首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
N-Carbamoylsarcosine amidohydrolase, a novel enzyme involved in the microbial degradation of creatinine in Pseudomonas putida 77, was purified 27-fold to homogeneity with a 63% overall recovery through simple purification procedures including successive ammonium sulfate fractionation, DEAE-cellulose chromatography, and crystallization. The relative molecular mass of the native enzyme estimated by the ultracentrifugal equilibrium method is 102,000 +/- 5000, and the subunit Mr is 27,000. The Km and Vm values for N-carbamoylsarcosine are 3.2 mM and 1.75 units/mg protein, respectively. Ammonia, carbon dioxide, and sarcosine were formed stoichiometrically from N-carbamoylsarcosine through the action of the purified enzyme preparation. N-Carbamoyl amino acids with a methyl group or hydrogen atom on the amino-N atom and possessing glycine, D-alanine, or one of their derivatives as an amino acid moiety served well as substrates for N-carbamoylsarcosine amidohydrolase. N-Carbamoylsarcosine, N-methyl-N-carbamoyl-D-alanine, N-carbamoylglycine, and N-carbamoyl-D-alanine were hydrolyzed at relative rates of 100, 12.8, 9.8, and 7.3, respectively, by the enzyme. N-Carbamoyl derivatives of D-tryptophan, D-phenylalanine, and those of some other amino acids including D-phenylglycine and p-hydroxy-D-phenylglycine were also hydrolyzed by the enzyme. For the L-isomers of all N-carbamoyl amino acids tested there was no production of ammonia, carbon dioxide, or the corresponding amino acids due to the action of the enzyme. Cupric, mercuric, and silver ions inhibited the enzyme strongly, and some thiol reagents were also found to be inhibitory.  相似文献   

3.
Methioninase of Pseudomonas putida was purified to homogeneity, as judged by polyacrylamide gel electrophoresis, with a specific activity 270-fold higher than that of the crude extract. 1. The purified enzyme had an S20,w of 8.37, a molecular weight of 160,000, and an isoelectric point of 5.6. 2. A break in the Arrhenius plot was observed at 40 degrees and the activation energies below and above this temperature were 15.5 and 2.97 kcal per mole, respectively. 3. In addition to L-methionine, various S-substituted derivatives of homocysteine and cysteine could serve as substrates. D-Methionine, 2-oxo-4-methylthiobutanoate, and related non sulfur-containing amino acids were inert. Equimolar formation of alpha-ketobutyrate and CH3SH was observed with methionine as a substrate. 4. In addition to the protein peak at 278 nm, two absorption maxima were observed at 345 and 430 nm at pH 7.5. Hydroxylamine removed the enzyme-bound pyridoxal phosphate, resulting in almost complete resolution with the concomitant disappearance of both peaks. Reconstruction of the treated enzyme could be achieved by addition of the cofactor; the Km value was calculated to be 0.37 muM. 5. The reported purified enzyme should be designated as L-methionine methanethiollyase (deaminating).  相似文献   

4.
Purification and characterization of glyoxalase I from Pseudomonas putida   总被引:1,自引:0,他引:1  
Glyoxalase I was purified to apparent homogeneity from Pseudomonas putida. The enzyme was a monomer with a molecular weight of 20,000. The enzyme was most active at pH 8.0. The Km values for methylglyoxal and 4,5-dioxovale-rate are 3.5 mM and 1.2 mM, respectively. Contrary to the case of eukaryotic enzymes, chelating agents showed little inhibitory effects on the enzyme activity. Among the metal ions tested, Zn++ specifically and completely inhibited the activity of the enzyme at a millimolar level. The properties of bacterial glyoxalase I were quite different from mammalian and yeast enzymes.  相似文献   

5.
In this study, the adhesive exopolysaccharides of strains of Pseudomonas putida and P. fluorescens, both isolated from freshwater epilithic communities, were examined with regard to their chemical composition, biosynthesis, and their role in adhesion. Electron microscopy showed that both strains were enrobed in fibrous glycocalyces and that these structures were involved in attachment of the cells to a solid surface and as structural matrices in the microcolony mode of growth. In batch culture experiments most of the extracellular polysaccharide of both strains was found to be soluble in the growth medium rather than being associated with bacterial cells. Exopolysaccharide was synthesized during all phases of growth, but when growth was limited by exhaustion of the carbon source, exopolysaccharide synthesis ceased whereas exopolysaccharide synthesis continued for some time after cessation of growth in nitrogen-limited cultures. Exopolysaccharide from both strains was isolated and purified. Pseudomonas putida synthesized an exopolysaccharide composed of glucose, galactose, and pyruvate in a ratio of 1:1:1; the P. fluorescens polymer contained glucose, galactose, and pyruvate in a ratio of 1:1:0.5, respectively. Polymers from both strains were acetylated to a variable degree.  相似文献   

6.
The primary amine dehydrogenase of Pseudomonas putida NP was purified to homogeneity as judged by polyacrylamide gel electrophoresis. Cytochrome c or an artificial electron acceptor was required for amine dehydrogenase activity. The enzyme was nonspecific, readily oxidizing primary monoamines, benzylamine, and tyramine; little or no measurable activity was detected with isoamines, L-ornithine, L-lysine, and certain diamines or polyamines. The pH optima for n-butylamine, benzylamine, and n-propylamine were 7.0, 6.5, and 7.0, respectively. The molecular weight of the enzyme was 112,000 as determined by gel filtration and 95,300 as analyzed by sedimentation equilibrium. Subunit analysis by sodium dodecyl sulfate gel electrophoresis suggested that the enzyme was composed of two nonidentical subunits with molecular weights of 58,000 and 42,000. The absorption spectrum of the purified enzyme was indicative of a hemoprotein, exhibiting absorption maxima at 277, 355, and 408 nm. Reduction with sodium dithionite or amine substrates resulted in absorption maxima at 523 and 552 nm and a shift in the Soret peak to 416 nm. These results suggested that the enzyme is a hemoprotein of the type c cytochrome. There was no evidence that flavins were present.  相似文献   

7.
8.
A novel enzyme, arylalkyl acylamidase, which shows a strict specificity for N-acetyl arylalkylamines, but not acetanilide derivatives, was purified from the culture broth of Pseudomonas putida Sc2. The purified enzyme appeared to be homogeneous, as judged by native and SDS/PAGE. The enzyme has a molecular mass of approximately 150 kDa and consists of four identical subunits. The purified enzyme catalyzed the hydrolysis of N-acetyl-2-phenylethylamine to 2-phenylethylamine and acetic acid at the rate of 6.25 mumol.min-1.mg-1 at 30 degrees C. It also catalyzed the hydrolysis of various N-acetyl arylalkylamines containing a benzene or indole ring, and acetic acid arylalkyl esters. The enzyme did not hydrolyze acetanilide, N-acetyl aliphatic amines, N-acetyl amino acids, N-acetyl amino sugars or acylthiocholine. The apparent Km for N-acetylbenzylamine, N-acetyl-2-phenylethylamine and N-acetyl-3-phenylpropylamine are 41 mM, 0.31 mM and 1.6 mM, respectively. The purified enzyme was sensitive to thiol reagents such as Ag2SO4, HgCl2 and p-chloromercuribenzoic acid, and its activity was enhanced by divalent metal ions such as Zn2+, Mg2+ and Mn2+.  相似文献   

9.
The highly enantioselective arylacetonitrilase of Pseudomonas putida was purified to homogeneity using a combination of (NH4)2SO4 fractionation and different chromatographic techniques. The enzyme has a molecular weight of 412 kDa and consisted of approximately nine to ten identical subunits (43 kDa). The purified enzyme exhibited a pH optimum of 7.0 and temperature optimum of 40°C. The nitrilase was highly susceptible to thiol-specific reagents and metal ions and also required a reducing environment for its activity. These reflected the presence of a catalytically essential thiol group for enzyme activity which is in accordance with the proposed mechanism for nitrilase-catalyzed reaction. The enzyme was highly specific for arylacetonitriles with phenylacetonitrile and its derivatives being the most preferred substrates. Higher specificity constant (k cat/K m) values for phenylacetonitrile compared to mandelonitrile also revealed the same. Faster reaction rate achieved with this nitrilase for mandelonitrile hydrolysis was possibly due to the low activation energy required by the protein. Incorporation of low concentration (<5%) of organic solvent increased the enzyme activity by increasing the availability of the substrate. Higher stability of the enzyme at slightly alkaline pH and ambient temperature provides an excellent opportunity to establish a dynamic kinetic resolution process for the production of (R)-(−)-mandelic acid from readily available mandelonitrile.  相似文献   

10.
The chromium resistance properties encoded by a natural plasmid recovered from the environment were investigated. A 200 kb plasmid was isolated by the exogenous plasmid isolation method. The plasmid conferred a chromate resistance phenotype (MIC 8 mmol l−1) to a chromate susceptible strain of Pseudomonas putida KT 2441 (MIC 0·5 mmol l−1). The resistant strain took up 50% less 51Cr than the isogenic susceptible strain of Ps. putida KT2441. In addition, the resistant strain expressed two new membrane proteins encoded by the plasmid, an outer membrane protein (molecular weight 60 000) and an inner membrane protein (molecular weight 35 000). The physiological significance of these proteins is under current investigation.  相似文献   

11.
12.
The isolation of a xanthine dehydrogenase from Pseudomonas putida 40 which utilizes ferricyanide as an electron acceptor at high efficiency is presented. The new activity is separate from the NAD+ and oxygen-utilizing activities of the same organism but displays a broad pattern for reducing substrates typical of those of previously studied xanthine-oxidizing enzymes. Unlike the previously studied enzymes, the new enzyme appears to lack flavin but possess heme and is resistant to cyanide treatment. However, sensitivity of the purified enzyme to methanol and the selective elimination of the activity when tungstate is added to certain growth media suggest a role for molybdenum. The enzyme is subject to a selective proteolytic action during processing which is not accompanied by denaturation or loss of activity and which is minimized by the continuous exposure of the activity to EDTA and phenylmethylsulfonyl fluoride. Electrophoresis of the denatured enzyme in the presence of sodium dodecyl sulfate suggests that the enzyme is constructed of subunits with a molecular weight of approximately 72,000. Electrophoresis under native conditions of a purified enzyme previously exposed to magnesium ion reveals a series of major and minor activity bands which display some selectivity toward both electron donors and acceptors. An analysis of the effect of gel concentration on this pattern suggests that the enzyme forms a series of charge and size isomers with a pair of trimeric forms predominating. Comparison of the rate of sedimentation of the enzyme in sucrose gradients with its elution profile from standardized Sepharose 6B columns suggests a molecular weight of 255,000 for the major form of the native enzyme.  相似文献   

13.
J Yeom  W Park 《BMB reports》2012,45(8):476-481
Flavodoxin (Fld) has been demonstrated to bind to ferredoxin- NADP(+) reductase A (FprA) in Pseudomonas putida. Two residues (Phe(256), Lys(259)) of FprA are likely to be important for interacting with Fld based on homology modeling. Sitedirected mutagenesis and pH-dependent enzyme kinetics were performed to further examine the role of these residues. The catalytic efficiencies of FprA-Ala(259) and FprA-Asp(259) proteins were two-fold lower than those of the wild-type FprA. Homology modeling also strongly suggested that these two residues are important for electron transfer. Thermodynamic properties such as entropy, enthalpy, and heat capacity changes of FprA-Ala(259) and FprA-Asp(259) were examined by isothermal titration calorimetry. We demonstrated, for the first time, that Phe(256) and Lys(259) are critical residues for the interaction between FprA and Fld. Van der Waals interactions and hydrogen bonding were also more important than ionic interactions for forming the FprA-Fld complex. [BMB Reports 2012; 45(8): 476-481].  相似文献   

14.
Cr(VI) (chromate) is a widespread environmental contaminant. Bacterial chromate reductases can convert soluble and toxic chromate to the insoluble and less toxic Cr(III). Bioremediation can therefore be effective in removing chromate from the environment, especially if the bacterial propensity for such removal is enhanced by genetic and biochemical engineering. To clone the chromate reductase-encoding gene, we purified to homogeneity (>600-fold purification) and characterized a novel soluble chromate reductase from Pseudomonas putida, using ammonium sulfate precipitation (55 to 70%), anion-exchange chromatography (DEAE Sepharose CL-6B), chromatofocusing (Polybuffer exchanger 94), and gel filtration (Superose 12 HR 10/30). The enzyme activity was dependent on NADH or NADPH; the temperature and pH optima for chromate reduction were 80°C and 5, respectively; and the Km was 374 μM, with a Vmax of 1.72 μmol/min/mg of protein. Sulfate inhibited the enzyme activity noncompetitively. The reductase activity remained virtually unaltered after 30 min of exposure to 50°C; even exposure to higher temperatures did not immediately inactivate the enzyme. X-ray absorption near-edge-structure spectra showed quantitative conversion of chromate to Cr(III) during the enzyme reaction.  相似文献   

15.
Erythritol biosynthesis is catalyzed by erythrose reductase, which converts erythrose to erythritol. Erythrose reductase, however, has never been characterized in terms of amino acid sequence and kinetics. In this study, NAD(P)H-dependent erythrose reductase was purified to homogeneity from Candida magnoliae KFCC 11023 by ion exchange, gel filtration, affinity chromatography, and preparative electrophoresis. The molecular weights of erythrose reductase determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography were 38,800 and 79,000, respectively, suggesting that the enzyme is homodimeric. Partial amino acid sequence analysis indicates that the enzyme is closely related to other yeast aldose reductases. C. magnoliae erythrose reductase catalyzes the reduction of various aldehydes. Among aldoses, erythrose was the preferred substrate (K(m) = 7.9 mM; k(cat)/K(m) = 0.73 mM(-1) s(-1)). This enzyme had a dual coenzyme specificity with greater catalytic efficiency with NADH (k(cat)/K(m) = 450 mM(-1) s(-1)) than with NADPH (k(cat)/K(m) = 5.5 mM(-1) s(-1)), unlike previously characterized aldose reductases, and is specific for transferring the 4-pro-R hydrogen of NADH, which is typical of members of the aldo/keto reductase superfamily. Initial velocity and product inhibition studies are consistent with the hypothesis that the reduction proceeds via a sequential ordered mechanism. The enzyme required sulfhydryl compounds for optimal activity and was strongly inhibited by Cu(2+) and quercetin, a strong aldose reductase inhibitor, but was not inhibited by aldehyde reductase inhibitors and did not catalyze the reduction of the substrates for carbonyl reductase. These data indicate that the C. magnoliae erythrose reductase is an NAD(P)H-dependent homodimeric aldose reductase with an unusual dual coenzyme specificity.  相似文献   

16.
Cutinase, an extracellular enzyme, was induced by cutin in a fluorescent Pseudomonas putida strain that was found to be cohabiting with an apparently nitrogen-fixing Corynebacterium. This enzyme was purified from the culture fluid by acetone precipitation followed by chromatography on DEAE-cellulose, QAE-Sephadex, Sepharose 6B, and Sephadex G-100. The purified enzyme showed a single band when subjected to polyacrylamide electrophoresis and the enzymatic activity coincided with the protein band. Sodium dodecyl sulfate-polyacrylamide electrophoresis showed a single band at a molecular weight of 30,000 and gel filtration of the native enzyme through a calibrated Sephadex G-100 column indicated a molecular weight of 30,000, showing that the enzyme is a monomer. The amino acid composition of bacterial cutinase is distinctly different from that of fungal or plant cutinases. This bacterial cutinase showed a broad pH optimum between 8.5 and 10.5 with 3H-labeled apple cutin as the substrate. Linear rates of cutin hydrolysis were measured up to 20 min of incubation time and 4 mg/ml of cutin gave the maximum hydrolysis rate. This cutinase catalyzed hydrolysis of p-nitrophenyl esters of C4 to C16 fatty acids with decreasing V and increasing Km for the longer chain esters. It did not hydrolyze tripalmitoyl glycerol or trioleyl glycerol, indicating that this is not a general lipase. Active serine-directed reagents such as organophosphates and organoboronic acids severely inhibited the enzyme, suggesting that bacterial cutinase is an "active serine" enzyme. Neither thiol-directed reagents nor metal ion chelators had any effect on this enzyme. Antibody raised against purified enzyme gave a single precipitin line on Ouchterlony double diffusion analysis. Western blot analysis of the extracellular fluid of induced Ps. putida showed a single band at 30 kDa. No immunological cross-reactivity was detected between the present bacterial enzyme and the fungal enzyme from Fusarium solani pisi when rabbit antibodies against either enzyme was used.  相似文献   

17.
18.
Two 3-hydroxybenzoate-inducible gentisate 1,2-dioxygenases were purified to homogeneity from Pseudomonas alcaligenes NCIB 9867 (P25X) and Pseudomonas putida NCIB 9869 (P35X), respectively. The estimated molecular mass of the purified P25X gentisate 1, 2-dioxygenase was 154 kDa, with a subunit mass of 39 kDa. Its structure is deduced to be a tetramer. The pI of this enzyme was established to be 4.8 to 5.0. The subunit mass of P35X gentisate 1, 2-dioxygenase was 41 kDa, and this enzyme was deduced to exist as a dimer, with a native molecular mass of about 82 kDa. The pI of P35X gentisate 1,2-dioxygenase was around 4.6 to 4.8. Both of the gentisate 1,2-dioxygenases exhibited typical saturation kinetics and had apparent Kms of 92 and 143 microM for gentisate, respectively. Broad substrate specificities were exhibited towards alkyl and halogenated gentisate analogs. Both enzymes had similar kinetic turnover characteristics for gentisate, with kcat/Km values of 44.08 x 10(4) s-1 M-1 for the P25X enzyme and 39.34 x 10(4) s-1 M-1 for the P35X enzyme. Higher kcat/Km values were expressed by both enzymes against the substituted gentisates. Significant differences were observed between the N-terminal sequences of the first 23 amino acid residues of the P25X and P35X gentisate 1,2-dioxygenases. The P25X gentisate 1,2-dioxygenase was stable between pH 5.0 and 7.5, with the optimal pH around 8.0. The P35X enzyme showed a pH stability range between 7.0 and 9.0, and the optimum pH was also 8.0. The optimal temperature for both P25X and P35X gentisate 1, 2-dioxygenases was around 50 degrees C, but the P35X enzyme was more heat stable than that from P25X. Both enzymes were strongly stimulated by 0.1 mM Fe2+ but were completely inhibited by the presence of 5 mM Cu2+. Partial inhibition of both enzymes was also observed with 5 mM Mn2+, Zn2+, and EDTA.  相似文献   

19.
An enzyme has been purified to homogeneity from barley seedlings which has `proline dehydrogenase' and the pyrroline-5-carboxylic acid reductase activities. The purification achieved is 39,000-fold as calculated from the proline dehydrogenase activity. The subunit molecular weight of the protein is 30 kilodaltons. The native enzyme has molecular weights up to 480 kilodaltons, depending on the buffer environment. From the pH profiles, the specific activities and thermodynamic considerations, it is concluded that the plant proline dehydrogenase functions in vivo as a pyrroline-5-carboxylate reductase.  相似文献   

20.
A thermostable lipase from Pseudomonas cepacia has been purified to homogeneity as judged by SDS-PAGE and isoelectric focusing. The purification included treatment of the culture supernatant with acrinol, hydrophobic interaction chromatography, and gel filtration. The enzyme was a monomeric protein with M(r) of 36,500 and pI of 5.1. The optimal pH at 50 degrees C and optimal temperature at pH 6.5 were 5.5-6.5 and 55-60 degrees C, respectively, when olive oil was used as the substrate. Simple triglycerides of short and middle chain fatty acids (C < or = 12) were the preferred substrates over those of long chain fatty acids. The enzyme cleaved all the ester bonds of triolein, with some preference for the 1,3-ester bonds. The enzyme retained all its activity even after incubation at 75 degrees C (pH 6.5) for 30 min. Further, the activity was not impaired during 21 h storage at pH 6.5 in 40% water-miscible solvents including methanol, ethanol, acetone, acetonitrile, dimethylformamide, dimethylsulfoxide, and dioxane. The addition of dimethylsulfoxide or acetone to the assay mixture in the range of 0-35% stimulated the enzyme, whereas benzene or n-hexane had an inhibitory effect. These properties together with the N-terminal amino acid sequence confirmed that the enzyme differs from the known Pseudomonas sp. lipases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号