首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When highly purified myelin from rat sciatic nerve was incubated with [γ-32P]ATP, protein components of the membrane were phosphorylated indicating the presence of both the substrate (receptor protein) and an endogenous kinase in the membrane. Polyacrylamide gel electrophoresis of the phosphorylated membrane proteins followed by scintillation counting of gel slices and autoradiography showed that the polypeptides of molecular weights 28000, 23000 and 19000 were phosphorylated, and 32P from [γ-32P]ATP having been incorporated into serine residues of the substrate proteins. Phosphorylation of purified myelin was Mg2+-dependent, was optimal at pH 6.5 and was not stimulated by adenosine 3′,5′-monophosphate. We found that proteins other than those in myelin, such as phosvitin, casein, protamine and histones, can also act as a substrate for the membrane associated kinase. Muscle protein kinase inhibitor had no effect on the endogenous phosphorylation of myelin proteins or on the phosphorylation of phosvitin by peripheral nerve myelin protein kinase. However, the phosphorylation of histone by peripheral nerve myelin protein kinase was inhibited by the protein kinase inhibitor. After washing the membrane with 150 mM KCl the protein kinase that utilizes histone as substrate was found in the supernatant. In contrast, the endogenous phosphorylation of membrane proteins or the phosphorylation of phosvitin by the membrane associated kinase was not affected by washing.From these findings we conclude that at least two protein kinase systems exist in purified peripheral nerve myelin. One system is not inhibited by muscle kinase inhibitor, is tightly bound to the membrane and utilizes as its receptor proteins either exogenous phosvitin or endogenous membrane proteins. The second system is inhibited by muscle kinase inhibitor, is removable from the membrane and utilizes histones as its receptor proteins.  相似文献   

2.
Differential centrifugation was used to prepare heavy and light membrane fractions from the seminal plasma of vasectomized men. The two membrane fractions combined contained half of the phosvitin and histone kinase activities but only 7% of the total protein content in vasectomy semen. These two kinase activities as well as phosphorylation of endogenous membrane proteins were optimally stimulated by Mg2+; Mn2+ could effectively substitute for Mg2+ only in endogenous phosphorylation reactions. Neither the phosvitin nor histone kinase responded to cAMP or cGMP, but the histone kinase was strongly inhibited by the heat-stable cAMP-dependent protein kinase inhibitor. The phosvitin kinase was not affected by this inhibitor. The phosphorylation of endogenous proteins in the heavy membrane fraction was not affected by the protein kinase inhibitor but protein phosphorylation in the light membrane fraction was partly (45%) inhibited. The differential effects of increased ionic strength, sulphydryl protecting agents, and the protein kinase inhibitor on protein kinase activity towards lysine-rich histones, phosvitin and endogenous proteins, as well as differential extractability and binding to an anion exchange column of histone kinase and phosvitin kinase activities, indicate that more than one kinase activity is present in these membrane subfractions. Electron microscopic examination showed that there are several kinds of membrane-limited components in vasectomy seminal fluid that vary in size, density, and ultrastructure. The association of type(s) of protein kinase to individual membrane components remains to be established.  相似文献   

3.
The presence of a protein kinase capable of phosphorylating endogenous as well as exogenously added myelin basic proteins has been demonstrated in a myelin-like membrane fraction isolated from reaggregating and surface adhering, primary cultures of cells dissociated from embryonic mouse brain. Only the large and small components of myelin basic proteins were found to be phosphorylated when myelin-like membrane fraction was incubated with [-32P]ATP. The protein kinase endogenous to the myelin-like membrane fraction was mainly of the cyclic AMP independent type. There was very little cyclic AMP dependent or cyclic GMP dependent protein kinase activities in this myelin-like fraction. Although the myelin basic proteins were the only endogenous proteins phosphorylated, protein kinase of the myelin-like membrane was capable of catalyzing the phosphorylation of exogenous substrates, such as histones.  相似文献   

4.
A protein kinase of 57 kDa, able to phosphorylate tyrosine in synthetic substrates pol(Glu4,Tyr1) and a fragment of Src tyrosine kinase, was isolated and partly purified from maize seedlings (Zea mays). The protein kinase was able to phosphorylate exogenous proteins: enolase, caseins, histones and myelin basic protein. Amino acid analysis of phosphorylated casein and enolase, as well as of phosphorylated endogenous proteins, showed that both Tyr and Ser residues were phosphorylated. Phosphotyrosine was also immunodetected in the 57 kDa protein fraction. In the protein fraction there are present 57 kDa protein kinase and enolase. This co-purification suggests that enolase can be an endogenous substrate of the kinase. The two proteins could be resolved by two-dimensional electrophoresis. Specific inhibitors of typical protein-tyrosine kinases had essentially no effect on the activity of the maize enzyme. Staurosporine, a nonspecific inhibitor of protein kinases, effectively inhibited the 57 kDa protein kinase. Also, poly L-lysine and heparin inhibited tyrosine phosphorylation by 57 kDa maize protein kinase. The substrate and inhibitor specificities of the 57 kDa maize protein kinase phosphorylating tyrosine indicate that it is a novel plant dual-specificity protein kinase.  相似文献   

5.
6.
Plasma membrane preparations from lymphocytes, platelets and red cells were phosphorylated in the presence of [gamma-32 P]ATP. The dissociated catalytic subunit of cyclic AMP-dependent protein kinase increased the 32P-labelling of proteins and polyphosphoinositides in lymphocyte, platelet and in some red cell membranes. In the majority of red cell membrane preparations the 32P-labelling of proteins and polyphosphoinositides seemed to be stimulated by the catalytic subunit of the endogenous protein kinase, since the phosphorylation was not increased by the addition of the catalytic subunit but it was decreased by the heat-stable inhibitor protein of the protein kinase. Different sets of 32P-labelled proteins were shown by SDS-gel electrophoresis in the membranes of the 3 cell types. A 24000-Mr protein was the only one which was phosphorylated by the catalytic subunit in each membrane.  相似文献   

7.
The activity of endogenous nuclear protein kinases has been probed in an vitro assay system of isolated nuclei from Chironomus salivary gland cells. The phosphorylation of a set of seven prominent rapidly phosphorylated non-histone proteins and of histones H3, H2A and H4 was analyzed using ATP or GTP as phosphoryl donor and heparin as protein kinase effector. The core histones H2A and H3 both incorporate 32P from [gamma-32P]ATP as well as from [gamma-32P]GTP but their phosphorylation is differentially affected by heparin. The phosphorylation of H2A is blocked by heparin while that of H3 is even stimulated in the presence of heparin when ATP is used as phosphate donor. H4 is unable to incorporate phosphate groups from GTP but its ATP-based phosphorylation is heparin sensitive. Of the non-histone protein kinase substrates, we could only detect two, the 44-kDa and 115-kDa proteins, which are heparin sensitive with either ATP or GTP and, thus, strictly meet the criteria for casein kinase type II-specific phosphorylation. The investigated histones and non-histone proteins can be grouped into three broad categories on the basis of their phosphorylation properties. (A) Proteins very likely affected by casein kinase NII. (B) Proteins phosphorylated by strictly ATP-specific protein kinases. (C) Proteins phosphorylated by ATP as well as GTP utilizing protein kinase(s) other than casein NII. Category B proteins can be subdivided into proteins phosphorylated in a heparin-resistant (B1) and heparin-sensitive (B2) manner. The phosphorylation of category C proteins may be heparin sensitive with ATP only (C1), heparin sensitive with GTP only (C2), heparin insensitive with both ATP and GTP (C3) or stimulated by heparin (C4).  相似文献   

8.
A nuclear system for studying nuclear protein phosphorylation is characterized, using as phosphate donor either low levels of [gamma-32P]GTP, low levels of [gamma-32P]ATP, or low levels of labeled ATP plus excess unlabeled GTP. Since nuclear casein kinase II is the only described nuclear protein kinase to use GTP with high affinity, low levels of GTP should specifically assay this enzyme. ATP should measure all kinases, and ATP plus unlabeled GTP should measure all kinases except nuclear casein kinase II (ATP-specific kinases). The results are consistent with these predictions. In contrast with the ATP-specific activity, endogenous phosphorylation with GTP was enhanced by 100 mM NaCl, inhibited by heparin and quercetin, stimulated by polyamines, and did not use exogenous histone as substrate. The GTP- and ATP-specific kinases phosphorylated different subsets of about 20 endogenous polypeptides each. Addition of purified casein kinase II enhanced the GTP-supported phosphorylation of the identical proteins that were phosphorylated by endogenous kinase. These results support the hypothesis that activity measured with GTP is catalyzed by nuclear casein kinase II, though other minor kinases which can use GTP are not ruled out. Preliminary observations with this system suggest that the major nuclear kinases exist in an inhibited state in nuclei, and that the effects of polyamines on nuclear casein kinase II activity are substrate specific. This nuclear system is used to determine if the C-proteins of hnRNP particles, previously shown to be substrates for nuclear casein kinase II in isolated particles, is phosphorylated by GTP in intact nuclei. The results demonstrate that the C-proteins are effectively phosphorylated by GTP, but in addition they are phosphorylated by ATP-specific kinase activity.  相似文献   

9.
A cyclic nucleotide-independent protein kinase of human platelets, which phosphorylated histones, myelin basic protein and protamine and did not catalyze the phosphorylation of acidic proteins such as casein, phosvitin and myosin light chain, has been purified approx. 1,500-fold from the crude extract by steps of DEAE-cellulose, Sephadex G-200, hydroxylapatite and phosphoryl cellulose column chromatography. The substrate phosphorylation by this kinase was markedly enhanced by calmodulin even in the absence of Ca2+, when mixed histone was used as a substrate. The interaction of the kinase with mixed histone resulted in an irreversible inactivation of the enzyme. Calmodulin prevented this inactivation, and this compound produced an apparent increase in histone phosphorylation by the kinase. It should be noted that acidic polypeptides such as troponin-C, phospholipids and nucleic acids have a similar ability. The addition of Ca2+ reduced the effect of calmodulin more than the effects of other acidic compounds.  相似文献   

10.
More than 40 protein species including RNA polymerase were found to be phosphorylated in Escherichia coli on analyses of 32P-labeled cell lysates by single and two-dimensional gel electrophoresis and autoradiography. The protein species and the level of phosphorylation varied depending on the cell growth phase. With [gamma-32P]ATP as a substrate, cell lysates phosphorylated endogenous proteins in vitro which were predominantly phosphorylated in vivo. Both serine and threonine were the major phosphate acceptors in whole cell lysates. Starting from a partially purified RNA polymerase preparation with the protein phosphorylation activity and using an E. coli protein with an apparent Mr = 90K (K represents X 1000) as the substrate, we purified a protein kinase with a native Mr approximately 120K to apparent homogeneity. The protein kinase is either a heterodimer of 61K and 66K polypeptides or a homodimer of one of these polypeptides. We also isolated a 100K protein with self-phosphorylation activity.  相似文献   

11.
Incubation of purified vaccinia virus with gamma-(32)P-adenosine triphosphate resulted in the incorporation of (32)P into hot trichloroacetic acid-insoluble material. Enzymatic activity was completely dependent on the addition of divalent cations and was stimulated by nonionic detergents and dithiothreitol. Chemical studies demonstrated that serine and threonine residues of 15,000 molecular weight viral polypeptides were phosphorylated. In contrast, the major structural proteins were not phosphorylated or were phosphorylated to a much lesser extent. Added histones and protamine, but not serum albumin, casein, or phosvitin were phosphorylated by the partially disrupted vaccinia virus preparations. The protein kinase was tightly associated with vaccinia virus particles since the specific enzymatic activity remained constant during the final steps of virus purification, the specific activities of many different preparations of virus were similar, and the enzymatic activity cosedimented with vaccinia virus during rate zonal sucrose gradient and potassium tartrate gradient equilibrium centrifugations. Controlled degradation of vaccinia virus, with nonionic detergents and dithiothreitol, indicated that both the protein kinase and the specific phosphate acceptor proteins were located in the virus core.  相似文献   

12.
We have characterized a novel ecto-protein kinase activity and a novel ecto-protein phosphatase activity on the membrane surface of human platelets. Washed intact platelets, when incubated with [gamma-32P]ATP in Tyrode's buffer, showed the phosphorylation of a membrane surface protein migrating with an apparent molecular mass of 42 kDa on 5-15% SDS polyacrylamide gradient gels. The 42 kDa protein could be further resolved on 15% SDS gels into two proteins of 39 kDa and 42 kDa. In this gel system, it was found that the 39 kDa protein became rapidly phosphorylated and dephosphorylated, whereas the 42 kDa protein was phosphorylated and dephosphorylated at a much slower rate. NaF inhibited the dephosphorylation of these proteins indicating the involvement of an ecto-protein phosphatase. The platelet membrane ecto-protein kinase responsible for the phosphorylation of both of these proteins was identified as a serine kinase and showed dependency on divalent cations Mg2+ or Mn2+ ions. Ca2+ ions potentiated the Mg(2+)-dependent ecto-protein kinase activity. The ecto-protein kinase rapidly phosphorylated histone and casein added exogenously to the extracellular medium of intact platelets. Following activation of platelets by alpha-thrombin, the incorporation of [32P]phosphate from exogenously added [gamma-32P]ATP by endogenous protein substrates was reduced by 90%, suggesting a role of the ecto-protein kinase system in the regulation of platelet function. The results presented here demonstrate that both protein kinase and protein phosphatase activities reside on the membrane surface of human platelets. These activities are capable of rapidly phosphorylating and dephosphorylating specific surface platelet membrane proteins which may play important roles in early events of platelet activation and secretion.  相似文献   

13.
Polypeptide composition and endogenous phosphorylation were investigated in the subfractions of rat brain myelin isolated by either discontinuous or continuous sucrose density gradient centrifugation of myelin. Similarly, a myelin-like membrane fraction (SN4) was also studied. Observations were made that strongly indicated the presence of a calcium-stimulated protein kinase in a highly purified myelin preparation and which exclusively phosphorylated myelin basic proteins of the membrane preparation. Adenosine cyclic 3',5'-phosphate (cAMP) stimulated kinase on the other hand was found to be considerably enriched in the myelin-like membrane fraction. Although this latter enzyme is also capable of phosphorylating the basic proteins, its effect was at least 5 times weaker compared to the calcium-stimulated myelin protein kinase. Within the gradient subfractions there appeared a close relation between the amount of basic proteins and their calcium-stimulated phosphorylation; a similar relationship, however, was not obtained in the case of cAMP-dependent phosphorylation of myelin basic proteins. The former (i.e., Ca2+-stimulated phosphorylation) was found to require a protein factor that functionally resembled calmodulin. The results thus raises an interesting possibility of the presence of calmodulin-like proteins and a calcium-stimulated protein kinase in adult myelin membrane from mammalian brain, both of which have been hitherto unrecognized constituents of myelin membranes.  相似文献   

14.
Cycle-purified microtubule protein from mammalian brain incorporated [32P]Pi upon incubation with [gamma-32P]GTP under the conditions used to promote assembly. This phosphorylation also occurred in the same proteins when phosphorylated with [gamma-32P]ATP and was only slightly stimulated by cAMP. GTP was a much less effective substrate than ATP. The transfer of phosphoryl groups from [gamma-32P]GTP to endogenous proteins followed a linear time-course and was stimulated by low concentrations of ATP and, more efficiently, by ADP. These data are in agreement with the predictions derived from a mechanism of phosphorylation by which [gamma-32P]GTP does not act as a phosphoryl donor for the protein kinase activity but, instead, only as a repository of high group transfer potential phosphoryl groups used to make [gamma-32P]ATP, from contaminating ADP, by means of the nucleoside diphosphate kinase activity. Using 100 mM fluoride, which suppressed protein phosphorylation without inhibiting the nucleoside diphosphate kinase activity, formation of [gamma-32P]ATP was detected. Fluoride was also able to protect microtubules from a slow depolymerization which was found to occur during long-term incubation of microtubules. This indicates that the phosphorylation observed in the presence of GTP is sufficient to destabilize microtubules.  相似文献   

15.
Ganglioside-modulated protein phosphorylation in myelin   总被引:5,自引:0,他引:5  
Gangliosides have profound effects on the phosphorylation of several proteins in myelin. Addition of polysialogangliosides to purified guinea pig brain myelin enhanced the endogenous phosphorylation of a 62-kDa phosphoprotein, but completely inhibited the phosphorylation of myelin basic protein (MBP) (18.5 kDa). The ganglioside-stimulated phosphorylation of the 62-kDa protein was dose-dependent and -specific. Asialo-GM1, ceramide trihexosides, N-acetylneuraminic acid, or colominic acid alone could not mimic this effect, suggesting that the activation process requires both the hydrophobic head group and the anionic character of the gangliosides. Studies on the time course of this reaction revealed that it was a rapid and reversible process and was affected only very slightly by Ca2+. Thus, the stimulatory effect of gangliosides may not involve Ca2+-gangliosides complexes or proteolysis, but may be mediated through an activation of a ganglioside-dependent protein kinase or due to substrate protein-glycolipid interaction. Modulation of the phosphorylation of MBP by gangliosides varies with the states of phosphorylation of this protein. Prior addition of ganglioside to myelin inhibited the phosphorylation of MBP. However, addition of gangliosides to myelin subsequent to maximal phosphorylation of MBP retarded the dephosphorylation of this protein. Phosphorylation of isolated MBP by protein kinase C was stimulated by gangliosides, provided phosphatidylserine was present. In contrast, the glycolipid inhibited the phosphorylation of a unique site catalyzed by cAMP-dependent protein kinase. This site was distinct from those phosphorylated by protein kinase C and was also sensitive to chymotryptic cleavage. Although the exact physiological significance of protein phosphorylation in myelin has yet to be established, gangliosides may play an important role in the modulation of this reversible post-translational modification mechanism.  相似文献   

16.
Rat heart plasma membranes contain a calcium-dependent protein kinase which phosphorylates endogenous protein substrates as well as added histones. The major endogenous protein phosphorylated is of 17 kDa on SDS-polyacrylamide gel electrophoresis. Proteins of 85 kDa and 60 kDa were also phosphorylated. Treatment of a rat heart homogenate with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate increased the recovery of kinase activity in the sarcolemmal membranes by up to 10-fold. The activity in such membranes was no longer calcium dependent. Although several histones were effective substrates for the enzyme, myosin light chain and phosvitin were not phosphorylated. These membranes contain a very active ATP hydrolysing activity which necessitated very brief incubation times to avoid loss of substrate. The membranes also contain cyclic AMP dependent protein kinase activity which is not active unless cyclic AMP is added to the incubations. The calcium dependent endogenous kinase, which is not inhibited by the heat stable inhibitor protein of cyclic AMP-dependent kinase, or by trifluoperazine, has several properties in common with protein kinase C. Preincubation of the sarcolemmal membranes with a high concentration of insulin caused inhibition of the phosphorylation of the endogenous 17 kDa and 85 kDa bands. There was no effect on the phosphorylation of the 60 kDa peptide. This effect of insulin was specific for the hormone and required preincubation of the hormone with the membranes for 20 min.  相似文献   

17.
Membranes prepared from A-431 human epidermoid carcinoma cells retained the ability to bind 125I-labeled epidermal growth factor (EGF) in a specific manner. In the presence of [gamma-32P]ATP and Mn2+ or Mg2+, this membrane preparation was capable of phosphorylating endogenous membrane components, including membrane-associated proteins; the major phosphorylated amino acid residue detected in partial acid hydrolysates was phosphothreonine. The binding of EGF to these membranes in vitro resulted in a severalfold stimulation of the phosphorylation reaction; again, the major phosphorylated amino acid residue detected in partial acid hydrolysates was phosphothreonine. Membrane-associated dephosphorylation reactions did not appear to be affected by EGF. The phosphorylation reaction was not stimulated by cyclic AMP or cyclic GMP in the absence or presence of EGF. The phosphorylation system of the membrane was able to utilize [gamma-32P]GTP in both the basal and EGF-stimulated reactions. The enhanced membrane phosphorylation was specific for EGF and its derivatives; a wide variety of other peptide hormones were ineffective. The A-431 membrane preparation also was capable of phosphorylating exogenous proteins, such as histone, phosvitin, and ribonuclease, by a process which was stimulated by EGF. These findings suggest that one of the biochemical consequences of the binding of EGF to membranes is a rapid activation of a cyclic AMP-independent phosphorylating system.  相似文献   

18.
The presence of protein kinase activity and its phosphorylated products has been demonstrated on the outer surface of the plasma membrane of endothelial cells. Extracellular phosphorylation was detected by incubation of primary endothelial cells (HUVEC's) and endothelial cell line EA.hy 926 with [gamma-32P]ATP. The reaction products were subjected to SDS/PAGE, autoradiography and scanning densitometry. Under the experimental conditions, five proteins with apparent molecular masses of 19, 23, 55, 88, and 110 kDa were prominently phosphorylated in both types of cells. Phosphorylation of the 19 kDa protein was the most rapid reaching maximum after 60 s and then the protein became dephosphorylated. Ecto-protein kinases responsible for the surface labeling of membrane proteins were characterized by using (a) protein kinase C inhibitors: K-252b, chelerythrine chloride, and [Ala113] myelin basic protein (104-118), (b) protein kinase A inhibitor Kemptide 8334, and (c) casein kinase II inhibitor 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole (DRB). Stimulation of endothelial cells with tumor necrosis factor alpha (TNF alpha) and interferon gamma (IFN gamma) is associated with 20-80% reduction of extracellular phosphorylation of all membrane proteins. IFN gamma bound to membrane receptors becomes rapidly phosphorylated. Only in the case of IFN gamma it was associated with the appearance of a strongly phosphorylated band of 17 kDa corresponding to IFN gamma itself. Phosphorylation of this 17 kDa exogenous substrate was prevented by an ecto-kinase inhibitor K-252b. The existence of ecto-phosphoprotein phosphatase activity in endothelial cells was evidenced by testing the effect of microcystin LR--a membrane impermeable reagent that inhibits both PP-1 and PP-2a phosphoprotein phosphatases. The extent of phosphorylation of 19 kDa and 110 kDa phosphoproteins significantly increased in the presence of microcystin. Our results suggest the presence of at least two ecto-kinase activities on endothelial cells that may play a significant role(s) in the regulation of cytokines function.  相似文献   

19.
Crude ribosomes from Saccharomyces cerevisiae cultures were phosphorylated in vitro when incubated in the presence of [gamma-32P]ATP. Analysis of the ribosomal proteins with two-dimensional electrophoresis revealed that of the 29 proteins identified in the small subunit, only protein S6 was phosphorylated. Of the 37 proteins identified in the large subunit, one was highly phosphorylated (L3) and two only slightly phosphorylated (L11 and L14). The protein kinase activity associated with the ribosomes was extracted with 1 M KCl and was not dependent on adenosine 3':5'-monophosphate; it preferentially phosphorylated casein and phosvitin, but was less active on histones. Structural ribosomal proteins were also phosphorylated in vivo when the yeast cultures were incubated with [32P]orthophosphate; the radioactivity resistant to hydrolysis by hot perchloric acid was incorporated into the proteins of the two subunits. Radioactive phosphoserine was found by subjecting hydrolysates of ribosomal proteins to high-voltage electrophoresis. After two-dimensional electrophoresis, one poorly phosphorylated protein (S10) was identified in the small subunit. In the large subunit, one protein (L3) was highly labelled, and two proteins (L11 and L24) only slightly labelled.  相似文献   

20.
The purified membrane fragments of sarcoplasmic reticulum (SR) of rabbit fast skeletal muscles were found to incorporate 32P from[gamma-32P]ATP in endogenous membrane substrates and in histone H1. The existence of membrane-bound protein kinase of SR was demonstrated by steady state binding of [3H]-cAMP to the SR membranes. The constant of [3H]cAMP binding to the membranes is 2.5 +/- 0.003 x 10(6) M-1, the number of binding sites is 6.1 +/- 0.8 pmol per 1 mg of protein. The endogenous phosphorylation of SR components was inhibited by cAMP and cGMP at concentrations of 10(-7)-10(-6) and depended on Mg2+ and Ca2+. The thermostable protein inhibitor of cAMP-dependent protein kinase inhibited the endogenous phosphorylation of SR membranes by 30-40%. The protein phosphoproduct of SR membranes revealed the properties of a phosphoester. The membrane-bound protein kinase was active towards the exogenous substrate--histone H1. Phosphorylation in the presence of histones was independent of cyclic nucleotides, Mg2+ and Ca2+. Fractionation of 32P-labelled solubilized membranes in polyacrylamide gel in the presence of Na-SDS showed that the radioactivity is bound to protein zones with molecular weights of 95 000 and 6000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号