首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated a chorismate mutase bradytroph (leaky auxotroph) ofAnabaena sp. PCC 7119 (ATCC 29151) as a spontaneous 6-fluorotryptophan-resistant mutant. The decreased chorismate mutase activity resulted in the production of quantities of the phenylalanine and tyrosine that limited rate of growth. 3-Deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase activity in the mutant was elevated more than twofold over the wild-type activity, suggesting derepression of this enzyme. The physiological deregulation of DAHP synthase and the genetic-based deficiency of chorismate mutase promoted an elevated level of intracellular chorismate, which then overwhelmed the competitive inhibition of anthranilate synthase by tryptophan, resulting in the overproduction of tryptophan and indoleglycerolphosphate. The presence of exogenous serine increased the production of tryptophan at the expense of indoleglycerolphosphate. This indicated that the endogenous potential for increasing the amount of serine available for increased tryptophan production is limited.  相似文献   

2.
The inhibition of the bifunctional enzyme chorismate mutase-prephenate dehydrogenase (4-hydroxyphenylpyruvate synthase) by substrate analogues has been investigated at pH 6.0 with the aim of elucidating the spatial relationship that exists between the sites at which each reaction occurs. Several chorismate and adamantane derivatives, as well as 2-hydroxyphenyl acetate and diethyl malonate, act as linear competitive inhibitors with respect to chorismate in the mutase reaction and with respect to chorismate in the mutase reaction and with respect to prephenate in the dehydrogenase reaction. The similarity of the dissociation constants for the interaction of these compounds with the free enzyme, as determined from the mutase and dehydrogenase reactions, indicates that the reaction of these inhibitors at a single site prevents the binding of both chorismate and prephenate. However, not all the groups on the enzyme, which are responsible for the binding of these two substrates, can be identical. At lower concentrations, citrate or malonate prevents reaction of the enzyme with prephenate, but not with chorismate. Nevertheless, the combining sites for chorismate and prephenate are in such close proximity that the diethyl derivative of malonate prevents the binding of both substrates. The results lead to the proposal that the sites at which chorismate and prephenate react on hydroxyphenylpyruvate synthase share common features and can be considered to overlap.  相似文献   

3.
MbtI (rv2386c) from Mycobacterium tuberculosis catalyzes the initial transformation in mycobactin biosynthesis by converting chorismate to salicylate. We report here the structure of MbtI at 2.5 A resolution and demonstrate that isochorismate is a kinetically competent intermediate in the synthesis of salicylate from chorismate. At pH values below 7.5 isochorismate is the dominant product while above this pH value the enzyme converts chorismate to salicylate without the accumulation of isochorismate in solution. The salicylate and isochorismate synthase activities of MbtI are Mg2+-dependent, and in the absence of Mg2+ MbtI has a promiscuous chorismate mutase activity similar to that of the isochorismate pyruvate lyase, PchB, from Pseudomonas aeruginosa. MbtI is part of a larger family of chorismate-binding enzymes descended from a common ancestor (the MST family), that includes the isochorismate synthases and anthranilate synthases. The lack of active site residues unique to pyruvate eliminating members of this family, combined with the observed chorismate mutase activity, suggests that MbtI may exploit a sigmatropic pyruvate elimination mechanism similar to that proposed for PchB. Using a combination of structural, kinetic, and sequence based studies we propose a mechanism for MbtI applicable to all members of the MST enzyme family.  相似文献   

4.
3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) catalyzes the first step in the biosynthesis of a number of aromatic metabolites. Likely because this reaction is situated at a pivotal biosynthetic gateway, several DAHPS classes distinguished by distinct mechanisms of allosteric regulation have independently evolved. One class of DAHPSs contains a regulatory domain with sequence homology to chorismate mutase-an enzyme further downstream of DAHPS that catalyzes the first committed step in tyrosine/phenylalanine biosynthesis-and is inhibited by chorismate mutase substrate (chorismate) and product (prephenate). Described in this work, structures of the Listeria monocytogenes chorismate/prephenate regulated DAHPS in complex with Mn(2+) and Mn(2+) + phosphoenolpyruvate reveal an unusual quaternary architecture: DAHPS domains assemble as a tetramer, from either side of which chorismate mutase-like (CML) regulatory domains asymmetrically emerge to form a pair of dimers. This domain organization suggests that chorismate/prephenate binding promotes a stable interaction between the discrete regulatory and catalytic domains and supports a mechanism of allosteric inhibition similar to tyrosine/phenylalanine control of a related DAHPS class. We argue that the structural similarity of chorismate mutase enzyme and CML regulatory domain provides a unique opportunity for the design of a multitarget antibacterial.  相似文献   

5.
A series of aza inhibitors (4-9) of chorismate mutase (E.C. 5.4.99.5) was designed, prepared, and evaluated against the enzyme by monitoring the direct inhibition of the chorismate, 1, to prephenate, 2, conversion. None of these aza inhibitors displayed tighter binding to the enzyme than the native substrate chorismate or greater inhibitory action than the previously reported ether analogue, 3. Furthermore, no time-dependent loss of enzyme activity was observed in the presence of the two potentially reactive aza inhibitors (7 and 9). These results in conjunction with inhibition data from a broader series of chorismate mutase inhibitors allowed a novel proposal for the mechanistic role of chorismate mutase to be developed. This proposed mechanism was computationally verified and correlated with crystallographic studies of various chorismate mutases.  相似文献   

6.
Naturally occurring variants of the enzyme chorismate mutase are known to exist that exhibit diversity in enzyme structure, regulatory properties, and association with other proteins. Chorismate mutase was not annotated in the initial genome sequence of Mycobacterium tuberculosis (Mtb) because of low sequence similarity between known chorismate mutases. Recombinant protein coded by open reading frame Rv1885c of Mtb exhibited chorismate mutase activity in vitro. Biochemical and biophysical characterization of the recombinant protein suggests its resemblance to the AroQ class of chorismate mutases, prototype examples of which include the Escherichia coli and yeast chorismate mutases. We also demonstrate that unlike the corresponding proteins of E. coli, Mtb chorismate mutase does not have any associated prephenate dehydratase or dehydrogenase activity, indicating its monofunctional nature. The Rv1885c-encoded chorismate mutase showed allosteric regulation by pathway-specific as well as cross-pathway-specific ligands, as evident from proteolytic cleavage protection and enzyme assays. The predicted N-terminal signal sequence of Mtb chorismate mutase was capable of functioning as one in E. coli, suggesting that Mtb chorismate mutase belongs to the AroQ class of chorismate mutases. It was evident that Rv1885c may not be the only enzyme with chorismate mutase enzyme function within Mtb, based on our observation of the presence of chorismate mutase activity displayed by another hypothetical protein coded by open reading frame Rv0948c, a novel instance of the existence of two monofunctional chorismate mutases ever reported in any pathogenic bacterium.  相似文献   

7.
The effect of pH on chorismate mutase/prephenate dehydratase (chorismate pyruvate mutase/prephenate hydro-lyase (decarboxylating) EC 5.4.99.5/EC 4.2.1.51) from Escherichia coli K12 has been studied. While the maximum velocity of both activities is independent of pH, Km for chorismate or prephenate shows a complex pH dependence. Differences in mutase activity in acetate/phosphate/borate and citrate/phosphate/borate buffers were traced to inhibition by citrate. When a variety of analogues of citrate were tested as possible inhibitors of the enzyme, several were found to inhibit mutase and dehydratase activities to different extents, and by different mechanisms. Thus citrate competitively inhibits mutase activity, but inhibits dehydratase activity by either a non-competitive or an uncompetitive mechanism. Conversely, cis- and trans-aconitate competitively inhibit dehydratase activity, but are partially competitive inhibitors of mutase activity. The differential effects of these inhibitors on the two activities are consistent with the existence of two distinct active sites, but additionally suggest some degree of interconnection between them. The implications of these results for possible mechanisms of catalysis by chorismate mutase/prephenate dehydratase are discussed.  相似文献   

8.
Chorismate mutase from Streptomyces aureofaciens was purified 12-fold. This enzyme preparation did not show any activity when tested for anthranilate synthetase, prephenate dehydrogenase, or prephenate dehydratase. The catalytic activity of chorismate mutase has a broad optimum between pH 7 and 8. The initial velocity data followed regular Michaelis-Menten kinetics with a K(m) of 5.3 x 10(-4) M, and the molecular weight of the enzyme was determined by sucrose gradient centrifugation to be 50,000. Heat inactivation of chorismate mutase, which occurs above temperatures of 60 C, is reversible. The enzyme activity can be restored even when chorismate mutase is treated at the temperature of a boiling-water bath for 15 min. Heat-denatured and renatured enzymes showed the same Michaelis constant and the same molecular weight as the native enzyme. l-Phenylalanine, l-tyrosine, l-tryptophan, and metabolites of the aromatic amino acid pathway were tested as potential modifiers of chorismate mutase activity. The activity of the enzyme was inhibited by none of these substances. Chorismate mutase of S. aureofaciens was not repressed in cells grown in minimal medium supplemented with l-phenylalanine, l-tyrosine, or l-tryptophan.  相似文献   

9.
Comparison of chorismate mutase isozyme patterns in selected plants   总被引:2,自引:2,他引:0       下载免费PDF全文
A wide variety of plants have been assayed to determine if they contain three isozymes of chorismate mutase (EC 5.4.99.5) as does alfalfa (Medicago sativa L.) or two isozymes, as does mung bean (Phaseolus aureus). The isozymes were separated by disc electrophoresis. All anthophyta with the exception of some closely related Leguminosae contained three isozymes of chorismate mutase. The one coniferophyta (a pine), and pterophyta (a fern) and one microphyllophyta (a Selaginella) assayed contained two isozymes of chorismate mutase. All plants assayed contained measurable chorismate mutase levels and at least two isozymes of chorismate mutase.  相似文献   

10.
Abstract Penicillium cyclopium produces benzodiazepine alkaloids from l -phenylalanine and anthranilate. The biosynthesis of both precursors involves the enzymes of the shikimate pathway DAHP synthase, chorismate mutase and anthranilate synthase, the latter two competing for the common substrate chorismate. After the cultures reached the phase of alkaloid production, the in vitro measurable activities of these three enzymes could be increased by adding the alkaloids during incubation. The stimulation is most pronounced with anthranilate synthase, whose activity most probably limits the rate of alkaloid formation. It is not seen with tryptophan synthase which is not involved in the formation of alkaloid precursors. The data suggest a far reaching feedback activation, coordinating precursor biosynthesis with the formation of secondary product.  相似文献   

11.
Investigations have been made at pH 6.0 of the effect of chorismate and adamantane derivatives on the mutase and dehydrogenase activities of hydroxyphenylpyruvate synthase from Escherichia coli. When used over a wide range of concentrations, chorismate 5,6-epoxide, chorismate 5,6-diol, adamantane-1,3-diacetate, adamantane-1-acetate, adamantane-1-carboxylate, and adamantane-1-phosphonate give rise to nonlinear plots of the reciprocal of the initial velocity of each reaction as a function of the inhibitor concentration. The inhibitors do not induce the enzyme to undergo polymerization and have only a small effect on the S20,w value of the enzyme as determined by using sucrose density gradient centrifugation. At low substrate concentration, low concentrations of adamantane-1-acetate cause activation of both the mutase and dehydrogenase activities while at higher concentrations this compound functions as an inhibitor. When chorismate and prephenate are varied over a wide range of concentrations, double-reciprocal plots of the data indicate that the reactions exhibit positive cooperativity. The addition of albumin eliminates the cooperative interactions associated with substrates but has little effect on those associated with inhibitors.  相似文献   

12.
The recently characterized amino acid L-arogenate (Zamir et al., J. Am. Chem. Soc. 102:4499-4504, 1980) may be a precursor of either L-phenylalanine or L-tyrosine in nature. Euglena gracilis is the first example of an organism that uses L-arogenate as the sole precursor of both L-tyrosine and L-phenylalanine, thereby creating a pathway in which L-arogenate rather than prephenate becomes the metabolic branch point. E. gracilis ATCC 12796 was cultured in the light under myxotrophic conditions and harvested in late exponential phase before extract preparation for enzymological assays. Arogenate dehydrogenase was dependent upon nicotinamide adenine dinucleotide phosphate for activity. L-Tyrosine inhibited activity effectively with kinetics that were competitive with respect to L-arogenate and noncompetitive with respect to nicotinamide adenine dinucleotide phosphate. The possible inhibition of arogenate dehydratase by L-phenylalanine has not yet been determined. Beyond the latter uncertainty, the overall regulation of aromatic biosynthesis was studied through the characterization of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase and chorismate mutase. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase was subject to noncompetitive inhibition by L-tyrosine with respect to either of the two substrates. Chorismate mutase was feedback inhibited with equal effectiveness by either L-tyrosine or L-phenylalanine. L-Tryptophan activated activity of chorismate mutase, a pH-dependent effect in which increased activation was dramatic above pH 7.8 L-Arogenate did not affect activity of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase or of chorismate mutase. Four species of prephenate aminotransferase activity were separated after ion-exchange chromatography. One aminotransferase exhibited a narrow range of substrate specificity, recognizing only the combination of L-glutamate with prephenate, phenylpyruvate, or 4-hydroxyphenylpyruvate. Possible natural relationships between Euglena spp. and fungi previously considered in the literature are discussed in terms of data currently available to define enzymological variation in the shikimate pathway.  相似文献   

13.
Kuroki G  Conn EE 《Plant physiology》1988,86(3):895-898
Discs excised from Solanum tuberosum L. cv White Rose tubers demonstrated a 4.5-fold increase in chorismate mutase activity 48 hours after excision. Incubation in the presence of cycloheximide (25 micromolar) or actinomycin D (100 micromolar) completely inhibited the wound response suggesting de novo synthesis of chorismate mutase. Ratios of activity in the presence of the activator tryptophan to that in the absence of tryptophan remained relatively constant during the induction period. This indicated either a constant ratio of tryptophan sensitive to tryptophan insensitive isozymes, or that only one form of chorismate mutase was present. Chromatography of crude extracts on three different columns yielded only one peak of chorismate mutase activity, activated by tryptophan in each case. Incubation under white light had no effect on chorismate mutase activity when compared to dark controls.  相似文献   

14.
Candida maltosa synthesizes phenylalanine and tyrosine only via phenylpyruvate and p-hydroxyphenylpyruvate. Tryptophan is absolutely necessary for the enzymatic reaction of chorismate mutase and prephenate dehydrogenase; activity of prephenate dehydratase can be increased 2.5-fold in the presence of tryptophan. Activation of the chorismate mutase, prephenate dehydratase and prephenate dehydrogenase by tryptophan is competitive with respect to chorismate and prephenate with Ka 0.06mM, 0.56mM and 1.7mM. In addition tyrosine is a competitive inhibitor of chorismate mutase (Ki = 0.55mM) and prephenate dehydrogenase (Ki = 5.5mM).  相似文献   

15.
Chorismate mutase catalyzes a key step in the shikimate biosynthetic pathway towards phenylalanine and tyrosine. Curiously, the intracellular chorismate mutase of Mycobacterium tuberculosis (MtCM; Rv0948c) has poor activity and lacks prominent active‐site residues. However, its catalytic efficiency increases >100‐fold on addition of DAHP synthase (MtDS; Rv2178c), another shikimate‐pathway enzyme. The 2.35 Å crystal structure of the MtCM–MtDS complex bound to a transition‐state analogue shows a central core formed by four MtDS subunits sandwiched between two MtCM dimers. Structural comparisons imply catalytic activation to be a consequence of the repositioning of MtCM active‐site residues on binding to MtDS. The mutagenesis of the C‐terminal extrusion of MtCM establishes conserved residues as part of the activation machinery. The chorismate‐mutase activity of the complex, but not of MtCM alone, is inhibited synergistically by phenylalanine and tyrosine. The complex formation thus endows the shikimate pathway of M. tuberculosis with an important regulatory feature. Experimental evidence suggests that such non‐covalent enzyme complexes comprising an AroQδ subclass chorismate mutase like MtCM are abundant in the bacterial order Actinomycetales.  相似文献   

16.
The regulatory patterns of two of the enzymes of the shikimate pathway. 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHP synthase or DS. EC 4. 1. 2. 15) and chorismate motase (CM, EC 5. 4. 99. 5), were investigated using in vitro cultures of Brassica juncea at two stages, viz. undifferentiated, proliferating callus and the root-forming callus. Our studies revealed the presence of the two isozymes of DAHP synthase, DS-Mn and DS-Co. in undifferentiated callus. However, during the rhizogenesis of the callus DS-Mn was absent. Similarly, for chorismate mutase, whereas both the isozymes CM-1 and CM-2 were present in undifferentiated callus only CM-2 was detected at rhizogenesis. The possible involvement of these isozymes in callus growth and rhizogenesis is discussed.  相似文献   

17.
18.
Highly purified fractions of chorismate mutase 1 and 2 from etiolated seedlings of Sorghum bicolor were used as the antigen for antibody production in BALB/c mice. Tests for antigen-antibody complex formation were made by immunodiffusion, immunoprecipitation, and enzyme-linked immunosorbent assay (ELISA). These tests indicated the presence of specific antibodies for each isoenzyme in their antisera. However, in the same tests, no cross-reaction was found between chorismate mutase 1 and 2 and their antisera. This indicates no immunological similarity between the two isoenzymes of chorismate mutase from sorghum.  相似文献   

19.
Several regulated enzymes involved in aromatic amino acid synthesis were studied in Bacillus subtilis and B. licheniformis with reference to organization and control mechanisms. B. subtilis has been previously shown (23) to have a single 3-deoxy-d-arabinoheptulosonate 7-phosphate (DAHP) synthetase but to have two isozymic forms of both chorismate mutase and shikimate kinase. Extracts of B. licheniformis chromatographed on diethylaminoethyl (DEAE) cellulose indicated a single DAHP synthetase and two isozymic forms of chorismate mutase, but only a single shikimate kinase activity. The evidence for isozymes has been supported by the inability to find strains mutant in these activities, although strains mutant for the other activities were readily obtained. DAHP synthetase, one of the isozymes of chorismate mutase, and one of the isozymes of shikimate kinase were found in a single complex in B. subtilis. No such complex could be detected in B. licheniformis. DAHP synthetase and shikimate kinase from B. subtilis were feedback-inhibited by chorismate and prephenate. DAHP synthetase from B. licheniformis was also feedback-inhibited by these two intermediates, but shikimate kinase was inhibited only by chorismate. When the cells were grown in limiting tyrosine, the DAHP synthetase, chorismate mutase, and shikimate kinase activities of B. subtilis were derepressed in parallel, but only DAHP synthetase and chorismate mutase were derepressible in B. licheniformis. Implications of the differences as well as the similarities between the control and the pattern of enzyme aggregation in the two related species of bacilli were discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号