首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of adrenergic fibres in the ganglionated plexuses of the porcine small intestine has been made on air-dried stretch preparations using the glyoxylic acid fluorescence method. Adrenergic fluorescent fibres occur in the ganglia and internodal strands of the three fundamental ganglionated plexuses: the myenteric plexus (Auerbach) and the two superimposed meshworks of the plexus submucosus , i.e. the plexus submucosus externus ( Schabadasch ) and the plexus submucosus internus (Meissner). The plexus Auerbach consists of densely glyoxylic acid induced fluorescent (GIF) elongated ganglia with in general a longitudinal axis running parallel to the circular muscle layer and large dense interconnecting fibre tracts with primary, secondary and tertiary subdivisions. In the ganglia, the fibres are varicose, forming large fluorescent 'baskets' which might be related to the occurrence of well defined enteric neurones. The plexus Schabadasch can be distinguished from the plexus Meissner by its size, strongly fluorescent ganglia and broad densely fluorescent internodal strands. The pattern of fluorescing ring-like formations at the margin and out of the nodes, clearly present in the Auerbach and Schabadasch plexuses, completely lack in the plexus Meissner, the latter being narrow-meshed with smaller fluorescent 'baskets', indicating that the corresponding neurones are smaller in size. In the ganglionic nodes of all three plexuses the axons display comparatively more varicosities than in the fibre tracts. Each of the three main ganglionated enteric plexuses are quite different with regard to the pattern of the adrenergic network both in the ganglia and in the strands.  相似文献   

2.
Whole-mount preparations of the porcine small intestine, consisting of the tela submucosa and the adjacent lamina muscularis mucosae, were used for scanning electron-microscopic investigation of the plexus submucosus externus (Schabadasch) after enzymatic digestion, fixation and HCI hydrolysis. The present results confirm previous light-microscopic data and provide irrefutable proof that within the submucosal plexus, considered by most authors as one ganglionated nerve plexus situated in the entirety of the tela submucosa, two distinct nerve meshworks can be distinguished, one lying close to the lamina muscularis mucosae, i.e., the plexus submucosus internus (Meissner), and the other, i.e., the plexus submucosus externus (Schabadasch), situated in the outer region of the tela submucosa against the circular smooth muscle layer. In addition to the distinct location of both plexuses, they are quite different with regard to the pattern and diameter of their nerve strands and the number and appearance of their ganglia.  相似文献   

3.
Scanning electron microscopy of whole-mount preparations of the tela submucosa in the porcine small intestine, examined after trypsin digestion, fixation and HCl hydrolysis, visualized a clear differentiation of the submucosal plexuses, i.e., the plexus submucosus internus (Meissner) and the plexus submucosus externus (Schabadasch). The distinctive features refer to the topography, number, size and shape of the ganglia and the number and diameter of the nerve strands. The plexus of Meissner is closely apposed to the external surface of the lamina muscularis mucosae by the enveloping connective tissue and by connecting strands penetrating the lamina muscularis mucosae. Three distinctive subdivisions of connecting strands can be identified. Since the glial cells covering the ganglia and connecting strands have been preserved, neither individual neuronal cells nor axons can be observed.  相似文献   

4.
Brehmer A  Stach W  Addicks K 《Acta anatomica》1994,151(3):188-193
Ultrastructural differences between ganglia of the plexus submucosus internus (Meissner; PSI) and plexus submucosus externus (Schabadasch; PSE) are described. Comparison revealed a different glia index (ratio glia per neuron) between the PSE (3:1) and the PSI (1:1), the arrangement of PSI neurons in compartments and the appearance of broad membrane-to-membrane appositions inside the compartments of the PSI. Structural and immunohistochemical differences between the two plexuses are discussed. In general, PSE neurons show a wider variety in size and shape than most of the PSI neurons.  相似文献   

5.
We examined the architecture of human submucosal nerve networks of gut segments derived from 12 individuals (each six from small and large intestines). Twelve undivided submucosal wholemounts were prepared and immunohistochemically stained for peripherin (nerve elements) and for α-smooth muscle actin (remnants of attached muscle bundles). We found two ganglionic nerve networks. The plexus submucosus externus was generally monolayered and located under the outermost surface of the submucosal wholemounts. Its nerve fibre strands frequently joined each other in acute or obtuse angles, the meshes of the network were relatively wide and frequently polyangular shaped. The plexus submucosus internus was generally multi-(mostly two- or three-)layered and occupied at least the inner half of the thickness of the wholemount, sometimes extending abluminally beyond the great submucosal vessels. Its meshes were irregular. The shapes of ganglia of the two plexus were generally different, those of the internal plexus were frequently grape-like whereas the neurons of external ganglia were mostly embedded in the contoures of the joining nerve fibres. Both plexus were intensely connected via coiled interconnecting strands, either with or without intercalated ganglia. For use of eponyms for two different submucosal plexus, the names of Meissner (inner) and Schabadasch (outer) are historically justified.  相似文献   

6.
Summary In the small intestine of the pig, neuromedin U (NMU)-immunoreactivity was mainly confined to the nerve plexus of the inner submucosal and mucosal regions. After colchicine treatment, a high number of immunoreactive nerve cell bodies was observed in the plexus submucosus internus (Meissner), whereas only a low number was found in the plexus submucosus externus (Schabadasch). The plexus myentericus as well as the aganglionic nerve meshworks in the circular and longitudinal smooth muscle layers almost completely lacked NMU-immunoreactivity. Double-labeling experiments demonstrated the occurrence of distinct NMU-containing neuron populations in the plexus submucosus internus: (1) relatively large type-II neurons revealing immunoreactivity for NMU and calcitonin gene-related peptide (CGRP) and/or substance P (SP); (2) a group of small NMU- and SP-immunoreactive neurons; (3) a relatively low number of small neurons displaying immunoreactivity for NMU but not for SP. Based on its distributional pattern, it is concluded that NMU plays an important role in the regulation and control of mucosal functions.  相似文献   

7.
Summary The morphological and topographical features of the intramural enteric nervous system in the small intestine of the pig has been studied on whole mounts by means of neuron-specific enolase (NSE) and S-100 protein immu-nohistochemistry. A clear visualization of the myenteric plexus allows the recognition of its characteristic morphology, including the thin tertiary plexus coursing within the smooth muscle layers. In the tela submucosa two ganglionated plexuses, each with its own specific characteristics, can clearly be demonstrated: (1) the plexus submucosus externus (Schabadasch) located near the inner surface of the circular muscle layer at the abluminal side of the submucosal vascular arcades, and (2) the plexus submucosus internus (Meissner) close to the outer surface of the lamina muscularis mucosae at the luminal side of the submucosal vascular arcades. Due to the possibility to trace clearly the perivascular plexuses of these vascular arcades by use of immunohistochemical techniques with antibodies to NSE and S-100 protein, the two submucosal nerve plexuses can be demonstrated with exceptional clarity. This is the first report of an investigation of the intramural nerve plexuses of the small intestine of the pig using the NSE and S-100 immunostaining methods, which is sufficiently detailed to substantiate the characteristic topography and structure of the two submucosal plexuses and their relation to the smooth muscle layers and perivascular plexuses. The level of NSE immunoreactivity for enteric neurons displays great variation, a substantial proportion of the type-II neurons appearing strongly stained. Although little is known of the specific function of these enzymes, proposals are discussed.  相似文献   

8.
1. Coincidental preparation of the intramuscular vascular bed and the plexus myentericus (Auerbach) of the cat's large intestine by India-ink method and silverimpregnation allowed to demonstrate independent vascularisation of ganglia and nerve-branches of the plexus Auerbach. 2. Each ganglion is surrounded by a capillary network widely independently existing of the intramuscular capillary bed. The preferred innervated terminal arterioles and especially the sphincteric capillaries opening into the periganglionic capillary network and the numerous arterio-venous short-circuits in its marginal area suggest to conclude a differentiated regulation of blood supply.  相似文献   

9.
Summary In addition to differences between the two submucosal ganglionic neural networks, i.e., the plexus submucosus externus (Schabadasch) and the plexus submucosus internus (Meissner), with respect to the occurrence and distribution of serotonin as neurotransmitter, immunocytochemistry also revealed a distinct distribution for various neuropeptides in these two plexuses. Immunoreactivity for galanin, vasoactive intestinal polypeptide, calcitonin gene-related peptide, substance P, neuromedin U, enkephalin, somatostatin and neuropeptide Y was found in varicose and non-varicose nerve fibres of both submucosal ganglionic plexuses, albeit with a distinct distributional pattern. The difference in neurotransmitter and/or neuromodulator content between both neural networks became even more obvious when attention was focussed on the immunoreactivity of the nerve cell bodies for these substances. Indeed, neuropeptide Y, enkephalin-and somatostatin-immunoreactive neuronal perikarya as well as serotonergic neuronal cell bodies appear solely in the plexus submucosus externus. Neuromedin U-immunoreactive perikarya, mostly coexisting with substance P, are observed in large numbers in the plexus submucosus internus, whilst they are rare in the plexus submucosus externus. Double-labelling immunostaining for substance P with CGRP and galanin revealed a different coexistence pattern for the two submucosal ganglionic plexuses. The differing chemical content of the neuronal populations supports the hypothesis that the existence of the two submucosal ganglionic plexuses, present in most large mammals including man, not only reflects a morphological difference but also points to differentiated functions.  相似文献   

10.
Summary For the simultaneous demonstration of intramural enteric ganglion cells and the adrenergic nerve fibres in the porcine small intestine a combined histochemical method was developed using a hypertonic solution, the main chemicals of which were glyoxylic acid, Nitro-BT* and NADH. By means of the enzymatic histochemical method reaction for the NADH-dependent dehydrogenase activity with Nitro-BT as an electron acceptor, the identification of the three neuron types of Dogiel (i.e. type I, type II, type III) was for the first time realized in relation with the glyoxylic acid induced fluorescence (GIF) of the plexus myentericus (Auerbach) and the plexus submucosus externus (Schabadasch). Besides the close topographic relationship between the adrenergic varicose axons on the one hand and the perikarya and dendrites of the multidendritic uniaxonal type I cells characterized by radially oriented short and lamellar dendrites and the multidendritic uniaxonal type III cells, characterized by radially oriented long and tapering dendrites on the other hand, it is striking that for the adendritic multiaxonal type II cells the fluorescent varicose fibres adhere closer to the cell bodies and their processes. In principle, the relation between adrenergic varicose axons and neuron types is identical in plexus myentericus (Auerbach) and plexus submucosus externus (Schabadasch), yet with the exception that in the latter no type I neurons are observed.2,2-Di-p-nitrophenyl-5,5-diphenyl-3,3-(3,3-dimethoxy-4,4-diphenylene) ditetrazolium chloride  相似文献   

11.
W Stach 《Acta anatomica》1978,100(1):161-169
The ganglia of the plexus myentericus (Auerbach) have their own self-acting vascularization in the form of periganglionic capillary networks. As to the architecture and density, they are quite different from the intramuscular capillary bed. Just as the arterial trunk and arcade vessels, the terminal arterioles and sphincter capillaries running into the periganglionic cappillary network are innervated by noradrenergic axons. Together with periganglionic arteriovenous short circuits, this means favorable prerequisites for a functionally adapted blood supply of the ganglia. The specific arrangement of intramuscular vessels and the plexus Auerbach effects the maintenance of the close topographic and functional relations between both systems in all cases of changes of the shape of the intestinal wall.  相似文献   

12.
The angioarchitecture of the neural stalk and the encephaloposthypophysial portal system of the hypophysis of the toad, Bufo bufo (L.), was studied using three different methods. The neural stalk is mainly supplied by branches of the arteria infundibularis superficialis which form a widemeshed vascular network. Dorsally this network continues into the plexus of the pars nervosa. The vascularization of the pars nervosa is made up of the encephalo-posthypophysial portal system. This portal system consists of a hypothalamic branch (=portion), a mesencephalic and a mesencephalicbulbar branch (=portion). The hypothalamic branch was found to drain the pars ventralis of the tuber cinereum as well as more dorsal regions of the diencephalon. The mesencephalic-bulbar trunk enters the hypothalamic branch. The resulting common stem of the encephalo-posthypophysial portal vein the curves around the retroinfundibular communicating artery, crosses its ventral side and runs caudally. The secondary capillary plexus of the pars nervosa is characterized by well defined capillary plexus of the pars nervosa is characterized by well defined capillary networks which are located at the periphery of the parenchyma of the pars nervosa, thus forming a rostral, dorsal and ventro-caudal net. The central region of the parenchyma of the pars nervosa is supplied only by main branches of the encephalo-postpophysial portal vein. The venous drainage of the pars nervosa is via the vena hypophysea transversa.  相似文献   

13.
Although neurons containing neuronal nitric oxide synthase (NOS) are abundant in the myenteric plexus of the small intestine of all mammalian species examined to date, NOS-containing neurons are sparse in the submucous plexus, and there does not appear to be an innervation of the mucosa by nerve fibres containing NOS. In this study, we used immunohistochemical techniques to examine the presence of neuronal NOS in the mouse intestine during development. At embryonic day 18 and postnatal day 0 (P0), about 50% of the neurons in the submucous plexus of the small intestine showed strong immunoreactivity to NOS, and NOS-immunoreactive nerve fibres were present in the mucosa. By P7, there was a gradation in the intensity of NOS immunostaining exhibited by submucosal neurons, varying from intense to extremely weak. During subsequent development, the proportion of submucous neurons showing NOS immunoreactivity decreased, and immunoreactive nerve fibres were no longer observed in the mucosa. In adult mice, NOS neurons comprised only 3% of neurons in the submucous plexus, which is significantly less than at P0. In contrast to the submucous plexus, the percentage of neurons that showed NOS immunoreactivity in the myenteric plexus did not change significantly during development.  相似文献   

14.
Summary The ultrastructure of the nerves forming the submucous plexus of cervical and thoracic parts of the trachea was studied in the guinea-pig. Specimens were obtained from 6 animals perfused with warm fixative and from 6 animals in which pieces of trachea were incubated in buffer containing 5-hydroxydopamine before being immersed in cold fixative. Of the two types of axonal terminal identified in the nerves, one contained mainly large dense-cored vesicles, and the second contained numerous small vesicles. In specimens incubated in 5-hydroxydopamine, the small vesicles of the latter terminals exhibited the electron-dense cores which are characteristic of adrenergic axonal terminals. Counts made on perfused specimens showed that, in both the thoracic and cervical parts of the trachea, the density of adrenergic terminals was higher than that of terminals containing mainly large dense-cored vesicles. Overall terminal density was, however, higher in the thoracic than in the cervical part of the trachea, and estimates of nerve size showed that this was associated with the presence in the thoracic plexus of a substantially greater proportion of nerves with less than 6 axons. The possible function of the nerves in the control of the calibre of the submucous blood vessels was discussed.  相似文献   

15.
The formation of the coronary vessel system is vital for heart development, an essential step of which is the establishment of a capillary plexus that displays a density gradient across the myocardial wall, being higher on the epicardial than the endocardial side. This gradient in capillary plexus formation develops concurrently with transmural gradients of myocardium-derived growth factors, including FGFs. To test the role of the FGF expression gradient in patterning the nascent capillary plexus, an ectopic FGF-over-expressing site was created in the ventricular myocardial wall in the quail embryo via retroviral infection from E2-2.5, thus abolishing the transmural gradient of FGFs. In FGF virus-infected regions of the ventricular myocardium, the capillary density across the transmural axis shifted away from that in control hearts at E7. This FGF-induced change in vessel patterning was more profound at E12, with the middle zone becoming the most vascularized. An up-regulation of FGFR-1 and VEGFR-2 in epicardial and subepicardial cells adjacent to FGF virus-infected myocardium was also detected, indicating a paracrine effect on induction of vascular signaling components in coronary precursors. These results suggest that correct transmural patterning of coronary vessels requires the correct transmural expression of FGF and, therefore, FGF may act as a template for coronary vessel patterning.  相似文献   

16.
In the small intestine of both embryonic birds and mammals, neuron precursors aggregrate first at the site of the myenteric plexus, and the submucous plexus develops later. However, in the large intestine of birds, the submucosal region is colonised by neural-crest-derived cells before the myenteric region (Burns and Le Douarin, Development 125:4335-4347, 1998). Using antisera that recognize undifferentiated neural-crest-derived cells (p75NTR) and differentiated neurons (PGP9.5), we examined the colonisation of the murine large intestine by neural-crest-derived cells and the development of the myenteric and submucosal plexuses. At E12.5, when the neural crest cells were migrating through and colonising the hindgut, the hindgut mesenchyme was largely undifferentiated, and a circular muscle layer could not be discerned. Neural-crest-derived cells migrated through, and settled in, the outer half of the mesenchyme. By E14.5, neural-crest-derived cells had colonised the entire hindgut; at this stage the circular muscle layer had started to differentiate. From E14.5 to E16.5, p75NTR- and PGP9.5-positive cells were observed on the serosal side of the circular muscle, in the myenteric region, but not in the submucosal region. Scattered, single neurons were first observed in the submucosal region around E18.5, and groups of neurons forming ganglia were not observed until after birth. The development of the enteric plexuses in the murine large intestine therefore differs from that in the avian large intestine.  相似文献   

17.
The vascularization of the brain and the pituitary region of the Australian lungfish, Neoceratodus forsteri is described from serial section reconstruction. The distal lobe has no direct arterial blood supply and receives blood solely from a pituitary portal system basically similar to that of other sarcopterygians. The primary capillary plexus of the median eminence receives its arterial blood from the infundibular arteries, which on their way distribute some small branches to the prechiasmatic region. The primary plexus also receives capillaries from the adjacent pial hypothalamic plexus. The primary capillary plexus of the median eminence comprises a rostral 'uncovered' and caudal 'covered' part which are not sharply delineated. Distinct portal vessels connect the 'uncovered' rostral part of the primary plexus with the secondary capillary plexus supplying the rostral subdivision of the pars distalis. The 'covered' caudal part of the primary plexus merges into the proximal subdivision of the pars distalis, apparently without formation of distinct portal vessels. The primary plexus has some connections with the plexus intermedius via a hypophysial stem capillary plexus. The plexus intermedius has a substantial arterial supply and gives off capillaries to the parenchyma of the pars intermedia. The adenohypophysis is drained into an unpaired hypophysial vein. The significance of the vascular pathways is discussed from comparative, functional, and evolutionary viewpoints.  相似文献   

18.
The primary capillary plexus in early yolk sacs is remodeled into matured vitelline vessels aligned in the direction of blood flow at the onset of cardiac contraction. We hypothesized that the influence of fluid shear stress on cellular behaviors may be an underlying mechanism by which some existing capillary channels remain open while others are closed during remodeling. Using a recently developed E-Tmod knock-out/lacZ knock-in mouse model, we showed that erythroblasts exhibited rheological properties similar to those of a viscous cell suspension. In contrast, the non-erythroblast (NE) cells, which attach among themselves within the yolk sac, are capable of lamellipodia extension and cell migration. Isolated NE cells in a parallel-plate flow chamber exposed to fluid shear stress, however, ceased lamellipodia extension. Such response may minimize NE cell migration into domains exposed to fluid shear stress. A two-dimensional mathematical model incorporating these cellular behaviors demonstrated that shear stress created by the blood flow initiated by the embryonic heart contraction might be needed for the remodeling of primary capillary plexus.  相似文献   

19.
Summary The organisation of the basiepithelial nerve plexus in the alimentary canal of a starfish and the water vascular system of a sea-urchin is described. The plexus contains varicose aminergic neurones which terminate adjacent to the ciliated epithelial cells. It is proposed that the basiepithelial plexus innervates these cells and controls ciliary beating. The distribution of the basiepithelial plexus in various tissues described by other workers is dicscussed particularly in relation to whether it is the coelomic epithelium or the luminal epithelium which is innervated. It is concluded that where there is both an endothelium and a coelomic epithelium only one is innervated. The muscles, where present, of the viscera are innervated by a separate nervous system. The muscles are always on the opposite side of the non-cellular connective tissue sheath to the basiepithelial plexus.  相似文献   

20.
In this study we investigated the distribution of a recently cloned polyspecific organic anion transporting polypeptide (Oatp2) in rat brain by nonradioactive in situ hybridization histochemistry and immunofluorescence microscopy. The results demonstrate that Oatp2 is expressed in brain capillary and in plexus epithelial cells. At the blood-brain barrier (BBB), Oatp2 expression could be co-localized with the endothelial marker vWF (von Willebrand factor) but not with the astrocyte marker GFAP (glial fibrillary acidic protein). In choroid plexus epithelial cells, Oatp2 could be localized to the basolateral cell pole, whereas the first member of the Oatp gene family of membrane transporters to be cloned (Oatp1) co-localized with the alpha(1)-subunit of Na,K-ATPase at the apical plasma membrane domain. Because Oatp1 and Oatp2 have been previously shown to mediate transmembrane transport of a wide variety of amphipathic organic compounds, including many drugs and other xenobiotics, the histochemical localization of Oatp2 at the BBB and of Oatp1 and Oatp2 in the choroid plexus imply a role for these transporters in the active exchange of amphipathic solutes between the blood, brain, and cerebrospinal fluid compartments. (J Histochem Cytochem 47:1255-1263, 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号