首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An unusual feature of bacteria in the genus Borrelia (causative agents of Lyme disease and relapsing fever) is a segmented genome consisting of multiple linear DNA molecules with covalently closed hairpin ends, known as telomeres. The hairpin telomeres are generated by a DNA breakage and reunion process (telomere resolution) promoted by ResT, an enzyme using an active site related to that of tyrosine recombinases and type IB topoisomerases. In this study, we define the minimal sequence requirements for a functional telomere and identify specific basepairs that appear to be important for telomere resolution. In addition, we show that the two naturally occurring and distinct telomere spacings found in B. burgdorferi can both be efficiently processed by ResT. This flexibility for substrate utilization by ResT supports the argument for a single telomere resolvase in Borrelia. Furthermore, although telomere recognition requires sequence specificity in part of the substrate, DNA cleavage is instead position dependent and occurs at a fixed distance from the axis of symmetry and the conserved sequence of box 3 in the different replicated telomere substrates. This positional dependence for DNA cleavage has not been observed previously for a tyrosine recombinase.  相似文献   

2.
The ResT telomere resolvase is responsible for maintaining the hairpin telomeres that cap the linear chromosome and minichromosomes of Borrelia burgdorferi. This enzyme acts at the tandem telomere junctions present within circular dimers resulting from DNA replication. ResT mediates the transesterification steps of resolution using a constellation of active site residues similar to that found in tyrosine recombinases and type IB topoisomerases. By combining this reaction mechanism with a hairpin binding module in its N-terminal domain, ResT reduces a fused telomere dimer into two hairpin monomers. ResT displays a split DNA binding specificity, with the N- and C-terminal domains targeting distinct regions of the telomere. This bi-specificity in binding is likely to be important in protein delivery, substrate selection and regulation of enzyme activity.  相似文献   

3.
ResT is the telomere resolvase of the spirochete Borrelia burgdorferi, the causative agent of Lyme disease. ResT is an essential cellular function that processes replication intermediates to produce linear replicons terminated by covalently closed hairpin telomeres. ResT generates these hairpin telomeres in a reaction with mechanistic similarities to those catalyzed by type IB topoisomerases and tyrosine recombinases. We report here, that like most of the tyrosine recombinases, ResT requires interprotomer communication, likely in an in-line synapse, to activate reaction chemistry. Unlike the tyrosine recombinases, however, we infer that the cleavage and strand transfer reactions on the two sides of the replicated telomere occur nearly simultaneously. Nonetheless, the chemical steps of the forward and reverse reactions performed by ResT can occur in a non-concerted fashion (i.e. events on the two sides of the replicated telomere can occur independently). We propose that uncoupling of reaction completion on the two sides of the substrate is facilitated by an early commitment to hairpin formation that is imposed by the precleavage action of the hairpin binding module of the ResT active site.  相似文献   

4.
Spirochetes of the genus Borrelia include the tick-transmitted causative agents of Lyme disease and relapsing fever. They possess unusual genomes composed mainly of linear replicons terminated by closed DNA hairpin telomeres. Hairpin telomeres present an uninterrupted DNA chain to the replication machinery overcoming the ‘end-replication problem’ for the linear replicons. Hairpin telomeres are formed from inverted repeat replicated telomere junctions by the telomere resolvase, ResT. ResT uses a reaction mechanism similar to that of the type IB topoisomerases and tyrosine recombinases. We report here that ResT also possesses single-strand annealing activity and a limited ability to promote DNA strand exchange reactions on partial duplex substrates. This combination of activities suggests ResT is a nexus between the seemingly distinct processes of telomere resolution and homologous recombination. Implications for hairpin telomere replication and linear plasmid recombination, including antigenic variation, are discussed.  相似文献   

5.
Spirochetes of the genus Borrelia include the causative agents of Lyme disease and relapsing fever. They possess unusual, highly segmented genomes composed mostly of linear replicons with covalently closed hairpin telomeres. The telomeres are formed from inverted repeat replicated telomere junctions ( rTel s) by the telomere resolvase, ResT. ResT uses a reaction mechanism with similarities to that employed by the type IB topoisomerases and tyrosine recombinases. Here, we report that the relationship of ResT to the tyrosine recombinases extends to the ability to synapse-replicated telomeres and to catalyse the formation of a Holliday junction. We also report that ResT can use asymmetrized substrates that mimic the properties of a recombination site for a tyrosine recombinase, to form Holliday junctions. We propose a model for how this explains the origin of genome linearity in the genus Borrelia.  相似文献   

6.
Spirochetes of the genus Borrelia include the causative agents of Lyme disease and relapsing fever. These bacteria have a highly segmented genome where most replicons are linear molecules terminated by covalently closed hairpin telomeres. Moreover, these genomes appear to be in a state of flux with extensive and ongoing DNA rearrangements by unknown mechanisms. The B. burgdorferi telomere resolvase ResT generates the hairpin telomeres from replication intermediates in a reaction with mechanistic similarities to that catalyzed by type IB topoisomerases and tyrosine recombinases. We report here the unexpected ability of ResT to catalyze the fusion of hairpin telomeres in a reversal of the telomere resolution reaction. We propose that stabilized ResT-mediated telomere fusions are an underlying force for maintaining the B. burgdorferi genome in a state of flux.  相似文献   

7.
Spirochetes of the genus Borrelia include the tick-transmitted causative agents of Lyme disease and relapsing fever. They possess unusual genomes composed mainly of linear replicons terminated by closed DNA hairpins. Hairpin telomeres are formed from inverted repeat replicated telomere junctions (rTels) by the telomere resolvase ResT. ResT uses a reaction mechanism similar to that of the type IB topoisomerases and tyrosine recombinases. ResT can catalyze three distinct reactions: telomere resolution, telomere fusion, and Holliday junction (HJ) formation. HJ formation is known to occur only in the context of a synapsed pair of rTels. To test whether telomere resolution was synapsis-dependent, we performed experiments with rTel substrates immobilized on streptavidin-coated beads. We report that telomere resolution by ResT is synapsis-independent, indicating that alternative complexes are formed for telomere resolution and HJ formation. We also present evidence that dual hairpin telomere formation precedes product release. This mechanism of telomere resolution prevents the appearance of broken telomeres. We compare and contrast this mechanism with that proposed for TelK, the telomere resolvase of φKO2.  相似文献   

8.
The Borrelia telomere resolvase, ResT, forms the unusual hairpin telomeres of the linear Borrelia replicons in a process referred to as telomere resolution. Telomere resolution is a DNA cleavage and rejoining reaction that proceeds from a replicated telomere intermediate in a reaction with mechanistic similarities to that catalyzed by type IB topoisomerases. Previous reports have implicated the hairpin-binding module, at the end of the N-terminal domain of ResT, in distorting the DNA between the scissile phosphates so as to promote DNA cleavage and hairpin formation by the catalytic domain. We report that unwinding the DNA between the scissile phosphates, prior to DNA cleavage, is a key cold-sensitive step in telomere resolution. Through the analysis of ResT mutants, rescued by substrate modifications that mimic DNA unwinding between the cleavage sites, we show that formation and/or stabilization of an underwound pre-cleavage intermediate depends upon cooperation of the hairpin-binding module and catalytic domain. The phenotype of the mutants argues that the pre-cleavage intermediate promotes strand ejection to favor the forward reaction and that subsequent hairpin capture is a reversible reaction step. These reaction features are proposed to promote hairpin formation over strand resealing while allowing reversal back to substrate of aborted reactions.  相似文献   

9.
The processes of DNA topoisomerization and site-specific recombination are fundamentally similar: DNA cleavage by forming a phospho-protein covalent linkage, DNA topological rearrangement, and DNA ligation coupled with protein regeneration. Type IB DNA topoisomerases are structurally and mechanistically homologous to tyrosine recombinases. Both enzymes nick DNA double helices independent of metal ions, form 3′-phosphotyrosine intermediates, and rearrange the free 5′ ends relative to the uncut strands by swiveling. In contrast, serine recombinases generate 5′-phospho-serine intermediates. A 180° relative rotation of the two halves of a 100?kDa terameric serine recombinase and DNA complex has been proposed as the mechanism of strand exchange. Here I propose an alternative mechanism. Interestingly, the catalytic domain of serine recombinases has structural similarity to the TOPRIM domain, conserved among all Type IA and Type II topoisomerases and responsible for metal binding and DNA cleavage. TOPRIM topoisomerases also cleave DNA to generate 5′-phosphate and 3′-OH groups. Based on the existing biochemical data and crystal structures of topoisomerase II and serine recombinases bound to pre- and post-cleavage DNA, I suggest a strand passage mechanism for DNA recombination by serine recombinases. This mechanism is reminiscent of DNA topoisomerization and does not require subunit rotation.  相似文献   

10.
The processes of DNA topoisomerization and site-specific recombination are fundamentally similar: DNA cleavage by forming a phospho-protein covalent linkage, DNA topological rearrangement, and DNA ligation coupled with protein regeneration. Type IB DNA topoisomerases are structurally and mechanistically homologous to tyrosine recombinases. Both enzymes nick DNA double helices independent of metal ions, form 3'-phosphotyrosine intermediates, and rearrange the free 5' ends relative to the uncut strands by swiveling. In contrast, serine recombinases generate 5'-phospho-serine intermediates. A 180° relative rotation of the two halves of a 100 kDa terameric serine recombinase and DNA complex has been proposed as the mechanism of strand exchange. Here I propose an alternative mechanism. Interestingly, the catalytic domain of serine recombinases has structural similarity to the TOPRIM domain, conserved among all Type IA and Type II topoisomerases and responsible for metal binding and DNA cleavage. TOPRIM topoisomerases also cleave DNA to generate 5'-phosphate and 3'-OH groups. Based on the existing biochemical data and crystal structures of topoisomerase II and serine recombinases bound to pre- and post-cleavage DNA, I suggest a strand passage mechanism for DNA recombination by serine recombinases. This mechanism is reminiscent of DNA topoisomerization and does not require subunit rotation.  相似文献   

11.
Prompted by the close relationship between tyrosine recombinases and type IB topoisomerases we have investigated the ability of human topoisomerase I to resolve the typical intermediate of recombinase catalysis, the Holliday junction. We demonstrate that human topoisomerase I catalyzes unidirectional resolution of a synthetic Holliday junction substrate containing two preferred cleavage sites surrounded by DNA sequences supporting branch migration. Deleting part of the N-terminal domain (amino acid residues 1-202) did not affect topoisomerase I resolution activity, whereas a topoisomerase I variant lacking both the N-terminal domain and amino acid residues 660-688 of the linker domain was unable to resolve the Holliday junction substrate. The inability of the double deleted variant to mediate resolution correlated with the inability of this enzyme to introduce concomitant cleavage at the two preferred cleavage sites in a single Holliday junction substrate, which is a prerequisite for resolution. As determined by the gel electrophoretic mobility of native enzyme or enzyme crosslinked by disulfide bridging, the double deleted mutant existed almost entirely in a dimeric form. The impairment of this enzyme in performing double cleavages on the Holliday junction substrate may be explained by only one cleavage competent active site being formed at a time within the dimer. The assembly of only one active site within dimers is a well-known characteristic of the tyrosine recombinases. Hence, the obtained results may suggest a recombinase-like active site assembly of the double deleted topoisomerase I variant. Taken together the presented results consolidate the relationship between type IB topoisomerases and tyrosine recombinases.  相似文献   

12.
Causative agents of Lyme disease and relapsing fever, including Borrelia burgdorferi and Borrelia hermsii, respectively, are unusual among bacteria in that they possess a segmented genome with linear DNA molecules terminated by hairpin ends, known as telomeres. During replication, these telomeres are processed by the essential telomere resolvase, ResT, in a unique biochemical reaction known as telomere resolution. In this study, we report the identification of the B. hermsii resT gene through cross-species hybridization. Sequence comparison of the B. hermsii protein with the B. burgdorferi orthologue revealed 67% identity, including all the regions currently known to be crucial for telomere resolution. In vitro studies, however, indicated that B. hermsii ResT was unable to process a replicated B. burgdorferi type 2 telomere substrate. In contrast, in vivo cross-species complementation in which the native resT gene of B. burgdorferi was replaced with B. hermsii resT had no discernible effect, even though B. burgdorferi strain B31 carries at least two type 2 telomere ends. The B. burgdorferi ResT protein was also able to process two telomere spacing mutants in vivo that were unresolvable in vitro. The unexpected differential telomere processing in vivo versus in vitro by the two telomere resolvases suggests the presence of one or more accessory factors in vivo that are normally involved in the reaction. Our current results are also expected to facilitate further studies into ResT structure and function, including possible interaction with other Borrelia proteins.  相似文献   

13.
DNA topoisomerases are ubiquitous enzymes that govern the topological interconversions of DNA thereby playing a key role in many aspects of nucleic acid metabolism. Recently determined crystal structures of topoisomerase fragments, representing nearly all the known subclasses, have been solved. The type IB enzymes are structurally distinct from other known topoisomerases but are similar to a class of enzymes referred to as tyrosine recombinases. A putative topoisomerase I open reading frame from the kinetoplastid Leishmania donovani was reported which shared a substantial degree of homology with type IB topoisomerases but having a variable C-terminus. Here we present a molecular model of the above parasite gene product, using the human topoisomerase I crystal structure in complex with a 22 bp oligonucleotide as a template. Our studies indicate that the overall structure of the parasite protein is similar to the human enzyme; however, major differences occur in the C-terminal loop, which harbors a serine in place of the usual catalytic tyrosine. Most other structural themes common to type IB topoisomerases, including secondary structural folds, hinged clamps that open and close to bind DNA, nucleophilic attack on the scissile DNA strand and formation of a ternary complex with the topoisomerase I inhibitor camptothecin could be visualized in our homology model. The validity of serine acting as the nucleophile in the case of the parasite protein model was corroborated with our biochemical mapping of the active site with topoisomerase I enzyme purified from L.donovani promastigotes.  相似文献   

14.
15.
The integrase family of site-specific recombinases catalyzes conservative rearrangements between defined segments of DNA. A highly conserved tetrad (RHRY) of catalytic residues is essential for this process. This tetrad is dispersed in two motifs in the linear sequence, but is configured appropriately in the catalytic pocket to execute the strand cleavage and rejoining reactions. A third conserved motif has been identified in the Xer subgroup of the integrase family. Mutational analysis of 12 conserved residues in this motif in the XerD protein from Salmonella typhimurium led to the identification of an essential fifth catalytic residue (lysine 172) which is implicated in strand cleavage or exchange. This lysine residue occupies part of the turn of an antiparallel beta-hairpin which forms one side of the catalytic cleft in XerD, and is found at similar positions among evolutionarily diverse integrase family members. Related antiparallel beta-hairpins are present in eucaryotic type IB topoisomerase enzymes which also contain a critical lysine residue in the turn of the hairpin. In both the integrase family and eucaryotic type IB topoisomerases, the catalytic lysine residues are in close contact with the substrates and may play similar roles in influencing the reactivity of the phosphotyrosine intermediates formed during reactions catalyzed by both enzymes.  相似文献   

16.
The integrase family of site-specific recombinases (also called the tyrosine recombinases) mediate a wide range of biological outcomes by the sequential exchange of two pairs of DNA strands at defined phosphodiester positions.The reaction produces a recombinant arrangement of the DNA sequences flanking the cross-over region. The crystal structures of four integrase family members have revealed very similar three-dimensional protein folds that belie the large diversity in amino acid sequences among them. The active sites are similar in organization to those seen in structures of eukaryotic type IB topoisomerases, and conservation of catalytic mechanism is expected. The crystal structures, combined with previous biochemical knowledge, allow the refinement of models for recombination and the assignment of catalytic function to the active site residues. However, each system has its own peculiarities, and the exact sequence of events that allows the reaction to proceed from the first exchange reaction to the second is still unclear for at least some family members.  相似文献   

17.
The genus Borrelia includes the causative agents of Lyme disease and relapsing fever. An unusual feature of these bacteria is a segmented genome consisting mostly of a number of linear DNA molecules with covalently closed hairpin ends or telomeres. In this study we show that the BBB03 locus encodes the B. burgdorferi telomere resolvase, ResT. The purified protein catalyzes telomere resolution in vitro through a unique reaction: breakage of two phosphodiester bonds in a single DNA duplex (one on each strand) and joining of each end with the opposite DNA strand to form covalently closed hairpin telomeres. Telomere resolution by ResT occurs through a two-step transesterification reaction involving the formation of a covalent protein-DNA intermediate at a position three nucleotides from the axis of symmetry in each strand of the substrate.  相似文献   

18.
Borrelia burgdorferi, a causative agent of Lyme disease, has a highly unusual segmented genome composed of both circular molecules and linear DNA replicons terminated by covalently closed hairpin ends or telomeres. Replication intermediates of the linear molecules are processed into hairpin telomeres via the activity of ResT, a telomere resolvase. We report here the results of limited proteolysis and mass spectroscopy to identify two main structural domains in ResT, separated by a chymotrypsin cleavage site between residues 163 and 164 of the 449 amino acid protein. The two domains have been overexpressed and purified. DNA electrophoretic mobility shift assays revealed that the C-terminal domain (ResT(164-449)) displays sequence-specific DNA binding to the box 3,4,5 region of the telomere, while the N-terminal domain (ResT(1-163)) exhibits sequence-independent DNA binding activity. Further analysis by DNase I footprinting supports a model for telomere resolution in which the hairpin binding module of the N-terminal domain is delivered to the box 1,2 region of the telomere through its tethering to ResT(164-449). Conversely, ResT(1-164) may play an important regulatory role by modulating both sequence-specific DNA binding activity and catalysis by the C-terminal domain.  相似文献   

19.
The active site of Flp contains, in addition to a transdonated nucleophilic tyrosine, five other residues that are highly conserved within the lambda-integrase family of site-specific recombinases and the type IB topoisomerases. We have used site-directed mutagenesis and x-ray crystallography to investigate the roles of two such residues, Lys223 and Trp330. Our findings agree with studies on related enzymes showing the importance of Lys223 in catalysis but demonstrate that in Flp-mediated recombination the primary role of Trp330 is architectural rather than catalytic. Eliminating the hydrogen bonding potential of Trp330 by phenylalanine substitution results in surprisingly small changes in reaction rates, compared with dramatic decreases in the activities of W330A, W330H, and W330Q. The structure of a W330F mutant-DNA complex reveals an active site nearly identical to that of the wild type. The phenylalanine side chain preserves most of the van der Waals interactions Trp330 forms with the Tyr343-containing trans helix, which may be particularly important for the docking of this helix. Our studies of Trp330 provide the first detailed examination of this conserved residue in the lambda-integrase family, suggesting that the relative importance of active site residues may differ among Flp and related enzymes.  相似文献   

20.
Linear genome stability requires specialized telomere replication and protection mechanisms. A common solution to this problem in non-eukaryotes is the formation of hairpin telomeres by telomere resolvases (also known as protelomerases). These enzymes perform a two-step transesterification on replication intermediates to generate hairpin telomeres using an active site similar to that of tyrosine recombinases and type IB topoisomerases. Unlike phage telomere resolvases, the telomere resolvase from the Lyme disease pathogen Borrelia burgdorferi (ResT) is a permissive enzyme that resolves several types of telomere in vitro. However, the ResT region and residues mediating permissive substrate usage have not been identified. The relapsing fever Borrelia hermsii ResT exhibits a more restricted substrate usage pattern than B. burgdorferi ResT and cannot efficiently resolve a Type 2 telomere. In this study, we determined that all relapsing fever ResTs process Type 2 telomeres inefficiently. Using a library of chimeric and mutant B. hermsii/B. burgdorferi ResTs, we mapped the determinants in B. burgdorferi ResT conferring the ability to resolve multiple Type 2 telomeres. Type 2 telomere resolution was dependent on a single proline in the ResT catalytic region that was conserved in all Lyme disease but not relapsing fever ResTs and that is part of a 2-amino acid insertion absent from phage telomere resolvase sequences. The identification of a permissive substrate usage determinant explains the ability of B. burgdorferi ResT to process the 19 unique telomeres found in its segmented genome and will aid further studies on the structure and function of this essential enzyme.Replication and protection of telomeric DNA are required to ensure the genomic stability of all organisms with linear replicons. Until quite recently, it was assumed that linearity is a property confined to the replicons of eukaryotes and certain primarily eukaryotic viruses. However, a growing body of evidence indicates that linear DNA is also found in a broad range of bacteriophages (16) and in bacteria themselves (710), including the Borrelia species that cause Lyme disease and relapsing fever (11, 12). A common solution to the end replication and protection problem in non-eukaryotes is the covalent sealing of DNA ends in the form of hairpins (2, 46, 10, 11, 1316). Hairpin DNA is not recognized as a double-strand break, and continuous synthesis of DNA around the hairpin loop abolishes the end replication problem. However, mother and daughter replicons are covalently linked at the junction of their telomeres following DNA replication; separation of the two replicons and formation of new hairpin telomeres require a DNA breakage and reunion process referred to as telomere resolution (17, 18).Resolution of the linear chromosome and plasmids in Borrelia species and of the linear plasmid prophages from Escherichia coli, Yersinia enterocolitica, and Klebsiella oxytoca is performed by telomere resolvases (also referred to as protelomerases) (5, 1921). A growing number of candidate telomere resolvases have been identified in the genomes of eukaryotic viruses, phages, and bacteria (22, 23). Telomere resolvases are DNA cleavage and rejoining enzymes related to tyrosine recombinases and type 1B topoisomerases (19, 21, 22, 24, 25). Telomere resolvase catalyzes a two-step transesterification reaction in which staggered cuts are introduced 6 bp apart on either side of the axis of symmetry in the replicated telomere substrate (5, 19, 21, 24). Cleavage is accompanied by the formation of a 3′-phosphotyrosyl protein-DNA linkage. Subsequent nucleophilic attack on opposing strands by the free 5′-OH groups in the nicked substrate creates covalently closed hairpin telomeres. A recent crystal structure of the Klebsiella phage telomere resolvase (TelK) in complex with its substrate identified the residues involved in catalysis (25); all but one of these residues are conserved in all telomere resolvases (22), implying that the basic catalytic mechanism underlying telomere resolution is conserved. However, telomere resolvase sequences vary substantially outside of the central catalytic region (25, 26), and the enzymes characterized to date demonstrate important differences in substrate usage that likely reflect functionally distinct mechanisms of substrate interaction.The Borrelia burgdorferi telomere resolvase, ResT, appears to be particularly divergent. It is substantially smaller than phage telomere resolvases, and unlike its phage counterparts (5, 20, 21), it cannot efficiently resolve negatively supercoiled DNA (19, 27), presumably reflecting differences in the substrates resolved by phage and Borrelia telomere resolvases in vivo. On the other hand, B. burgdorferi ResT can fuse hairpin telomeres in a reversal of the resolution reaction (28), a function that is not shared with the phage telomere resolvase TelK (25). It can also synapse replicated telomeres and catalyze the formation of Holliday junctions (29). The ability of ResT to promote hairpin fusion has been proposed as the mechanism underlying the ongoing genetic rearrangements that are a prominent feature of the B. burgdorferi genome (18, 28). Finally, B. burgdorferi ResT can tolerate a surprising amount of variation in its substrate (30, 31), a feature that is not shared by phage telomere resolvases (21). Although B. burgdorferi ResT appears to be more permissive with a greater scope of activities than other telomere resolvases, the sequences mediating most of its unique properties have not yet been identified.The B. burgdorferi genome contains a total of 19 distinct hairpin sequences, all of which must be resolved by ResT (31). These sequences can be classified into three groups based on the presence and positioning of the box 1 motif, which is a critical determinant of activity in phage and Borrelia telomere resolvases (see Fig. 1A) (21, 24, 30). A box 1-like motif is also found in many of the hairpin telomeres sequenced to date (6, 14, 3235), although its function in telomere resolution is unknown. The box 1 consensus sequence (TAT(a/t)AT) closely resembles the −10/Pribnow box and TATA box consensus sequences of prokaryotic and eukaryotic promoters (TATAAT and TATA(a/t)A(a/t), respectively), which undergo transient deformations that predispose them to melting (36) and are intrinsically bent and anisotropically flexible (37). Therefore, box 1 may facilitate nucleation of hairpin folding and/or may confer an intrinsic bend or flexibility to substrates that is important for the resolution reaction.Open in a separate windowFIGURE 1.Species-specific resolution of Type I and 2 telomeres. A, a schematic showing the three types of hairpin telomere found on the linear replicons of the B. burgdorferi genome (see Ref. 31). The box 1 sequence in Type 1 and 2 telomeres is situated 1 and 4 nucleotides away from the axis of symmetry, respectively, whereas Type 3 telomeres contain no clear box 1. B, a schematic illustrating the telomere resolution reaction substrate and products is shown along with two ethidium bromide-stained agarose gels showing telomere resolution assays. The gels show resolution kinetics for B. burgdorferi and B. hermsii ResT on Type 1 and 2 telomeres (plasmid substrates pYT1/lp17L and pYT92/chromL, respectively).B. burgdorferi ResT can resolve telomeres in which box 1 is located at positions 1 and 4 nucleotides away from the axis of symmetry (Type 1 and 2 telomeres, respectively), as well as AT-rich telomeres without a box 1 sequence (Type 3 telomeres) (see Fig. 1A) (30, 31). B. burgdorferi ResT cleaves telomeres at a fixed position relative to the axis of symmetry, independent of the location of box 1 (30). Positioning of the enzyme for cleavage in all telomere types is most likely driven by sequence-specific interactions between ResT domains 2 (catalytic) and/or 3 (C-terminal) and a fixed element upstream of box 1 that is positioned 14 nucleotides from the axis of symmetry in all Borrelia telomeres (box 3 and adjacent nucleotides) (see Figs. 1A and and2)2) (26, 30, 31). In contrast, box 1 and axis-flanking nucleotides are not involved in high affinity and/or sequence-specific interactions with ResT and require the ResT N-terminal domain for full protection in DNase footprinting assays (26, 27). The most likely candidate for interactions with box 1 and axis-flanking nucleotides is a Borrelia-specific hairpin-binding region in the N terminus, which is thought to promote a pre-hairpinning step involving strand opening at the axis (38).Open in a separate windowFIGURE 2.Alignment of 11 Borrelia ResT sequences. Shown is ClustalW2 alignment of ResT amino acid sequences from five Lyme disease Borrelia species (B. afzelii, B. spielmanii, B. valaisiana, B. garinii, and B. burgdorferi), five relapsing fever Borrelia species (B. turicatae, B. parkeri, B. hermsii, B. recurrentis, and B. duttonii), and one avian Borrelia species (B. anserina) (generated using ClustalW2 from the EBI web site) (19, 3942, 48, 49). The sequences for B. anserina, B. parkeri, and B. turicatae ResTs are reported for the first time in this study (respective GenBank accession numbers are FJ882620, FJ882621, and FJ882623). Sequences are arranged in order of similarity to neighboring sequences and are colored in JalView using the Zappo coloring scheme for identifying amino acids with similar physicochemical properties (50). Only residues that are identical in 100% of ResTs are indicated by colored shading. Arrows above the alignment indicate ResT domain boundaries identified by chymotrypsin digest, sequence comparison with other proteins, and HHsenser predictions (26, 51). The hairpin-binding motif found in cut-and-paste transposases is indicated beneath the alignment by white text on a black background (38). The positions corresponding to the active site residues in tyrosine recombinases, type IB topoisomerases, and TelK are indicated by blue asterisks below the sequence, with the active site tyrosine nucleophile at position 335 marked by a red asterisk (22, 25). The ringed black dot below position 326 indicates an amino acid in the active site region that differs in Lyme disease and relapsing fever ResTs. Sequences above the black line drawn between B. burgdorferi and B. turicatae are from Lyme disease Borrelia species; sequences below the black line are from relapsing fever Borrelia species. The ResT sequence from the avian Borrelia species B. anserina is shown at bottom.ResT from the relapsing fever Borrelia species Borrelia hermsii exhibits a more restricted substrate usage pattern in vitro when compared with ResT from the Lyme disease pathogen B. burgdorferi (39). Specifically, B. hermsii ResT is unable to efficiently resolve a Type 2 telomere. Therefore, B. burgdorferi ResT appears to be a more permissive enzyme than its relapsing fever counterpart. In this study, we investigated the basis for permissive substrate usage by B. burgdorferi ResT. Using a library of chimeric B. hermsii/B. burgdorferi ResTs, we mapped the sequence determinants in B. burgdorferi ResT that confer the ability to resolve multiple Type 2 telomeres. Surprisingly, this approach indicated that Type 2 telomere resolution was crucially regulated by a single proline residue located in a small Borrelia-specific insertion in the central catalytic region of ResT. The proline at this position was conserved in the ResTs from all Lyme disease Borrelia species but in none of the ResTs from relapsing fever Borrelia species, which were unable to efficiently resolve Type 2 telomeres in vitro. This study has identified a specific residue in ResT responsible for permissive substrate usage patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号