseconds), which can be partially reversed by flashes. The similarities suggest that the same rate-limiting step governs the opening and closing of channels for both reversible and tethered agonists. Therefore, this step is probably not the initial encounter between agonist and receptor molecules.  相似文献   

3.
In these experiments, agonist-induced conductance is measured while a sudden perturbation is produced at the agonist-receptor binding site. A voltage-clamped Electrophorus electroplaque is exposed to trans-Bis-Q, a potent agonist. Some channels are open; these receptors have bound agonist molecules. A light flash isomerizes 3(-35)% of the trans-Bis-Q molecules to their cis form, a far poorer agonist. This causes a rapid decrease of membrane conductance (phase 1), followed by a slower increase (phase 2). Phase 1 has the amplitude and wavelength dependence expected if the channel closes within 100 mus after a single bound trans-Bis-Q is isomerized, and if the photochemistry of bound Bis-Q resembles that in solution. Therefore, the receptor channel responds rapidly, and with a hundred-fold greater closing rate, after this change in the structure of a bound ligand. Phase 2 (the conductance increase) seems to represent the relaxation back toward equilibrium after phase 1, because (a) phase 2 has the same time constant (1(-5) ms) as a voltage- or concentration-jump relaxation under identical conditions; and (b) phase 2 is smaller if the flash has led to a net decrease in (trans-Bis-Q). Still slower signals follow: phase 3, a decrease of conductance (time constant 5(-10 ms); and phase 4, an equal and opposite increase (several seconds). Phase 3 is abolished by curare and does not depend on the history of the membrane voltage. We consider several mechanisms for phases 3 and 4.  相似文献   

4.
Voltage transients are induced by brief light flashed on bilayer membranes with absorbed 3,3'-bis(alpha-(trimethylammonium)methyl)azobenzene (Bis-Q). The voltages are positive for trans-to-cis photo-isomerization, and negative for cis-to-trans photo-isomerization. The risetimes in phosphatidylethanolamine-decane bilayer membranes indicate that absorbed trans-Bis-Q is photo-isomerized to cis within 2 microseconds, and that cis is photo-isomerized to trans within 15 microseconds.  相似文献   

5.
The expression of tenascin-C on oligodendrocytes parallels the migration of granule cells in the developing cerebellum, indicating a role for tenascin-C as a guide for granule neurons to find their proper locations. In this study, cultured cerebellar granule neurons from tenascin-C-knockout mice were used to examine the role of tenascin-C in agonist-induced muscarinic acetylcholine receptor down-regulation. Exposure of granule cells from wild-type or tenascin-C-negative mice to the muscarinic acetylcholine receptor agonist carbachol (1 mM) resulted in normal sequestration of cell-surface muscarinic acetylcholine receptors as assessed by [3H]N-methylscopolamine binding; however, down-regulation of total muscarinic acetylcholine receptors, measured with [3H]quinuclidinyl benzilate, was inhibited in granule cells from tenascin-C-negative mice. Remarkably, incubation of the tenascin-C-negative cells with the microtubule stabilizer taxol (10 microM) restored down-regulation of total muscarinic acetylcholine receptors to normal levels. We speculate that agonist-induced down-regulation of muscarinic acetylcholine receptors is functionally associated with tenascin-C-regulated microtubule structures in the developing cerebellum.  相似文献   

6.
The mechanisms of carbachol-induced muscarinic acetylcholine receptor (mAChR) down-regulation, and recovery following carbachol withdrawal, were studied in the neuroblastoma x glioma hybrid NG108-15 cell line by specific ligand binding assays. N-[3H]Methylscopolamine ([3H]NMS) and [3H]quinuclidinyl benzilate ([3H]QNB) were used as the ligands for the cell surface and total cellular mAChRs, respectively. Exposure of cells to 1 mM carbachol for 16 h decreased the specific binding of [3H]NMS and [3H]QNB by approximately 80%. Bacitracin (1-4 mg/ml) and methylamine (1-15 mM), inhibitors of transglutaminase and of endocytosis, prevented agonist-induced loss of surface mAChRs. Pretreatment of cells with the antimicrotubular agents nocodazole (0.1-10 microM) and colchicine (1-10 microM) prevented carbachol-induced loss of [3H]QNB binding, but not that of [3H]NMS binding. These results indicate that agonist-induced mAChR down-regulation occurs by endocytosis, followed by microtubular transport of receptors to their intracellular degradation sites. When carbachol was withdrawn from the culture medium following treatment of cells for 16 h, receptors recovered and were incorporated to the surface membrane. This recovery process was antagonized by monovalent ionophores monensin (0.1 microM) and nigericin (40 nM), which interfere with Golgi complex function. Receptor recovery was also prevented by the antimicrotubular agent nocodazole. Thus, recovery of receptors appears to be mediated via Golgi complex and microtubular transport to the surface membrane.  相似文献   

7.
In rat hippocampal slices, carbachol and norepinephrine induce an accumulation of [3H]-inositol-1-phosphate which is markedly amplified in the presence of lithium. The tumor-promoting agents phorbol 12,13-dibutyrate (PDB) and 4 beta phorbol, 12 beta-myristate, 13 alpha-acetate (PMA) have no effect on [3H] inositol-1-phosphate accumulation alone, but when preincubated with hippocampal slices significantly inhibit the accumulation of [3H]-inositol-1-phosphate induced by carbachol and norepinephrine. The IC50 values for PDB and PMA are 0.2 microM and 25 microM respectively. In contrast, the weak tumor promoting agents 4-O-methylphorbol 12 myristate 13 acetate (MPMA) and phorbol 13,20-diacetate (P 13,20 DA) only slightly attenuate the agonist-induced response at concentrations less than or equal to 100 microM, whereas 4 alpha-phorbol (4 alpha-PHR), a biologically inactive phorbol, has no effect. These data suggest that phorbol ester receptor-mediated events may be negatively coupled to agonist-induced phosphatidylinositol hydrolysis.  相似文献   

8.
The effect of long-term treatment with atropine, a muscarinic antagonist, known to cause up-regulation of receptor numbers, was examined on the muscarinic-receptor-mediated stimulation of phosphoinositide breakdown in the rat cerebral cortex and hippocampus. Although the numbers of both M1 muscarinic receptors, as measured by [3H]pirenzepine binding, and M1 and M2 receptors increased in both brain regions, the maximal breakdown of myo-[3H]inositol-labelled phosphoinositides was unaltered in the presence of carbachol at a saturating concentration (10(-2) M). In fact the efficacy of carbachol was decreased in slices from atropine-treated cerebral cortex [EC50 (concentration producing half-maximal effect) = 93 microM] as compared with the saline-treated control (EC50 = 23 microM)(P less than 0.005). Similarly the EC50 value (23 microM) in hippocampal slices from saline-treated rats increased in atropine-treated rats to 126 microM (P less than 0.005). This lowered efficacy of muscarinic stimulation could not be explained in terms of residual atropine in the tissue from treated rats. The noradrenaline- or serotonin (5-hydroxytryptamine)-stimulated breakdown or the K+ potentiation of the muscarinic-receptor-stimulated breakdown of [3H]phosphoinositides was not affected by the atropine treatment. Chromatography of the released [3H]inositol phosphates shows that atropine treatment did not cause any qualitative change in the pattern of [3H]inositol phosphates released by carbachol stimulation.  相似文献   

9.
A H Delcour  G P Hess 《Biochemistry》1986,25(7):1793-1798
A quench-flow technique was used to study the effect of trans- and cis-3,3'-bis[(trimethylammonio)methyl]azobenzene bromide (trans- and cis-Bis-Q), photoisomerizable ligands, on the acetylcholine receptor in vesicles prepared from the electric organ of Electrophorus electricus and of Torpedo californica. In E. electricus, two rate coefficients of the receptor-mediated translocation of 86Rb+ induced with trans-Bis-Q were measured: JA, the rate coefficient for ion flux, and alpha, the rate coefficient for receptor inactivation (desensitization). Both rate coefficients increase with increasing concentrations of Bis-Q up to 50 microM. At higher concentrations JA decreases in a concentration-dependent manner while alpha remains unchanged. This effect was previously observed with suberyldicholine [Pasquale, E. B., Takeyasu, K., Udgaonkar, J., Cash, D.J., Severski, M.C., & Hess, G. P. (1983) Biochemistry 22, 5967-5973] and with acetylcholine [Takeyasu, K., Udgaonkar, J., & Hess, G. P. (1983) Biochemistry 22, 5973-5978] and was analyzed in terms of a minimum mechanism that accounts for the properties of activation, desensitization, and inhibition of the receptor. Two molecules of trans-Bis-Q must be bound for the channel to open, but at concentrations greater than 50 microM the population of open channels decreases because of the additional binding of one molecule of trans-Bis-Q to a regulatory inhibitory site, independent of the activating sites. cis-Bis-Q does not induce transmembrane ion flux, but it does inhibit the response of the receptor to acetylcholine and induces inactivation (desensitization) in the micromolar range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Activation of M3 muscarinic receptors in HT-29 cells by carbachol rapidly increases polyphosphoinositide breakdown. Pretreatment of these cells with carbachol (0.1 mM) for 5 h completely inhibits the subsequent ability of carbachol to increase [3H]inositol monophosphate ([3H]InsP) accumulation, paralleled by a total loss of muscarinic binding sites. In contrast, protein kinase C (PK-C)-mediated desensitization by incubation with phorbol esters [PMA (phorbol 12-myristate 13-acetate)], leading to a time- and dose-dependent inhibition of cholinergically stimulated InsP release (95% inhibition after 4 h with 0.1 microM-PMA), is accompanied by only a 40% decrease in muscarinic receptor binding, which suggests an additional mechanism of negative-feedback control. Neither carbachol nor PMA pretreatment had any effect on receptor affinity. Incubation with carbachol for 15 min caused a small increase of membrane-associated PK-C activity (15% increase, P less than 0.05) as compared with the potency of phorbol esters (PMA) (3-4-fold increase, P less than 0.01). Long-term incubation (4-24 h) with PMA resulted in a complete down-regulation of cytosolic and particulate PK-C activity. Stimulation of InsP release by NaF (20 mM) was not affected after a pretreatment with phorbol esters or carbachol, demonstrating an intact function of G-protein and phospholipase-C (PL-C) at the effector side. Determination of PL-C activity in a liposomal system with [3H]PtdInsP2 as substrate, showed no change in PL-C activity after carbachol (13 h) and short-term PMA (2.5 h) pretreatment, whereas long-term preincubation with phorbol esters (13 h) caused a small but significant decrease in PL-C activity (19%, P less than 0.05). Our results indicate that agonist-induced desensitization of phosphoinositide turnover occurs predominantly at the receptor level, with a rapid loss of muscarinic receptors. Exogenous activation of PK-C by phorbol esters seems to dissociate the interaction between receptor and G-protein/PL-C, without major effects on total cellular PL-C activity.  相似文献   

11.
The photochemical properties of the azobenzene derivative, Bis-Q, were exploited to carry out an agonist concentration jump followed by a molecular rearrangement of bound agonist molecules at acetylcholine (ACh) receptor channels of voltage-clamped rat myoballs. Myoballs were bathed in solutions containing low concentrations of cis-Bis-Q, the inactive isomer. Whole-cell current relaxations were studied following a light flash that produced a concentration jump of agonist, trans-Bis-Q, followed by a second flash that produced net trans----cis photoisomerizations of Bis-Q molecules. The concentration-jump relaxation provided a measure of the mean burst duration for ACh receptor channels occupied by trans-Bis-Q (7.7 ms, 22 degrees C). The second current relaxation was a more rapid conductance decrease (phase 1, tau = 0.8 ms). Phase 1 may represent either the burst duration for receptors initially occupied by a single cis- and a single trans-Bis-Q molecule or that for unliganded receptors. Single-channel current recordings from excised outside-out membrane patches showed that single channels open following an agonist concentration jump comparable to that used in the whole-cell experiments; when many such records were averaged, a synthetic macroscopic relaxation was produced. Individual open channels closed faster following a flash that promoted trans----cis photoisomerizations of the bound ligand, thus confirming the whole-cell observations of phase 1.  相似文献   

12.
M C Sekar  B D Roufogalis 《Life sciences》1984,35(14):1527-1533
The effects of muscarinic and alpha-adrenergic receptor stimulation on phosphoinositide turnover in rat atria have been compared. Despite the similar densities of muscarinic receptors in rat left and right atria, 0.1 mM carbachol increased [32P]phosphate incorporation into phosphatidylinositol (PI) by 35% (p less than 0.05) in left atria but had no effect in right atria. By contrast to the small muscarinic receptor effect, stimulation of alpha 1-adrenergic receptors by 0.1 mM methoxamine produced a more than two fold increase in [32P]phosphate incorporation into PI in both left and right atria, despite the reported smaller density of alpha-adrenergic receptors in rat atria compared to muscarinic receptors. Enhanced phosphate labelling by methoxamine did not occur in phospholipids other than PI, and was blocked by the alpha-adrenergic antagonist, phentolamine (20 microM). The results indicate that the majority of the muscarinic receptors in rat atria are not coupled to phosphoinositide turnover. If indeed the observed enhancement in [32P]-phosphate labelling by carbachol reflects phosphoinositide turnover, and assuming equal coupling efficiencies of muscarinic and adrenergic receptors, it is calculated that not more than 2% of the muscarinic receptors in rat left atria are coupled to this response.  相似文献   

13.
In cultured human 1321N1 astrocytoma cells, muscarinic receptor stimulation leads to phosphoinositide hydrolysis, formation of inositol phosphates, and mobilization of intracellular Ca2+. Treatment of these cells with 1 microM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) completely blocks the carbachol-stimulated formation of [3H]inositol mono-, bis-, and trisphosphate ( [3H]InsP, [3H]InsP2, and [3H]InsP3). The concentrations of PMA that give half-maximal and 100% inhibition of carbachol-induced [3H]InsP formation are 3 nM and 0.5 microM, respectively. Inactive phorbol esters (4 alpha-phorbol 12,13-didecanoate and 4 beta-phorbol), at 1 microM, do not inhibit carbachol-stimulated [3H]InsP formation. The KD of the muscarinic receptor for [3H]N-methyl scopolamine is unchanged by PMA treatment, while the IC50 for carbachol is modestly increased. PMA treatment also abolishes carbachol-induced 45Ca2+ efflux from 1321N1 cells. The concomitant loss of InsP3 formation and Ca2+ mobilization is strong evidence in support of a causal relationship between these two responses. In addition, our finding that PMA blocks hormone-stimulated phosphoinositide turnover suggests that there may be feedback regulation of phosphoinositide metabolism through the Ca2+- and phospholipid-dependent protein kinase.  相似文献   

14.
Receptor-regulated binding of the labeled GTP analog, guanosine 5'-O-(3-thiotriphosphate) ([35S]GTP[S]), to guanine-nucleotide-binding proteins (G-proteins) was studied in porcine atrial membranes enriched in muscarinic acetylcholine (mACh) receptors. Binding of [35S]GTP[S] to the membranes was not or only slightly affected by the cholinergic agonist, carbachol, unless a second nucleotide was simultaneously present in the binding assay. This additional nucleotide requirement was best fulfilled by GDP, being maximally effective at 0.1-1 microM. In contrast, the GDP analog, guanosine 5'-O-(2-thiodiphosphate), could not replace GDP in promoting carbachol-induced increase in [35S]GTP[S] binding. In addition to GDP, agonist-induced stimulation of [35S]GTP[S] binding to porcine atrial membranes required the presence of Mg2+, being half-maximally and maximally effective at about 30 microM and 300 microM, respectively. Addition of NaCl, which decreased control binding measured in the presence of GDP alone, had no effect on the maximal extent of agonist-stimulated binding, but reduced the potency of carbachol in stimulating [35S]GTP[S] binding. Under optimal conditions, carbachol increased the binding of [35S]GTP[S] without apparent lag phase up to about 2.5-fold, with half-maximal and maximal increase being observed at 5-10 microM and 100 microM, respectively. The agonist-induced stimulation was competitively antagonized by the mACh receptor antagonist, atropine. The number of GTP[S] binding sites under receptor control was two--three-fold higher than the number of mACh receptors in the porcine atrial membranes used. Pretreatment of the membranes with pertussis toxin under conditions leading to 95% ADP-ribosylation of the toxin-sensitive G-protein alpha-subunits markedly reduced agonist-stimulated [35S]GTP[S] binding, with, however, about 30% stimulation still remaining. The data presented indicate that agonist-stimulated binding of [35S]GTP[S] to G-proteins can be a sensitive assay for measuring receptor-regulated G-protein activation in native membranes and, furthermore, suggest that one agonist-activated mACh receptor can activate two or three cardiac G-proteins, being mainly members of the pertussis-toxin-sensitive G-proteins.  相似文献   

15.
We have examined some of the characteristics of phorbol ester- and agonist-induced down-regulation of astrocyte receptors coupled to phosphoinositide metabolism. Our results show that preincubation of [3H]inositol-labelled astrocyte cultures with phorbol 12-myristate 13-acetate (PMA) resulted in a time- (t 1/2, 1-2 min) and concentration-dependent (IC50, 1 nM) decrease in the accumulation of [3H]inositol phosphates (IP) evoked by muscarinic receptor stimulation. Much longer (30-40 min) preincubation periods with higher concentrations (IC50, 600 microM) were required to elicit the same effect with the receptor agonist carbachol. Following preincubation, agonist-stimulated [3H]IP accumulation recovered with time; in both cases pretreatment levels of inositol lipid metabolism were attained within 2 days. Both phorbol ester and agonist pretreatments were also effective in reversing the carbachol-evoked mobilisation of 45Ca2+ in these cells. However, their effects on phosphoinositide metabolism were found not to be additive. Although neither pretreatment affected the incorporation of [3H]inositol into phosphoinositides, both resulted in a loss of membrane muscarinic receptors as assessed by [3H]N-methylscopolamine binding. In washed membranes prepared from [3H]inositol-labelled cultures, the guanine nucleotide analogue, guanosine 5'-O-thiotriphosphate (GTP-gamma-S), caused a dose-dependent increase in [3H]IP formation. This response was enhanced when carbachol was also included in the incubation medium, although the agonist alone was without effect. Pretreatment with either PMA or carbachol had no effect on GTP-gamma-S-stimulated [3H]IP accumulation but did reduce the ability of carbachol to augment this response. Similar findings were obtained when membranes were exposed directly to PMA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effects of the cholinergic agonist carbachol on ouabain-sensitive K(+)-activated 4-nitrophenylphosphatase (K(+)-O2NPhPase) activity of rabbit and pig ventricular sarcolemma were examined. Carbachol (0.01-1000 microM) alone had no effect on K(+)-O2NPase. However, in the presence of GTP (100 microM) or its analog guanosine 5'-[gamma-thio]triphosphate (GTP[S], 1 microM) the agonist reduced this enzymatic activity (IC50 = 0.3 microM) by about 45% in a concentration-dependent manner. The GTP[S]-dependent effect of carbachol was blocked by 10 microM atropine, an antagonist of muscarinic acetylcholine receptor (mAcChoR). In the presence of micromolar concentrations of ATP or the GDP analog guanosine 5'-[beta-thio]diphosphate, carbachol did not change sarcolemmal K(+)-O2NPhPase activity. GTP[S] alone reduced this activity (IC50 = 2 microM) by about 40% in a concentration-dependent manner with a lag period of about 3 min. This lag disappeared in the presence of carbachol. Treatment of sarcolemmal membranes with 20 micrograms/ml pertussis toxin, which catalyzed ADP-ribosylation of the 40-41-kDa alpha-subunits of inhibitory GTP-binding protein (Gi), abolished the GTP[S]-promoted inhibitory effect of carbachol. Immunochemically, these alpha-subunits were identified as alpha 12- and alpha i3-subunits. It is suggested that the carbachol-induced inhibition of ouabain-sensitive K(+)-O2NPhPase activity of mammalian myocardial sarcolemma is a result of a negative coupling between mAcChoR and Na+/K(+)-ATPase via Gi protein.  相似文献   

17.
Incubation of 1321N1 human astrocytoma cells with carbachol resulted in a rapid loss of binding of [3H]N-methylscopolamine ([3H]NMS) to muscarinic cholinergic receptors measured at 4 degrees C on intact cells; loss of muscarinic receptors in lysates from the same cells measured with [3H]quinuclidinyl benzilate [( 3H]QNB) at 37 degrees C occurred at a slower rate. Upon removal of agonist from the medium, the lost [3H]NMS binding sites measured on intact cells recovered with a t1/2 of approximately 20 min, but only to the level to which [3H]QNB binding sites had been lost; no recovery of "lost" [3H]QNB binding sites occurred over the same period. Based on these data and the arguments of Galper et al. (Galper, J. B., Dziekan, L. C., O'Hara, D. S., and Smith, T. W. (1982) J. Biol. Chem. 257, 10344-10356) regarding the relative hydrophilicity of [3H]NMS versus [3H]QNB, it is proposed that carbachol induces a rapid sequestration of muscarinic receptors that is followed by a loss of these receptors from the cell. These carbachol-induced changes are accompanied by a change in the membrane form of the muscarinic receptor. Although essentially all of the muscarinic receptors from control cells co-purified with the plasma membrane fraction on sucrose density gradients, 20-35% of the muscarinic receptors from cells treated for 30 min with 100 microM carbachol migrated to a much lower sucrose density. This conversion of muscarinic receptors to a "light vesicle" form occurred with a t1/2 approximately 10 min, and reversed with a t1/2 approximately 20 min. In contrast to previous results in this cell line regarding beta-adrenergic receptors (Harden, T. K., Cotton, C. U., Waldo, G. L., Lutton, J. K., and Perkins, J. P. (1980) Science 210, 441-443), agonist binding to muscarinic receptors in the light vesicle fraction obtained from carbachol-treated cells was still regulated by GTP. One interpretation of these data is that agonists induce an internalization of muscarinic receptors with the retention of their functional interaction with a guanine nucleotide regulatory protein.  相似文献   

18.
The inhibitory effect of an adenosine analogue, R-N6-phenylisopropyl adenosine (R-PIA), of the cholinergic agonist carbachol, and of morphine on 3H efflux from [3H]choline-labeled field-stimulated rat hippocampal slices was compared with that produced by two inhibitors of N- and L-type Ca2+ channels, omega-conotoxin (CgTx; conotoxin GVIA) and cadmium chloride. 4-Aminopyridine (4-AP) caused a dose-dependent increase in evoked transmitter release, with a maximal effect (an almost threefold increase) at 100 microM. 4-AP (100 microM) did not affect the actions of CgTx, cadmium chloride, and R-PIA but almost abolished the effect of carbachol and morphine. The present results indicate that presynaptic muscarinic and opiate receptors reduce acetylcholine release by a mechanism that is somewhat different from that used by adenosine A1 receptors. Furthermore, the results indicate that presynaptic A1 receptors on hippocampal cholinergic neurons do not primarily regulate 4-AP-dependent potassium channels, but that they might act directly on a Ca2+ conductance.  相似文献   

19.
The relationship between muscarinic receptor activation of phosphoinositide hydrolysis and the sequestration of cell surface muscarinic receptors has been examined for both intact and digitonin-permeabilized human SK-N-SH neuroblastoma cells. Addition of the aminosteroid 1-[6-[[17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino] hexyl]-1H-pyrrole-2,5-dione (U-73122) to intact cells resulted in the inhibition of oxotremorine-M-stimulated inositol phosphate release and of Ca2+ signaling by greater than 75%. In contrast, when phospholipase C was directly activated by the addition of the calcium ionophore ionomycin, inclusion of U-73122 had little inhibitory effect. Addition of U-73122 to intact cells also inhibited the agonist-induced sequestration of cell surface muscarinic receptors and their subsequent down-regulation with an IC50 value (4.1 microM) similar to that observed for inhibition of inositol phosphate release (3.7 microM). In contrast, when oxotremorine-M-stimulated phosphoinositide hydrolysis was inhibited by depletion of extracellular Ca2+, no reduction in the extent of receptor sequestration was observed. When introduced into digitonin-permeabilized cells, U-73122 more markedly inhibited inositol phosphate release elicited by either oxotremorine-M or guanosine-5'-O-(3-thiotriphosphate) than that induced by added Ca2+. Addition of oxotremorine-M to permeabilized cells resulted in muscarinic receptor sequestration and down-regulation. Both the loss of muscarinic acetylcholine receptors and activation of phosphoinositide hydrolysis in permeabilized cells were inhibited by the inclusion of guanosine-5'-O-(2-thiodiphosphate). The results indicate that the agonist-induced sequestration of muscarinic acetylcholine receptor in SK-N-SH cells requires the involvement of a GTP-binding protein but not the production of phosphoinositide-derived second messenger molecules.  相似文献   

20.
Voltage-jump and light-flash experiments have been performed on isolated Electrophorus electroplaques exposed simultaneously to nicotinic agonists and to the photoisomerizable compound 2,2'-bis-[alpha-(trimethylammonium)methyl]-azobenzene (2BQ). Dose-response curves are shifted to the right in a nearly parallel fashion by 2BQ, which suggests competitive antagonism; dose-ratio analyses show apparent dissociation constants of 0.3 and 1 microM for the cis and trans isomers, respectively. Flash-induced trans----cis concentration jumps produce the expected decrease in agonist-induced conductance; the time constant is several tens of milliseconds. From the concentration dependence of these rates, we conclude that the association and dissociation rate constants for the cis-2BQ-receptor binding are approximately 10(8) M-1 s-1 and 60 s-1 at 20 degrees C; the Q10 is 3. Flash-induced cis----trans photoisomerizations produce molecular rearrangements of the ligand-receptor complex, but the resulting relaxations probably reflect the kinetics of buffered diffusion rather than of the interaction between trans-2BQ and the receptor. Antagonists seem to bind about an order of magnitude more slowly than agonists at nicotinic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号