首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cr(VI) (chromate) is a widespread environmental contaminant. Bacterial chromate reductases can convert soluble and toxic chromate to the insoluble and less toxic Cr(III). Bioremediation can therefore be effective in removing chromate from the environment, especially if the bacterial propensity for such removal is enhanced by genetic and biochemical engineering. To clone the chromate reductase-encoding gene, we purified to homogeneity (>600-fold purification) and characterized a novel soluble chromate reductase from Pseudomonas putida, using ammonium sulfate precipitation (55 to 70%), anion-exchange chromatography (DEAE Sepharose CL-6B), chromatofocusing (Polybuffer exchanger 94), and gel filtration (Superose 12 HR 10/30). The enzyme activity was dependent on NADH or NADPH; the temperature and pH optima for chromate reduction were 80°C and 5, respectively; and the Km was 374 μM, with a Vmax of 1.72 μmol/min/mg of protein. Sulfate inhibited the enzyme activity noncompetitively. The reductase activity remained virtually unaltered after 30 min of exposure to 50°C; even exposure to higher temperatures did not immediately inactivate the enzyme. X-ray absorption near-edge-structure spectra showed quantitative conversion of chromate to Cr(III) during the enzyme reaction.  相似文献   

2.
The present study was aimed to localize and characterize hexavalent chromate [Cr(VI)] reductase activity of the extreme alkaliphilic Amphibacillus sp. KSUCr3 (optimal growth pH 10.5). The resting cells were able to reduce about 62 % of the toxic heavy metal Cr(VI) at initial concentration of 200 μM within 30 min. Cell permeabilization resulted in decrease of Cr(VI) reduction in comparison to untreated cells. Enzymatic assays of different sub-cellular fractions of Amphibacillus sp. KSUCr3 demonstrated that the Cr(VI) reductase was mainly associated with the membranous fraction and expressed constitutively. In vitro studies of the crude enzyme indicated that copper ion was essential for Cr(VI) reductase activity. In addition, Ca2? and Mn2? slightly stimulated the chromate reductase activity. Glucose was the best external electron donor, showing enhancement of the enzyme activity by about 3.5-fold. The K (m) and V (max) determined for chromate reductase activity in the membranous fraction were 23.8 μM Cr(VI) and 72 μmol/min/mg of protein, respectively. Cr(VI) reductase activity was maximum at 40 °C and pH 7.0 and it was significantly inhibited in the presence of disulfide reducers (2-mercaptoethanol), ion chelating agent (EDTA), and respiratory inhibitors (CN and Azide). Complete reduction of 100 and 200 μM of Cr(VI) by membrane associated enzyme were observed within 40 and 180 min, respectively. However, it should be noted that biochemical characterization has been done with crude enzyme only, and that final conclusion can only be drawn with the purified enzyme.  相似文献   

3.
Microbial enzymatic reduction of a toxic form of chromium [Cr(VI)] has been considered as an effective method for bioremediation of this metal. This study reports on the in vitro reduction of Cr(VI) using cell-free extracts from a Cr(VI) reducing Bacillus firmus KUCr1 strain. Chromium reductase was found to be constitutive and its activity was observed both in soluble cell fractions (S12 and S150 and membrane cell fraction (P150). The reductase activity of S12 fraction was found to be optimal at 40 microM Cr(VI) with enzyme concentration equivalent to 0.493 mg protein/ml. Enzyme activity was dependent on NADH or NADPH as electron donor; optimal temperature and pH for better enzyme activity were 70 degrees C and 5.6, respectively. The Km value of the reductase was 58.33 microM chromate having a V(max) of 11.42 microM/min/mg protein. The metabolic inhibitor like sodium azide inhibited reductase activity of membrane fraction of the cell-free extract. Metal ions like Cu2+, Co2+, Ni2+ and As3+ stimulated the enzyme but others, such as Ag+, Hg2+, Zn2+, Mn2+, Cd2+ and Pb2+, inhibited Cr(VI) reductase activity.  相似文献   

4.
Cr(VI) (chromate) is a toxic, soluble environmental contaminant. Bacteria can reduce chromate to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of interest. Genetic and protein engineering of suitable enzymes can improve bacterial bioremediation. Many bacterial enzymes catalyze one-electron reduction of chromate, generating Cr(V), which redox cycles, generating excessive reactive oxygen species (ROS). Such enzymes are not appropriate for bioremediation, as they harm the bacteria and their primary end product is not Cr(III). In this work, the chromate reductase activities of two electrophoretically pure soluble bacterial flavoproteins--ChrR (from Pseudomonas putida) and YieF (from Escherichia coli)-were examined. Both are dimers and reduce chromate efficiently to Cr(III) (kcat/Km = approximately 2 x 10(4) M(-1) x s(-1)). The ChrR dimer generated a flavin semiquinone during chromate reduction and transferred >25% of the NADH electrons to ROS. However, the semiquinone was formed transiently and ROS diminished with time. Thus, ChrR probably generates Cr(V), but only transiently. Studies with mutants showed that ChrR protects against chromate toxicity; this is possibly because it preempts chromate reduction by the cellular one-electron reducers, thereby minimizing ROS generation. ChrR is thus a suitable enzyme for further studies. During chromate reduction by YieF, no flavin semiquinone was generated and only 25% of the NADH electrons were transferred to ROS. The YieF dimer may therefore be an obligatory four-electron chromate reducer which in one step transfers three electrons to chromate and one to molecular oxygen. As a mutant lacking this enzyme could not be obtained, the role of YieF in chromate protection could not be directly explored. The results nevertheless suggest that YieF may be an even more suitable candidate for further studies than ChrR.  相似文献   

5.
A pseudomonad (CRB5) isolated from a decommissioned wood preservation site reduced toxic chromate [Cr(VI)] to an insoluble Cr(III) precipitate under aerobic and anaerobic conditions. CRB5 tolerated up to 520 mg of Cr(VI) liter(-1) and reduced chromate in the presence of copper and arsenate. Under anaerobic conditions it also reduced Co(III) and U(VI), partially internalizing each metal. Metal precipitates were also found on the surface of the outer membrane and (sometimes) on a capsule. The results showed that chromate reduction by CRB5 was mediated by a soluble enzyme that was largely contained in the cytoplasm but also found outside of the cells. The crude reductase activity in the soluble fraction showed a K(m) of 23 mg liter(-1) (437 microM) and a V(max) of 0.98 mg of Cr h(-1) mg of protein(-1) (317 nmol min(-1) mg of protein(-1)). Minor membrane-associated Cr(VI) reduction under anaerobiosis may account for anaerobic reduction of chromate under nongrowth conditions with an organic electron donor present. Chromate reduction under both aerobic and anaerobic conditions may be a detoxification strategy for the bacterium which could be exploited to bioremediate chromate-contaminated or other toxic heavy metal-contaminated environments.  相似文献   

6.
Hexavalent chromium contamination is a serious problem due to its high toxicity and carcinogenic effects on the biological systems. The enzymatic reduction of toxic Cr(VI) to the less toxic Cr(III) is an efficient technology for detoxification of Cr(VI)-contaminated industrial effluents. In this regard, a chromate reductase enzyme from a novel Ochrobactrum sp. strain Cr-B4, having the ability to detoxify Cr(VI) contaminated sites, has been partially purified and characterized. The molecular mass of this chromate reductase was found to be 31.53 kD, with a specific activity 14.26 U/mg without any addition of electron donors. The temperature and pH optima for chromate reductase activity were 40°C and 8.0, respectively. The activation energy (Ea) for the chromate reductase was found to be 34.7 kJ/mol up to 40°C and the activation energy for its deactivation (Ed) was found to be 79.6 kJ/mol over a temperature range of 50–80°C. The frequency factor for activation of chromate reductase was found to be 566.79 s?1, and for deactivation of chromate reductase it was found to be 265.66 × 103 s?1. The reductase activity of this enzyme was affected by the presence of various heavy metals and complexing agents, some of which (ethylenediamine tetraacetic acid [EDTA], mercaptoethanol, NaN3, Pb2+, Ni2+, Zn2+, and Cd2+) inhibited the enzyme activity, while metals like Cu2+ and Fe3+ significantly enhanced the reductase activity. The enzyme followed Michaelis–Menten kinetics with Km of 104.29 µM and a Vmax of 4.64 µM/min/mg.  相似文献   

7.
The chromate reductase purified from Pseudomonas ambigua was found to be homologous with several nitroreductases. Escherichia coli DH5alpha and Vibrio harveyi KCTC 2720 nitroreductases were chosen for the present study, and their chromate-reducing activities were determined. A fusion between glutathione S-transferase (GST) and E. coli DH5alpha NfsA (GST-EcNfsA), a fusion between GST and E. coli DH5alpha NfsB (GST-EcNfsB), and a fusion between GST and V. harveyi KCTC 2720 NfsA (GST-VhNfsA) were prepared for their overproduction and easy purification. GST-EcNfsA, GST-EcNFsB, and GST-VhNFsA efficiently reduced nitrofurazone and 2,4,6-trinitrotoluene (TNT) as their nitro substrates. The K(m) values for GST-EcNfsA, GST-EcNfsB, and GST-VhNfsA for chromate reduction were 11.8, 23.5, and 5.4 micro M, respectively. The V(max) values for GST-EcNfsA, GST-EcNfsB, and GST-VhNfsA were 3.8, 3.9, and 10.7 nmol/min/mg of protein, respectively. GST-VhNfsA was the most effective of the three chromate reductases, as determined by each V(max)/K(m) value. The optimal temperatures of GST-EcNfsA, GST-EcNfsB, and GST-VhNfsA for chromate reduction were 55, 30, and 30 degrees C, respectively. Thus, it is confirmed that nitroreductase can also act as a chromate reductase. Nitroreductases may be used in chromate remediation. GST-EcNfsA, GST-EcNfsB, and GST-VhNfsA have a molecular mass of 50 kDa and exist as a monomer in solution. Thin-layer chromatography showed that GST-EcNfsA, GST-EcNfsB, and GST-VhNfsA contain FMN as a cofactor. GST-VhNfsA reduced Cr(VI) to Cr(III). Cr(III) was much less toxic to E. coli than Cr(VI).  相似文献   

8.
Bacteria can reduce toxic and carcinogenic Cr(VI) to insoluble and less toxic Cr(III). Thermus scotoductus SA-01, a South African gold mine isolate, has been shown to be able to reduce a variety of metals, including Cr(VI). Here we report the purification to homogeneity and characterization of a novel chromate reductase. The oxidoreductase is a homodimeric protein, with a monomer molecular mass of approximately 36 kDa, containing a noncovalently bound flavin mononucleotide cofactor. The chromate reductase is optimally active at a pH of 6.3 and at 65 degrees C and requires Ca(2+) or Mg(2+) for activity. Enzyme activity was also dependent on NADH or NADPH, with a preference for NADPH, coupling the oxidation of approximately 2 and 1.5 mol NAD(P)H to the reduction of 1 mol Cr(VI) under aerobic and anaerobic conditions, respectively. The K(m) values for Cr(VI) reduction were 3.5 and 8.4 microM for utilizing NADH and NADPH as electron donors, respectively, with corresponding V(max) values of 6.2 and 16.0 micromol min(-1) mg(-1). The catalytic efficiency (k(cat)/K(m)) of chromate reduction was 1.14 x 10(6) M(-1) s(-1), which was >50-fold more efficient than that of the quinone reductases and >180-fold more efficient than that of the nitroreductases able to reduce Cr(VI). The chromate reductase was identified to be encoded by an open reading frame of 1,050 bp, encoding a single protein of 38 kDa under the regulation of an Escherichia coli sigma(70)-like promoter. Sequence analysis shows the chromate reductase to be related to the old yellow enzyme family, in particular the xenobiotic reductases involved in the oxidative stress response.  相似文献   

9.
Cr(VI) (chromate) is a toxic, soluble environmental contaminant. Bacteria can reduce chromate to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of interest. Genetic and protein engineering of suitable enzymes can improve bacterial bioremediation. Many bacterial enzymes catalyze one-electron reduction of chromate, generating Cr(V), which redox cycles, generating excessive reactive oxygen species (ROS). Such enzymes are not appropriate for bioremediation, as they harm the bacteria and their primary end product is not Cr(III). In this work, the chromate reductase activities of two electrophoretically pure soluble bacterial flavoproteins—ChrR (from Pseudomonas putida) and YieF (from Escherichia coli)—were examined. Both are dimers and reduce chromate efficiently to Cr(III) (kcat/Km = ~2 × 104 M−1·s−1). The ChrR dimer generated a flavin semiquinone during chromate reduction and transferred >25% of the NADH electrons to ROS. However, the semiquinone was formed transiently and ROS diminished with time. Thus, ChrR probably generates Cr(V), but only transiently. Studies with mutants showed that ChrR protects against chromate toxicity; this is possibly because it preempts chromate reduction by the cellular one-electron reducers, thereby minimizing ROS generation. ChrR is thus a suitable enzyme for further studies. During chromate reduction by YieF, no flavin semiquinone was generated and only 25% of the NADH electrons were transferred to ROS. The YieF dimer may therefore be an obligatory four-electron chromate reducer which in one step transfers three electrons to chromate and one to molecular oxygen. As a mutant lacking this enzyme could not be obtained, the role of YieF in chromate protection could not be directly explored. The results nevertheless suggest that YieF may be an even more suitable candidate for further studies than ChrR.  相似文献   

10.
Acidiphilium cryptum JF-5, an acidophilic iron-respiring Alphaproteobacterium, has the ability to reduce chromate under aerobic and anaerobic conditions, making it an intriguing and useful model organism for the study of extremophilic bacteria in bioremediation applications. Genome sequence annotation suggested two potential mechanisms of Cr(VI) reduction, namely, a number of c-type cytochromes, and a predicted NADPH-dependent Cr(VI) reductase. In laboratory studies using pure cultures of JF-5, an NADPH-dependent chromate reductase activity was detected primarily in soluble protein fractions, and a periplasmic c-type cytochrome (ApcA) was also present, representing two potential means of Cr(VI) reduction. Upon further examination, it was determined that the NADPH-dependent activity was not specific for Cr(VI), and the predicted proteins were not detected in Cr(VI)-grown cultures. Proteomic data did show measureable amounts of ApcA in cells grown with Cr(VI). Purified ApcA is reducible by menadiol, and in turn can reduce Cr(VI), suggesting a means to obtain electrons from the respiratory chain and divert them to Cr(VI). Electrochemical measurements confirm that Cr reduction by ApcA is pH dependent, with low pH being favored. Homology modeling of ApcA and comparison to a known Cr(VI)-reducing c-type cytochrome structure revealed basic amino acids which could interact with chromate ion. From these studies, it can be concluded that A. cryptum has the physiologic and genomic capability to reduce Cr(VI) to the less toxic Cr(III). However, the expected chromate reductase mechanism may not be the primary means of Cr(VI) reduction in this organism.  相似文献   

11.
Three efficient Cr(VI) reducing bacterial strains were isolated from Cr(VI) polluted landfill and characterized for in vitro Cr(VI) reduction. Phylogenetic analysis using 16S rRNA gene sequencing revealed that the newly isolated strains G1DM20, G1DM22 and G1DM64 were closely related to Bacillus cereus, Bacillus fusiformis and Bacillus sphaericus, respectively. The suspended cultures of all Bacillus sp. exhibited more than 85% reduction of 1000 microM Cr(VI) within 30 h. The suspended culture of Bacillus sp. G1DM22 exhibited an ability for continuous reduction of 100 microM Cr(VI) up to seven consecutive inputs. Assays with the permeabilized cells and cell-free extracts from each of Bacillus sp. demonstrated that the hexavalent chromate reductase activity was mainly associated with the soluble fraction of cells and expressed constitutively. The Cr(VI) reduction by the cell-free extracts of Bacillus sp. G1DM20 and G1DM22 was maximum at 30 degrees C and pH 7 whereas, Bacillus sp. G1DM64 exhibited maximum Cr(VI) reduction at pH 6. Addition of 1mM NADH enhanced the Cr(VI) reductase activity in the cell-free extracts of all three isolates. Amongst all three isolates tested, crude cell-free extracts of Bacillus sp. G1DM22 exhibited the fastest Cr(VI) reduction rate with complete reduction of 100 microM Cr(VI) within 100 min. The apparent K(m) and V(max) of the chromate reductase activity in Bacillus sp. G1DM22 were determined to be 200 microM Cr(VI) and 5.5 micromol/min/mg protein, respectively. The Cr(VI) reductase activity in cell-free extracts of all the isolates was stable in presence of different metal ions tested except Hg(2+) and Ag(+).  相似文献   

12.
A pseudomonad (CRB5) isolated from a decommissioned wood preservation site reduced toxic chromate [Cr(VI)] to an insoluble Cr(III) precipitate under aerobic and anaerobic conditions. CRB5 tolerated up to 520 mg of Cr(VI) liter−1 and reduced chromate in the presence of copper and arsenate. Under anaerobic conditions it also reduced Co(III) and U(VI), partially internalizing each metal. Metal precipitates were also found on the surface of the outer membrane and (sometimes) on a capsule. The results showed that chromate reduction by CRB5 was mediated by a soluble enzyme that was largely contained in the cytoplasm but also found outside of the cells. The crude reductase activity in the soluble fraction showed a Km of 23 mg liter−1 (437 μM) and a Vmax of 0.98 mg of Cr h−1 mg of protein−1 (317 nmol min−1 mg of protein−1). Minor membrane-associated Cr(VI) reduction under anaerobiosis may account for anaerobic reduction of chromate under nongrowth conditions with an organic electron donor present. Chromate reduction under both aerobic and anaerobic conditions may be a detoxification strategy for the bacterium which could be exploited to bioremediate chromate-contaminated or other toxic heavy metal-contaminated environments.  相似文献   

13.
Chromate [Cr(VI)] is a serious environmental pollutant, which is amenable to bacterial bioremediation. NfsA, the major oxygen-insensitive nitroreductase of Escherichia coli, is a flavoprotein that is able to reduce chromate to less soluble and less toxic Cr(III). We show that this process involves single-electron transfer, giving rise to a flavin semiquinone form of NfsA and Cr(V) as intermediates, which redox cycle, generating more reactive oxygen species (ROS) than a divalent chromate reducer, YieF. However, NfsA generates less ROS than a known one-electron chromate reducer, lipoyl dehydrogenase (LpDH), suggesting that NfsA employs a mixture of uni- and di-valent electron transfer steps. The presence of YieF, ChrR (another chromate reductase we previously characterized), or NfsA in an LpDH-catalysed chromate reduction reaction decreased ROS generation by c. 65, 40, or 20%, respectively, suggesting that these enzymes can pre-empt ROS generation by LpDH. We previously showed that ChrR protects Pseudomonas putida against chromate toxicity; here we show that NfsA or YieF overproduction can also increase the tolerance of E. coli to this compound.  相似文献   

14.
Hexavalent chromium reduction by bacteria from tannery effluent   总被引:2,自引:0,他引:2  
Chromium is generated from several industrial processes. It occurs in different oxidation states, but Cr(III) and Cr(VI) are the most common ones. Cr(VI) is a toxic, soluble environmental contaminant. Some bacteria are able to reduce hexavalent chromium to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of considerable interest. An indigenous chromium-reducing bacterial strain, Rb-2, isolated from a tannery water sample, was identified as Ochrobactrum intermedium, on the basis of 16S rRNA gene sequencing. The influence of factors like temperature of incubation, initial concentration of Cr, mobility of bacteria, and different carbon sources were studied to test the ability of the bacterium to reduce Cr(VI) under variable environmental conditions. The ability of the bacterial strain to reduce hexavalent chromium in artificial and industrial sewage water was evaluated. It was observed that the mechanism of resistance to metal was not due to the change in the permeability barrier of the cell membrane, and the enzyme activity was found to be inductive. Intracellular reduction of Cr(VI) was proven by reductase assay using cell-free extract. Scanning electron microscopy revealed chromium precipitates on bacterial cell surfaces, and transmission electron microscopy showed the outer as well as inner distribution of Cr(VI). This bacterial strain can be useful for Cr(VI) detoxification under a wide range of environmental conditions.  相似文献   

15.
Cell-free extracts (CFEs) of chromium-resistant bacterium Bacillus sphaericus AND 303 isolated from serpentine soil of Andaman, India reduced Cr(VI) in in vitro condition, and the reductase activity was solely localized in the soluble cell-fractions (S12, S32, and S150). The enzyme was constitutive as the CFEs from cells grown in Cr(VI)-free and Cr(VI)-containing media reduced a more or less equal amount of Cr(VI). Optimum Cr(VI) reductase activity was obtained at an enzyme (S150) concentration equivalent to 4.56 mg protein/mL, 300 μM Cr(VI) and pH 6.0 after 30 min incubation at 30°C. The enzyme was heat labile; 80% of its activity was lost when exposed at 70°C for 15 min. Kinetics of Cr(VI) reductase activity fit well with the linearized Lineweaver-Burk plot and showed a Vmax of 1.432 μmol Cr(VI)/mg protein/min and Km of 158.12 μM Cr(VI). The presence of additional electron donors accelerated Cr(VI) reductase activity of CFE, and an increase of 28% activity over control was recorded with 1.0 μM NADH. Heavy metal ions such as Ni(II), Cu(II), and Cd(II) were strong inhibitors of Cr(VI) reductase unlike that of 100 μM Co(II), which retained 93% activity over control.  相似文献   

16.
The Fe(III) reductase activity was studied in the South African Fe(III)-reducing bacterium, Thermus scotoductus (SA-01). Fractionation studies revealed that the membrane as well as the soluble fraction contained NAD(P)H-dependent Fe(III) reductase activity. The membrane-associated enzyme was solubilized by KCl treatment and purified to electrophoretic homogeneity by hydrophobic interaction chromatography. A combination of ion-exchange and gel filtration chromatography was used to purify the soluble enzyme to apparent homogeneity. The molecular mass of the membrane-associated Fe(III) reductase was estimated to be 49 kDa, whereas the soluble Fe(III) reductase had an apparent molecular mass of 37 kDa. Optimum activity for the membrane-associated enzyme was observed at around 75 degrees C, whereas the soluble enzyme exhibited a temperature optimum at 60 degrees C.  相似文献   

17.
The chromate reductase purified from Pseudomonas ambigua was found to be homologous with several nitroreductases. Escherichia coli DH5α and Vibrio harveyi KCTC 2720 nitroreductases were chosen for the present study, and their chromate-reducing activities were determined. A fusion between glutathione S-transferase (GST) and E. coli DH5α NfsA (GST-EcNfsA), a fusion between GST and E. coli DH5α NfsB (GST-EcNfsB), and a fusion between GST and V. harveyi KCTC 2720 NfsA (GST-VhNfsA) were prepared for their overproduction and easy purification. GST-EcNfsA, GST-EcNFsB, and GST-VhNFsA efficiently reduced nitrofurazone and 2,4,6-trinitrotoluene (TNT) as their nitro substrates. The Km values for GST-EcNfsA, GST-EcNfsB, and GST-VhNfsA for chromate reduction were 11.8, 23.5, and 5.4 μM, respectively. The Vmax values for GST-EcNfsA, GST-EcNfsB, and GST-VhNfsA were 3.8, 3.9, and 10.7 nmol/min/mg of protein, respectively. GST-VhNfsA was the most effective of the three chromate reductases, as determined by each Vmax/Km value. The optimal temperatures of GST-EcNfsA, GST-EcNfsB, and GST-VhNfsA for chromate reduction were 55, 30, and 30°C, respectively. Thus, it is confirmed that nitroreductase can also act as a chromate reductase. Nitroreductases may be used in chromate remediation. GST-EcNfsA, GST-EcNfsB, and GST-VhNfsA have a molecular mass of 50 kDa and exist as a monomer in solution. Thin-layer chromatography showed that GST-EcNfsA, GST-EcNfsB, and GST-VhNfsA contain FMN as a cofactor. GST-VhNfsA reduced Cr(VI) to Cr(III). Cr(III) was much less toxic to E. coli than Cr(VI).  相似文献   

18.
Bacillus strain QC1-2, isolated from a chromium-polluted zone, was selected by its high ability to both tolerate and reduce hexavalent chromium [Cr(VI)] to less-toxic trivalent chromium [Cr(III)]. Cell suspensions of strain QC1-2 rapidly reduced Cr(VI), in both aerobic and anaerobic conditions, to Cr(III) which remained in the supernatant. Cr(VI) reduction was dependent on the addition of glucose but sulfate, an inhibitor of chromate transport, had no effect. Studies with permeabilized cells and cell extracts showed that the Cr(VI) reductase of strain QC1-2 is a soluble NADH-dependent enzyme.  相似文献   

19.
A membrane-associated chromate reductase from Thermus scotoductus SA-01 has been purified to apparent homogeneity and shown to couple the reduction of Cr(VI) to NAD(P)H oxidation, with a preference towards NADH. The chromate reductase is a homodimer with a monomeric molecular weight of 48 kDa and a noncovalently bound FAD coenzyme. The enzyme is optimally active at a pH of 6.5 and 65 degrees C with a K(m) of 55.5+/-4.2 microM and a V(max) of 2.3+/-0.1 micromol Cr(VI) min(-1) mg(-1) protein. The catalytic efficiency (k(cat)/K(m)) of the enzyme was found to be comparable to that found for quinone reductases but more efficient than the nitroreductases. N-terminal sequencing and subsequent screening of a genomic library of T. scotoductus revealed an ORF of 1386 bp, homologous (84%) to the dihydrolipoamide dehydrogenase gene of Thermus thermophilus HB8. These results extend the knowledge of chromate reductases mediating Cr(VI) reduction via noncovalently bound or free redox-active flavin groups and the activity of dihydrolipoamide dehydrogenases towards physiologically unrelated substrates.  相似文献   

20.
Hexavalent chromium (Cr(VI)) is a well-designated human lung carcinogen, with solubility playing an important role in its carcinogenic potential. Although it is known that particulate or water-insoluble Cr(VI) compounds are more potent than the soluble species of this metal, the mechanisms of action are not fully elucidated. In this study, we investigated the hypothesis that the difference in potency between particulate and soluble Cr(VI) is due to more chronic exposures with particulate chromate because it can deposit and persist in the lungs while soluble chromate is rapidly cleared. Chronic exposure to both insoluble lead chromate and soluble sodium chromate induced a concentration and time-dependent increase in intracellular Cr ion concentrations in cultured human lung fibroblasts. Intracellular Pb levels after chronic exposure to lead chromate increased in a concentration-dependent manner but did not increase with longer exposure times up to 72 h. We also investigated the effects of chronic exposure to Cr(VI) on clastogenicity and found that chronic exposure to lead chromate induces persistent or increasing chromosome damage. Specifically, exposure to 0.5 microg/cm(2) lead chromate for 24, 48 and 72 h induced 23, 23 and 27% damaged metaphases, respectively. Contrary to lead chromate, the amount of chromosome damage after chronic exposure to sodium chromate decreased with time. For example, cells exposed to 1 microM sodium chromate for 24, 48 and 72 h induced 23, 13 and 17% damaged metaphases, respectively. Our data suggest a possible mechanism for the observed potency difference between soluble and insoluble Cr(VI) compounds is that chronic exposure to particulate Cr(VI) induces persistent chromosome damage and chromosome instability while chromosome damage is repaired with chronic exposure to soluble Cr(VI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号