首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myiasis, the infestation of live vertebrates with dipterous larvae, seems to take two distinct forms that, it has been suggested, evolved from two distinct phylogenetic roots: saprophagous and sanguinivorous. However, the convergent evolution of morphological and life-history traits seems to have had a major role in simplifying this overall assessment of the evolutionary routes by which myiasis arose. Moreover, this somewhat simplistic division is further complicated by the existence of both ectoparasitic and endoparasitic species of myiasis-causing Diptera, the evolutionary affinities of which remain to be resolved. To understand how different forms of parasitism arose, the evolution of the various groups of myiasis-causing flies must be separated from the evolution of the myiasis habit per se. Until recently, evolutionary studies of myiasis-causing flies were little more than discussions of morphology-based taxonomy. Since the mid-1990s, however, several formal phylogenies - based on both morphological and, increasingly, molecular data - have been published, enabling reassessment of the hypotheses concerning myiasis evolution. In part I of this review, we focus on some recent landmark studies in this often-neglected branch of parasitology and draw together phylogenetic studies based on molecular and morphological data to provide a framework for the subsequent analysis of biochemical, immunological, behavioural, biogeographical and fossil evidence relating to the evolution of myiasis.  相似文献   

2.
Blowflies (Calliphoridae) are characterised by the ability of their larvae to develop in animal flesh. Where the host is a living vertebrate, such parasitism by dipterous larvae is known as myiasis. However, the evolutionary origins of the myiasis habit in the Calliphoridae, a family which includes the blowflies and screwworm flies, remain unclear. Species associated with an ectoparasitic lifestyle can be divided generally into three groups based on their larval feeding habits: saprophagy, facultative ectoparasitism, and obligate parasitism, and it has been proposed that this functional division may reflect the progressive evolution of parasitism in the Calliphoridae. In order to evaluate this hypothesis, phylogenetic analysis of 32 blowfly species displaying a range of forms of ectoparasitism from key subfamilies, i.e. Calliphorinae, Luciliinae, Chrysomyinae, Auchmeromyiinae and Polleniinae, was undertaken using likelihood and parsimony methods. Phylogenies were constructed from the nuclear 28S large subunit ribosomal RNA gene (28S rRNA), sequenced from each of the 32 calliphorid species, together with suitable outgroup taxa, and mitochondrial cytochrome oxidase subunit I and II (COI+II) sequences, derived primarily from published data. Phylogenies derived from each of the two markers (28S rRNA, COI+II) were largely (though not completely) congruent, as determined by incongruence-length difference and Kishino-Hasegawa tests. However, the phylogenetic relationships of blowfly subfamilies based on molecular data did not concur with the pattern of relationships defined by previous morphological analysis; significantly, molecular analysis supported the monophyly of blowflies (Calliphoridae), distinct from the bot and warble flies (Oestridae). Comparative analysis of the myiasis habit based primarily on the 28S rRNA phylogeny indicated that obligate parasitism, and the ability to initiate myiasis in higher vertebrates, has multiple independent origins across myiasis-causing flies (Calliphoridae and Oestridae) and in at least three subfamilies of blowfly (Calliphoridae). Finally, the general association of various blowfly genera and subfamily clades with particular continental and geographical regions suggests that these groups probably came into existence in the Late Cretaceous period, following the break-up of Gondwana.  相似文献   

3.
“Myiasis-causing flies” is a generic term that includes species from numerous dipteran families, mainly Calliphoridae and Oestridae, of which blowflies, screwworm flies and botflies are among the most important. This group of flies is characterized by the ability of their larvae to develop in animal flesh. When the host is a live vertebrate, such parasitism by dipterous larvae is known as primary myiasis. Myiasis-causing flies can be classified as saprophagous (free-living species), facultative or obligate parasites. Many of these flies are of great medical and veterinary importance in Brazil because of their role as key livestock insect-pests and vectors of pathogens, in addition to being considered important legal evidence in forensic entomology. The characterization of myiasis-causing flies using molecular markers to study mtDNA (by RFLP) and nuclear DNA (by RAPD and microsatellite) has been used to identify the evolutionary mechanisms responsible for specific patterns of genetic variability. These approaches have been successfully used to analyze the population structures of the New World screwworm fly Cochliomyia hominivorax and the botfly Dermatobia hominis. In this review, various aspects of the organization, evolution and potential applications of the mitochondrial genome of myiasis-causing flies in Brazil, and the analysis of nuclear markers in genetic studies of populations, are discussed.  相似文献   

4.
While theory suggests conditions under which mutualism may evolve from parasitism, few studies have observed this transition empirically. Previously, we evolved Escherichia coli and the filamentous bacteriophage M13 in 96‐well microplates, an environment in which the ancestral phage increased the growth rate and yield of the ancestral bacteria. In the majority of populations, mutualism was maintained or even enhanced between phages and coevolving bacteria; however, these same phages evolved traits that harmed the ancestral E. coli genotype. Here, we set out to determine if mutualism could evolve from this new parasitic interaction. To do so, we chose six evolved phage populations from the original experiment and used them to establish new infections of the ancestral bacteria. After 20 passages, mutualism evolved in almost all replicates, with the remainder growing commensally. Many phage populations also evolved to benefit both their local, evolving bacteria and the ancestral bacteria, though these phages were less beneficial to their co‐occurring hosts than phages that harm the ancestral bacteria. These results demonstrate the rapid recovery of mutualism from parasitism, and we discuss how our findings relate to the evolution of phages that enhance the virulence of bacterial pathogens.  相似文献   

5.
The autotrophic lifestyle of photosynthetic plants has profoundly shaped their body plan, physiology, and gene repertoire. Shifts to parasitism and heterotrophy have evolved at least 12 times in more than 4000 species, and this transition has consequently left major evolutionary footprints among these parasitic lineages. Features that are otherwise rare at the molecular level and beyond have evolved repetitively, including reduced vegetative bodies, carrion-mimicking during reproduction, and the incorporation of alien genetic material. Here, I propose an integrated conceptual model, referred to as the funnel model, to define the general evolutionary trajectory of parasitic plants and provide a mechanistic explanation for their convergent evolution. This model connects our empirical understanding of gene regulatory networks in flowering plants with classical theories of molecular and population genetics. It emphasizes that the cascading effects brought about by the loss of photosynthesis may be a major force constraining the physiological capacity of parasitic plants and shaping their genomic landscapes. Here I review recent studies on the anatomy, physiology, and genetics of parasitic plants that lend support to this photosynthesis-centered funnel model. Focusing on nonphotosynthetic holoparasites, I elucidate how they may inevitably reach an evolutionary terminal status (i.e., extinction) and highlight the utility of a general, explicitly described and falsifiable model for future studies of parasitic plants.  相似文献   

6.
Parasitic lifestyles have evolved many times in animals, but how such life‐history strategies evolved from free‐living ancestors remains a great puzzle. Transitional symbiotic strategies, such as facultative parasitism, are hypothesized evolutionary stepping stones towards obligate parasitism. However, to consider this hypothesis, heritable genetic variation in infectious behaviour of transitional symbiotic strategies must exist. In this study, we experimentally evolved infectivity and estimated the additive genetic variation in a facultative parasite. We performed artificial selection experiments in which we selected for either increased or decreased propensity to infect in a facultatively parasitic mite (Macrocheles muscaedomesticae). Here, infectiousness was expressed in terms of mite attachment to a host (Drosophila hydei) and modelled as a threshold trait. Mites responded positively to selection for increased infectivity; realized heritability of infectious behaviour was significantly different from zero and estimated to be 16.6% (±4.4% SE). Further, infection prevalence was monitored for 20 generations post‐selection. Selected lines continued to display relatively high levels of infection, demonstrating a degree of genetic stability in infectiousness. Our study is the first to provide an estimate of heritability and additive genetic variation for infectious behaviour in a facultative parasite, which suggests natural selection can act upon facultative strategies with important implications for the evolution of parasitism.  相似文献   

7.
We report myiasis by Lucilia silvarum with an overall prevalence of 0.9% in amphibian populations in boreal Alberta. In the period 1998--1999, we documented L. silvarum infestations in wild populations of wood frog (Rana sylvatica), boreal chorus frog (Pseudacris maculata), boreal toad (Bufo boreas boreas), and Canadian toad (B. hemiophrys). We believe this is the first record of this parasite from boreal and Canadian toads. Almost all previous records of L. silvarum parasitism in North America indicate that myiasis is fatal to an anuran host. Here, we provide the first record of adult individuals from 2 species (wood frog and boreal toad) surviving infestations. Although we actively captured and examined amphibians in Alberta from 1996 to 2006, we only found parasitism in 1998 and 1999. This is the most northerly record of anuran infestations by this parasite.  相似文献   

8.
The origins of parasitism among the protists are, like the group itself, polyphyletic. Probably the majority of present-day parasitic forms evolved from free-living ancestors which were ingested as part of the food of their hosts, though origins from ectoparasitic forms and via a phase of facultative parasitism are possibilities, particularly among the ciliated protozoa and (for ectoparasitism) the Kinetoplasta. Sporozoan parasites most probably developed via a stage which was ingested and became adapted to life in the host's gut. Further developments in parasitism involved deeper penetration into the host's tissues and the adoption of more than one host in the life cycle, thus avoiding entirely the potentially hazardous phase of existence outside the host.  相似文献   

9.
Broad ecological shifts can render previously adaptive traits nonfunctional. It is an open question as to how and how quickly nonfunctional traits decay once the selective pressures that favored them are removed. The village weaverbird (Ploceus cucullatus) avoids brood parasitism by rejecting foreign eggs. African populations have evolved high levels of within-clutch uniformity as well as individual distinctiveness in egg color and spotting, a combination that facilitates identification of foreign eggs. In a companion study, I showed that these adaptations in egg appearance declined following introductions of weavers into habitats devoid of egg-mimicking brood parasites. Here, I use experimental parasitism in two ancestral and two introduced populations to test for changes in egg rejection behavior while controlling for changes in egg appearance. Introduced populations reject foreign eggs less frequently, but the ability of source and introduced populations to reject foreign eggs does not differ after controlling for the evolution of egg color and spotting. Therefore, egg rejection behavior in introduced populations of the village weaver has been compromised by changes in egg appearance, but there has been no significant decline in the birds' ability to recognize foreign eggs. This result reconciles earlier studies on this system and provides insights into the ways behavior can change over generations, especially in the context of recognition systems and the avoidance of brood parasitism.  相似文献   

10.
Many of the most virulent and problematic eukaryotic pathogens have evolved from photosynthetic ancestors, such as apicomplexans, which are responsible for a wide range of diseases including malaria and toxoplasmosis. The primary barrier to understanding the early stages of evolution of these parasites has been the difficulty in finding parasites with closely related free-living lineages with which to make comparisons. Parasites found throughout the florideophyte red algal lineage, however, provide a unique and powerful model to investigate the genetic origins of a parasitic lifestyle. This is because they share a recent common ancestor with an extant free-living red algal species and parasitism has independently arisen over 100 times within this group. Here, we synthesize the relevant hypotheses with respect to how these parasites have proliferated. We also place red algal research in the context of recent developments in understanding the genome evolution of other eukaryotic photosynthesizers turned parasites.  相似文献   

11.
The concept of continuity in molecular evolution implies a stepwise formation of metabolic systems and processes. In this manner, chemical and biological evolution have given rise, step by step, to such complicated systems as the photosynthetic apparatus and thus, such elaborate processes as photosynthesis in the living cell. Among currently living organisms, the bacteria contain a much less complex photosynthetic system than the algae and higher plants, which uniquely are capable fo splitting H2O. But also the bacterial system is a very highly evolved and sophisticated, membrane-bound apparatus for the transformation of light energy to other biologically useful energy forms. The study of its molecular evolution is here undertaken by the method of attempting to break down the system into its main components and functions in order to elucidate how they had originated and evolved, and how, by divergent and convergent evolutionary steps, the stage was set for the arrival of bacterial photophosphorylation.  相似文献   

12.
The evolution of parasitism is often accompanied by profound changes to the developmental program. However, relatively few studies have directly examined the developmental evolution of parasitic species from free-living ancestors. The lined sea anemone Edwardsiella lineata is a relatively recently evolved parasite for which closely related free-living outgroups are known, including the starlet sea anemone Nematostella vectensis. The larva of E. lineata parasitizes the ctenophore Mnemiopsis leidyi, and, once embedded in its host, the anemone assumes a novel vermiform body plan. That we might begin to understand how the developmental program of this species has been transformed during the evolution of parasitism, we characterized the gross anatomy, histology, and cnidom of the parasitic stage, post-parasitic larval stage, and adult stage of the E. lineata life cycle. The distinct parasitic stage of the life cycle differs from the post-parasitic larva with respect to overall shape, external ciliation, cnida frequency, and tissue architecture. The parasitic stage and planula both contain holotrichs, a type of cnida not previously reported in Edwardsiidae. The internal morphology of the post-parasitic planula is extremely similar to the adult morphology, with a complete set of mesenterial tissue and musculature despite this stage having little external differentiation. Finally, we observed 2 previously undocumented aspects of asexual reproduction in E. lineata: (1) the parasitic stage undergoes transverse fission via physal pinching, the first report of asexual reproduction in a pre-adult stage in the Edwardsiidae; and (2) the juvenile polyp undergoes transverse fission via polarity reversal, the first time this form of fission has been reported in E. lineata.  相似文献   

13.
The evolution of cuckoo parasitism: a comparative analysis   总被引:8,自引:0,他引:8  
Cuckoos (family Cuculidae) show the highest diversity of breeding strategies within one bird family (parental care, facultative and obligate brood parasites). We used independent contrasts from two phylogenies to examine how this variation was related to 13 ecological and life-history variables. The ancestral state was probably tropical, resident, forest cuckoos with parental care. The evolution of brood parasitism was correlated with a shift to more open habitats, a change in diet, increases in species breeding-range size and migration, and a decrease in egg size. Once parasitism had evolved, more elaborate parasitic strategies (more harmful to host fitness) were correlated with decreased egg size, a change in diet, increased breeding-range size and migration, a shortened breeding season and a decrease in local abundance. Establishing the most probable evolutionary pathways, using the method of Pagel, shows that changes in ecological variables (such as migration, range size and diet type) preceded the evolution of brood parasitism, which is likely to be a later adaptation to reduce the cost of reproduction. By contrast, brood parasitism evolved before changes in egg size occurred, indicating that egg size is an adaptive trait in host--parasite coevolution. Our results suggest that the evolution of cuckoo brood parasitism reflects selection from both ecological pressures and host defences.  相似文献   

14.
By combining appearance and behavior in animals with physical laws, we can get an understanding of the adaptation and evolution of various structures and forms. Comparisons can be made between animal bodies and various technical constructions. Technical science and theory during the latest decades have resulted in considerable insight into biological adaptations, but studies on structures, forms, organs, systems, and processes in the living world, used in the right way, have also aided the engineer in finding wider and better solutions to various problems, among them in the design of micro-air vehicles (MAVs). In this review, I discuss the basis for flight and give some examples of where flight engineering and nature have evolved similar solutions. In most cases technology has produced more advanced structures, but sometimes animals are superior. I include how different animals have solved the problem of producing lift, how animal wings meet the requirements of strength and rigidity, how wing forms are adapted to various flight modes, and how flight kinematics are related to flight behavior and speed. The dynamics of vorticity is summarized. There are a variety of methods for the determination of flight power; it has been estimated adequately by lifting-line theory, by physiological measurements, and from mass loss and food intake. In recent years alternative methods have been used, in which the mechanical power for flight is estimated from flight muscle force used during the downstroke. Refinements of these methods may create new ways of estimating flight power more accurately. MAVs operate at the same Reynolds numbers as large insects and small birds and bats. Therefore, studies on animal flight are valuable for MAV design, which is discussed here.  相似文献   

15.
The family Calliphoridae is a group of heterogenous calyptrate flies with a worldwide distribution including species of ecological, veterinary, medical, and forensic importance. Notorious for their parasitic habits, the larvae of many blowflies are characterised – like some other dipteran larvae – by their ability to develop in animal flesh. When parasitism affects a living host, it is termed “myiasis”. This has led the Calliphoridae to be considered as a pivotal family in its relationship with a man. Nevertheless, even after more than 50 years of research, the phylogenetic relationships among calliphorid subfamilies together with the evolutionary origin of myiasis remain unclear. In order to elucidate these problems, we constructed three phylogenetic trees by using nucleotide sequence data from cytochrome oxidase subunit one (COI), representing a mitochondrial conservative gene, and nuclear 28S subunit of ribosomal RNA gene (28S rRNA) in order to interpret the evolutionary profile of myiasis in the family Calliphoridae. The sequenced data represented species associated with ectoparasitic life-styles, either saprophagy or facultative and obligate parasitism. A total number of 50 accessions were collected for 28S rRNA, 56 for COI, and 38 for combined sequences phylogeny. Molecular Evolutionary Genetics Analysis (MEGA) software was used to align 2197 nucleotide positions of 28S rRNA and 1500 nucleotide positions of COI with a gap opening penalties and gap extension penalties equalling 20 and 0.1 respectively. The results reveal the non-monophyly of the family Calliphoridae despite the stable monophyletic status of the Chrysomyinae, Luciliinae, and Auchmeromyiinae. Also, our findings recommend ranking the Toxotarsinae as a separate family. Furthermore, comparative analysis of the phylogenetic trees shows that the habit of obligatory myiasis originated independently more than five times. This strengthens our hypothesis that the origin of eating fresh meat is a case of convergent evolution that has taken place after speciation events millions of years ago. Finally, estimating the divergence dates between lineages from molecular sequences provides a better chance of understanding their evolutionary biology.  相似文献   

16.
Phylogenetic studies on insect social parasites have found very close host-parasite relationships, and these have often been interpreted as providing evidence for sympatric speciation. However, such phylogenetic inferences are problematic because events occurring after the origin of parasitism, such as extinction, host switching and subsequent speciation, or an incomplete sampling of taxa, could all confound the interpretation of phylogenetic relationships. Using a tribe of bees where social parasitism has repeatedly evolved over a wide time-scale, we show the problems associated with phylogenetic inference of sympatric speciation. Host-parasite relationships of more ancient species appear to support sympatric speciation, whereas in a case where parasitism has evolved very recently, sympatric speciation can be ruled out. However, in this latter case, a single extinction event would have lead to relationships that support sympatric speciation, indicating the importance of considering divergence ages when analysing the modes of social parasite evolution.  相似文献   

17.
Satellite DNA relationships in man and the primates   总被引:1,自引:0,他引:1       下载免费PDF全文
We have investigated the genomes of a series of primates to identify the presence of sequences related to human satellite DNAs I, II and III by restriction enzyme digestion and hybridisation with probes of these satellite DNAs. Where we have found such related sequences we have examined the extent to which they have diverged by measuring the stability of the hybrids. DNA satellite III is the oldest sequence being common to species which have diverged some 24 million years ago. In contrast DNA satellites I and II are of much more recent origin. Our results permit us to draw conclusions about the way these sequences have evolved, and how the evolution of repeated DNA sequences may be related to the evolution of the primate lineage.  相似文献   

18.
Jesús M. Avils 《Oikos》2019,128(3):338-346
Avian brood parasitism is a potent selective agent modulating host behaviors and morphology, although its role in determining diversification of avian breeding strategies remains elusive. Hitherto, the study of selection of brood parasites on host breeding strategies has been based on single reproductive trait approaches, which neglect that evolutionary responses to brood parasites may involve co‐ordinated changes in several aspects of reproduction. Here I consider covariation among reproductive traits to test whether parental breeding strategies of hosts of brown headed cowbird (BHC hereafter) in North America and the common cuckoo (CC hereafter) in Europe, two parasites with contrasting level of virulence, have evolved in response to brood parasitism. The effect of parasitism on avian breeding strategies differed between continents. Long term exposure to BHC parasitism selected for a lower breeding investment in North America, but not so CC parasitism in Europe. These results suggest a key role of parasite virulence on the evolution of avian breeding strategies and that brood parasitism has selected for a co‐ordinated breeding strategy of reducing parasitism costs by shortening and fractioning reproductive events within a single season in North America.  相似文献   

19.
The evolution of brood parasitism should affect adult phenotypic traits due to sexual selection as well as the parasite–host interactions, although it is rarely focused on. Sexual selection theory predicts extravagant secondary sexual characteristics in brood parasites whereas immature‐like modest sexual characteristics in parental species. This is because juvenile‐like immature traits can attract mates by exploiting parental care for young (i.e. attraction to young), and because the good parent process, which favours traits that signal parental care ability, would constrain the evolution of costly secondary sexual characteristics due to evolutionary trade‐offs between parental investment and sexually selected traits. Using a phylogenetic comparative approach, we studied plumage and bare‐part characteristics of adults in relation to brood parasitism in cuckoos (family Cuculidae), in which brood parasitism together with loss of parental care has evolved three times. As predicted, we found that nonparasitic cuckoos had plumage more similar to the juveniles than did brood parasitic cuckoos. Furthermore, nonparasitic cuckoos had a higher probability of having additional bare skin, that is a seemingly less costly, hatchling‐like trait, than did brood parasitic cuckoos. This finding further supports the link between parental care and sexual selection, although the influence of a parasite–host interaction cannot be excluded. The analysis of evolutionary pathways suggested interdependent evolution of additional bare skin and brood parasitism. Brood parasitism together with the loss of parental care may prevent the maintenance of a modest phenotype similar to the young, and vice versa in some cases.  相似文献   

20.
Juan Soler  Manuel Soler 《Oecologia》2000,125(3):309-320
Brood parasitism is one of the systems where coevolutionary processes have received the most research. Here, we review experiments that suggest a coevolutionary process between the great spotted cuckoo (Clamator glandarius) and its magpie (Pica pica) host. We focus on different stages of establishment of the relationship, from cuckoos selecting individual hosts and hosts defending their nests from adult cuckoos, to the ability of magpies to detect cuckoo eggs in their nests. Novel coevolutionary insights emerge from our synthesis of the literature, including how the evolution of "Mafia" behaviour in cuckoos does not necessarily inhibit the evolution of host recognition and rejection of cuckoo offspring, and how different populations of black-billed magpies in Europe have evolved specific host traits (e.g. nest and clutch size) as a result of interactions with the great spotted cuckoo. Finally, the results of the synthesis reveal the importance of using a meta-population approach when studying coevolution. This is especially relevant in those cases where gene flow among populations with different degrees of brood parasitism explains patterns of coexistence between defensive and non-defensive host phenotypes. We propose the use of a meta-population approach to distinguish between the "evolutionary equilibrium" hypothesis and the "evolutionary lag" hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号