首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Under natural environmental conditions, sea bass feeding rhythms are nocturnal in winter and diurnal the rest of the year. In this paper we describe the effect of contracting and expanding photoperiods and two skeleton photoperiods (SP) on the dual feeding rhythms of sea bass (Dicentrarchus labrax L.). To this end, twelve animals were held individually with access to self-feeders. First, the lights on and lights off were progressively delayed and advanced respectively by one hour in group 1 (G1), and conversely in group 2 (G2), so that the fish were exposed from a light/dark (LD) 12L:12D cycle to 2:22 LD (G1) and DL (G2) cycles and finally 0.25:23.75 LD (G1) and DL (G2). In the second experiment two SP's were used involving two light pulses separated by 12 hours, each pulse lasting 0.25 hours during the first two weeks and one hour during the succeeding two weeks. The results showed that diurnal and nocturnal sea bass tended to confine their feeding phase following the contraction of the LD cycle. Both SP's failed to simulate a complete photoperiod. In conclusion, the LD cycle appeared to drive the daily feeding rhythms but, the photoperiod length did not itself control the inversions of nocturnal and diurnal fish, so that other factors, in addition to photoperiod, may be involved in the control of the annual rhythms of phase inversions in sea bass.  相似文献   

2.
Under natural environmental conditions, sea bass feeding rhythms are nocturnal in winter and diurnal during the rest of the year. Increasing water temperature from 22 to 28°C or decreasing it to 16°C had little effect on the dual feeding behaviour of sea bass. An 8:16 LD photoperiod with low temperature or 16:8 LD with high temperature also failed to change the diurnal/ nocturnal behaviour of sea bass. In conclusion, sea bass feeding rhythms did not follow passively the manipulated environmental factors simulating summer and winter conditions in the laboratory, which suggests an endogenous circannual control of the seasonal phase inversion.  相似文献   

3.
Melatonin is regarded as an internal zeitgeber, involved in the synchronization to light of the daily and seasonal rhythms of vertebrates. To date, plasma and ocular melatonin in fish have been extensively surveyed almost solely in freshwater species – with the exception of some migrating species of salmonids. In the present paper, melatonin levels of a marine species (sea bass, Dicentrarchus labrax L) were examined. In addition, the daily rhythms of the demand-feeding activity of sea bass, a fish species characterized by a dual phasing capacity (i.e. the ability to switch between diurnal and nocturnal behaviour), were investigated before sampling. Sea bass, distributed in 12 groups of four fish and kept under constant water temperature and salinity, were exposed to a 12 h light:12 h dark cycle (200:0 lx, lights on at 0800 hours). After 4 weeks recording, the animals were killed at 0900, 1200, 1400, 1600, 1900, 2100, 2400, 0200, 0400, 0700 and 0900 hours. Actograms of demand-feeding records revealed a nocturnal feeding behaviour, with some cases of spontaneous inversions in phasing. Melatonin levels in plasma peaked in the middle of the dark phase, dropping after lights on. Melatonin in the eye, on the contrary, exhibited an inverse profile, with high levels during daytime and low levels at night. These results suggest that melatonin in the plasma and the eye may act independently on the flexible circadian system of sea bass. Accepted: 30 January 1997  相似文献   

4.
《Chronobiology international》2013,30(6):1001-1017
The present article analyzes locomotor activity rhythms in Tinca tinca. To that end, three different experiments were conducted on 24 animals (20 g body weight) kept in pairs in 60‐liter aquaria fitted with infrared sensors connected to a computer to continuously record fish movements. The first experiment was designed to study the endogenous circadian clock under free‐running conditions [ultradian 40:40 min LD pulses and constant dark (DD)] and after shifting the LD cycle. Our results demonstrate that tench has a strictly nocturnal activity pattern, an endogenous rhythm being evident in 45.8% of the fish analyzed. The second experiment was conducted to test the influence of different photoperiods (LD 6:18, 12:12, 18:6, and 22:2) on locomotor activity, the results showing that even under an extremely long photoperiod, tench activity is restricted to dark hours. The third experiment examined the effect of light intensity on locomotor activity rhythms. When fish were exposed to decreasing light intensities (from 300:0 lux to 30:0, 3:0, and 0.3:0 lux) while maintaining a constant photoperiod (LD 12:12), the highest percentage of locomotor activity was in all cases associated with the hours of complete darkness (0 lux). In short, our results clearly show that (a) tench is a species with a strictly nocturnal behavior, and (b) daily activity rhythms gradually entrain after shifting the LD cycle and persist under free‐running conditions, pointing to their circadian nature. However, light strongly influences activity rhythms, since (c) the length of the active phase is directly controlled by the photophase, and (d) strictly nocturnal behavior persists even under very dim light conditions (0.3 lux). The above findings deepen our knowledge of tench behavior, which may help to optimize the aquacultural management of this species, for example, by adjusting feeding strategies to their nocturnal behavior.  相似文献   

5.
A study was carried out to investigate the daily rhythms of locomotor and feeding activity of Khajoo, Schizothorax pelzami, a candidate species for freshwater aquaculture. Using self-feeder juvenile Khajoo were exposed to a 12/12 LD cycle to determine the rhythms of locomotor and feeding activity. The effects of feeding on locomotor and feeding activity of fish were also examined. Finally, the endogenous rhythmicity under different lighting condition tested. Fish displayed a strictly diurnal feeding and locomotor activities with 98% and 84% of the total activity occurred in the photophase, respectively. In scheduled feeding, both the L-group (fed in light) and the D-group (fed in the dark) showed a diurnal locomotor activity pattern. However, the L-group had a peak of locomotor activity near the feeding time, but the D-group had a scarce locomotor activity in the scatophase with no significant change at the mealtime. Most of the individuals display free-running rhythms when exposed to different lighting condition including, constant darkness, ultradian 45:45 min LD cycle and reversed DL photo cycle. Taken together the results of this study showed that both locomotor and feeding activity have diurnal rhythms in Khajoo S. pelzami, even fish feeding had taken place at night. Additionally, the free-running locomotor activity of the fish in the absence of external light stimuli, suggests the existence of an endogenous timing mechanism in this fish species.  相似文献   

6.
A recent focus of chronobiological studies has been to establish diurnal models as alternatives to the more frequently used nocturnal rodents. In the present study, light-dark (LD) entrainment characteristics were examined in one diurnal species, the Indian palm squirrel ( Funambulus pennanti ). Palm squirrels showed strongly diurnal locomotor activity rhythms (~ 88 percent) under light-dark (LD) cycles, with activity bimodally distributed during the L phase. In comparison to a dim LD cycle, exposure to a bright LD cycle caused a phase advance in the onset of activity, an increase in daily activity levels and an increase in the duration of activity. Percentage diurnality, however, did not vary between bright and dim LD cycles. Activity rhythms reentrained in significantly fewer days after an 8 hour phase delay of the LD cycle compared to an 8 hour phase advance. In both cases, the direction of reentrainment followed the direction of the LD shift. When exposed to single light pulses (1 hour) presented at the same time each day, 6/7 squirrels entrained. Under a skeletal photoperiod cycle (2 x 1 hour light pulses each day), 6/8 squirrels showed stable entrainment. The remaining squirrels exhibited rhythm splitting, with each component synchronising in an unstable manner with one of the light pulses. Under entrainment to single light pulses and to the skeletal photoperiod cycle, the phase angle of entrainment was negatively correlated with t. Finally, when exposed to a skeletal scotoperiod cycle (2 x 1-hour dark pulses each day), only 3/8 squirrels entrained, while the others free-ran. Two of the entrained squirrels showed spontaneous phase reversals during entrainment. As with other species, the activity rhythm of palm squirrels appears to be controlled by two separate self-sustaining oscillators. The strongly diurnal nature of palm squirrels make them a promising diurnal model for studies examining endogenous and exogenous influences on circadian functioning.  相似文献   

7.
A recent focus of chronobiological studies has been to establish diurnal models as alternatives to the more frequently used nocturnal rodents. In the present study, light-dark (LD) entrainment characteristics were examined in one diurnal species, the Indian palm squirrel (Funambulus pennanti). Palm squirrels showed strongly diurnal locomotor activity rhythms (? 88 percent) under light-dark (LD) cycles, with activity bimodally distributed during the L phase. In comparison to a dim LD cycle, exposure to a bright LD cycle caused a phase advance in the onset of activity, an increase in daily activity levels and an increase in the duration of activity. Percentage diurnality, however, did not vary between bright and dim LD cycles. Activity rhythms reentrained in significantly fewer days after an 8 hour phase delay of the LD cycle compared to an 8 hour phase advance. In both cases, the direction of reentrainment followed the direction of the LD shift. When exposed to single light pulses (1 hour) presented at the same time each day, 6/7 squirrels entrained. Under a skeletal photoperiod cycle (2 x 1 hour light pulses each day), 6/8 squirrels showed stable entrainment. The remaining squirrels exhibited rhythm splitting, with each component synchronising in an unstable manner with one of the light pulses. Under entrainment to single light pulses and to the skeletal photoperiod cycle, the phase angle of entrainment was negatively correlated with t. Finally, when exposed to a skeletal scotoperiod cycle (2 x 1-hour dark pulses each day), only 3/8 squirrels entrained, while the others free-ran. Two of the entrained squirrels showed spontaneous phase reversals during entrainment. As with other species, the activity rhythm of palm squirrels appears to be controlled by two separate self-sustaining oscillators. The strongly diurnal nature of palm squirrels make them a promising diurnal model for studies examining endogenous and exogenous influences on circadian functioning.  相似文献   

8.
The aim of this study was to evaluate the daily rhythm of locomotor activity in Rhamdia quelen (R. quelen). A total of 30 fish were enrolled in the study and were equally divided in 10 groups and maintained in 100 liters tanks. The locomotor activity was measured in fish maintained under the LD 12:12 photoperiod regime; thereafter, the LD cycle was reversed to DL in order to study the resynchronization and to explore the endogenous pacemaker. Subsequently, the fish were subjected to constant conditions of light to test whether or not locomotor rhythms are regulated by the endogenous circadian clock. The effect of increasing light length and intensity was studied on daily rhythm of locomotor activity of fish. Our results showed that the R. quelen is a strictly diurnal species, the rhythm of locomotory activity resynchronized quickly after inverting the LD cycle and persist under free course LL, suggesting a circadian origin. The light showed a significant masking effect often blocking the expression of the biological rhythm. The strictly diurnal behavior is controlled directly by the photoperiod and maintained even under very dim light (30 lux).  相似文献   

9.
The aim of this study was to evaluate the circadian rhythm of daily locomotor activity in sea bass exposed to three different artificial lighting regimes including 12/12, 24/0, and 0/24 L/D periods, and scheduled daytime feeding. Daily rhythm of locomotor activity during 12/12 L/D was observed, whereas locomotor activity recorded during 24/0 and 0/24 L/D resulted arrhythmic. Statistical differences in mesor values among the photoperiods and between light and dark phases of each photoperiod were found. During the 12/12 and 0/24 L/D, the fish were active mostly during the light phase. During 24/0 L/D, a phase inversion occurred. The results showed that photoperiod is a dominant synchronizer in sea bass, and that the appetite in this fish follows daily rhythms which does not match the imposed feeding schedule, suggesting the absence or the lability of internal process that couples feeding cycles and biological rhythms.  相似文献   

10.
Circadian rhythms of demand-feeding and locomotor activity in rainbow trout   总被引:2,自引:0,他引:2  
Under free-running conditions, most rainbow trout displayed circadian feeding rhythms, although the expression of circadian rhythmicity depended on the experimental condition: 16·7% of fish under constant dim light (LL dim), 66·1% under a 45 :45 min light-dark cycle (LD pulses), and 83·8% under constant light (LL). Under LD pulses, the period length of the free-running rhythms for feeding was significantly shorter (21·9 ± 0·7 h, n =8) than under LL (26·2 ± 0·3 h, n =10). Period length for locomotor activity under LL was 25·8 ± 0·6 h ( n =4). Under LD conditions, the daily demand-feeding profile was always confined to the light phase and chiefly composed of two main episodes, directly after lights on (light elicited) and in anticipation to lights off (endogenous). Contrasting to feeding, the diel locomotor activity profile varied remarkably: a diurnal activity pattern at the bottom, while a clearly nocturnal pattern at the surface. These results contribute to a better understanding of feeding and locomotor rhythms of rainbow trout, providing evidence for the existence of a biological clock involved in their circadian control. This finding contrasts with the previously recorded lack of an endogenous oscillator in the pineal organ driving the rhythmic secretion of melatonin, which suggests different locations from the pineal for the circadian pacemakers in this species.  相似文献   

11.
To investigate daily feeding rhythms in zebrafish, the authors have developed a new self-feeding system with an infrared photocell acting as a food-demand sensor, which lets small-size fish such as zebrafish trigger a self-feeder. In this paper, the authors used eight groups of 20 fish. Locomotor activity rhythms were also investigated by means of infrared sensors. Under a 12?h:12?h light (L)-dark (D) cycle, zebrafish showed a clear nocturnal feeding pattern (88.0% of the total daily food-demands occurring in the dark phase), concentrated during the last 4?h of the dark phase. In contrast, locomotor activity was mostly diurnal (88.2% of total daily activity occurring in the light phase). Moreover, both feeding and locomotor rhythms were endogenously driven, as they persisted under free-running conditions. The average period length (τ) of the locomotor and feeding rhythms was shorter (τ?=?22.9?h) and longer (τ?=?24.6?h) than 24?h, respectively. During the time that food availability was restricted, fish could only feed during ZT0-ZT12 or ZT12-ZT16. This resulted in feeding activity being significantly modified according to feeding time, whereas the locomotor activity pattern remained synchronized to the LD cycle and did not change during this trial. These findings revealed an independent phasing between locomotor and feeding activities (which were mostly nocturnal or diurnal, respectively), thus supporting the concept of multioscillatory control of circadian rhythmicity in zebrafish.  相似文献   

12.
Entrainment to light of circadian activity rhythms in tench (Tinca tinca)   总被引:1,自引:0,他引:1  
The present article analyzes locomotor activity rhythms in Tinca tinca. To that end, three different experiments were conducted on 24 animals (20 g body weight) kept in pairs in 60-liter aquaria fitted with infrared sensors connected to a computer to continuously record fish movements. The first experiment was designed to study the endogenous circadian clock under free-running conditions [ultradian 40:40 min LD pulses and constant dark (DD)] and after shifting the LD cycle. Our results demonstrate that tench has a strictly nocturnal activity pattern, an endogenous rhythm being evident in 45.8% of the fish analyzed. The second experiment was conducted to test the influence of different photoperiods (LD 6:18, 12:12, 18:6, and 22:2) on locomotor activity, the results showing that even under an extremely long photoperiod, tench activity is restricted to dark hours. The third experiment examined the effect of light intensity on locomotor activity rhythms. When fish were exposed to decreasing light intensities (from 300:0 lux to 30:0, 3:0, and 0.3:0 lux) while maintaining a constant photoperiod (LD 12:12), the highest percentage of locomotor activity was in all cases associated with the hours of complete darkness (0 lux). In short, our results clearly show that (a) tench is a species with a strictly nocturnal behavior, and (b) daily activity rhythms gradually entrain after shifting the LD cycle and persist under free-running conditions, pointing to their circadian nature. However, light strongly influences activity rhythms, since (c) the length of the active phase is directly controlled by the photophase, and (d) strictly nocturnal behavior persists even under very dim light conditions (0.3 lux). The above findings deepen our knowledge of tench behavior, which may help to optimize the aquacultural management of this species, for example, by adjusting feeding strategies to their nocturnal behavior.  相似文献   

13.
《Chronobiology international》2013,30(8):1061-1074
Light is the main environmental time cue which synchronizes daily rhythms and the molecular clock of vertebrates. Indeed, alterations in photoperiod have profound physiological effects in fish (e.g. reproduction and early development). In order to identify the changes in clock genes expression in gilthead seabream larvae during ontogeny, three different photoperiods were tested: a regular 12L:12D cycle (LD), a continuous light 24L:0D (LL) and a two-phases photoperiod (LL?+?LD) in which the photoperiod changed from LL to LD on day 15 after hatching (dph). Larvae were sampled on 10, 18, 30 and 60 days post-hatch (dph) during a 24?h cycle. In addition to the expression of clock genes (clock, bmal1, cry1 and per3), food intake was measured. Under LD photoperiod, larvae feed intake and clock genes expression showed a rhythmic pattern with a strong light synchronization, with the acrophases occurring at the same hour in all tested ages. Under LL photoperiod, the larvae also showed a rhythmic pattern but the acrophases occurred at different times depending on the age, although at the end of the experiment (60 dph) clock genes expression and feed intake rhythms were similar to those larvae exposed to LD photoperiod. Moreover, the expression levels of bmal1 and cry1 were much lower than in LD photoperiod. Under the LL?+?LD photoperiod, the 10 dph larvae showed the same patterns as LL treatment while 18 and 30 dph larvae showed the same patterns as LD treatment. These results revealed the presence of internal factors driving rhythmic physiological responses during larvae development under constant environmental conditions. The LL?+?LD treatment demonstrates the plasticity of the clock genes expression and the strong effect of light as synchronizer in developing fish larvae.  相似文献   

14.
The locomotor activity of Nereis virens Sars associated with food prospecting was investigated in response to photoperiod and season using an actograph. Experimental animals which had been reared under natural photoperiods were exposed to two constant photoperiodic treatments, LD 16:8 and LD 8:16, in both the autumn and winter and in the absence of tidal entrainment. Autocorrelation analysis of rhythmicity showed that during the autumn, animals under the LD 16:8 photoperiod displayed a strong nocturnal rhythm of activity, whereas animals under the LD 8:16 photoperiod showed only a weak nocturnal activity rhythm. This is believed to represent an autumn feeding cessation that is triggered when the animals pass through a critical photoperiod LD(crit) <12:>12. Later in the winter, however, animals exposed to both photoperiodic treatments showed strong rhythms of foraging activity irrespective of the imposed photoperiod. It is suggested that the autumn cessation may maximize the fitness of N. virens, a spring-breeding semelparous organism, by reducing risk during gamete maturation, while spontaneous resurgence of activity after the winter solstice permits animals that are not physiologically competent to spawn to accrue further metabolic reserves. This response is believed to be initiated by a seasonal (possibly circannual) endogenous oscillator or interval timer.  相似文献   

15.
《Chronobiology international》2013,30(7):1389-1408
Food is not continuously available in the wild, and so most animals show a wide variety of circadian rhythms that can be entrained to feeding time. The aim of this research was to evaluate the effect of time-restricted feeding on the daily rhythms of gilthead sea bream, with food being provided during the day or night under a 12:12?h light-dark (LD) cycle or constant light (LL) conditions. Self-feeding and locomotor activity, as well as daily rhythms of cortisol, glucose, and melatonin, were evaluated. Fish synchronized their feeding behavior to the feeding phase, so that in LD they displayed 78% nocturnal feeding activity under night-feeding and 81% diurnal feeding activity under day-feeding, while under LL-feeding they displayed 72% of their daily activity during the 12?h feeding phase. In contrast, locomotor activity was mostly diurnal (66–71%), regardless of the feeding schedule, and it became arrhythmic under LL. Cortisol showed daily rhythms that peaked at different times, depending on the light and feeding schedule: one peak several hours before feeding under day-feeding and night-feeding, and two peaks under LL-feeding. Glucose displayed low-amplitude variations, with no daily rhythms being detected. Melatonin, however, showed a nocturnal rhythm, regardless of the feeding schedule, while the rhythm became attenuated under LL. Taken together, these results highlight the role of feeding on endocrine and metabolic rhythms, suggesting that feeding behavior should be considered when studying these variables. (Author correspondence: )  相似文献   

16.
To investigate daily feeding rhythms in zebrafish, the authors have developed a new self-feeding system with an infrared photocell acting as a food-demand sensor, which lets small-size fish such as zebrafish trigger a self-feeder. In this paper, the authors used eight groups of 20 fish. Locomotor activity rhythms were also investigated by means of infrared sensors. Under a 12?h:12?h light (L)-dark (D) cycle, zebrafish showed a clear nocturnal feeding pattern (88.0% of the total daily food-demands occurring in the dark phase), concentrated during the last 4?h of the dark phase. In contrast, locomotor activity was mostly diurnal (88.2% of total daily activity occurring in the light phase). Moreover, both feeding and locomotor rhythms were endogenously driven, as they persisted under free-running conditions. The average period length (τ) of the locomotor and feeding rhythms was shorter (τ?=?22.9?h) and longer (τ?=?24.6?h) than 24?h, respectively. During the time that food availability was restricted, fish could only feed during ZT0–ZT12 or ZT12–ZT16. This resulted in feeding activity being significantly modified according to feeding time, whereas the locomotor activity pattern remained synchronized to the LD cycle and did not change during this trial. These findings revealed an independent phasing between locomotor and feeding activities (which were mostly nocturnal or diurnal, respectively), thus supporting the concept of multioscillatory control of circadian rhythmicity in zebrafish. (Author correspondence: )  相似文献   

17.
Light plays a key role in the development of biological rhythms in fish. Recent research in Senegal sole has revealed that spawning and hatching rhythms, larval development, and growth performance are strongly influenced by lighting conditions. However, the effect of light on the daily patterns of behavior remains unexplored. Therefore, the aim of this study was to investigate the impact of different photoperiod regimes and white, blue, and red light on the activity rhythms and foraging behavior of Solea senegalensis larvae up to 40 days posthatching (DPH). To this end, eggs were collected immediately after spawning during the night and exposed to continuous white light (LL), continuous darkness (DD), or light-dark (LD) 12L:12D cycles of white (LD(W)), blue (LD(B), λ(peak) = 463 nm), or red light (LD(R), λ(peak) = 685 nm). A filming scenario was designed to video record activity rhythms during day and night times using infrared lights. The results revealed that activity rhythms in LD(B) and LD(W) changed from diurnal to nocturnal on days 9 to 10 DPH, coinciding with the onset of metamorphosis. In LD(R), sole larvae remained nocturnal throughout the experimental period, while under LL and DD, larvae failed to show any rhythm. In addition, larvae exposed to LD(B) and LD(W) had the highest prey capture success rate (LD(B) = 82.6% ± 2.0%; LD(W) = 75.1% ± 1.3%) and attack rate (LD(B) = 54.3% ± 1.9%; LD(W) = 46.9% ± 3.0%) during the light phase (ML) until 9 DPH. During metamorphosis, the attack and capture success rates in these light conditions were higher during the dark phase (MD), when they showed the same nocturnal behavioral pattern as under LD(R) conditions. These results revealed that the development of sole larvae is tightly controlled by light characteristics, underlining the importance of the natural underwater photoenvironment (LD cycles of blue wavelengths) for the normal onset of the rhythmic behavior of fish larvae during early ontogenesis.  相似文献   

18.
The aim of this study was to evaluate whether the day–night cycle phase is a critical factor modulating diurnal rhythm of isolated honeybee's thermal preference or other factors are involved. The insects were exposed to standard (LD 12:12) and reversed (DL 12:12) photoperiods as well as to constant light and constant darkness conditions. Thermal preference and motor activity of honeybees were recorded for 3–5 days in a thermal gradient system. Under the standard (control) photoperiod conditions mean values of temperature selected by honeybees changed rhythmically within the period of about 24 h. Honeybees, exposed to the modified light–darkness cycle distinctly modified their rhythm of thermal preference. Under the reversed photoperiod conditions period of selected ambient temperature was much longer than before, until a complete reversal of the circadian oscillation was established at the end of the experiment. Experiments performed under constant light and constant darkness yielded undisturbed 24 h rhythms of both ambient temperature selection and locomotor activity. Under these conditions only a slight, nonsignificant flattening of the temperature selection curves was noticed. Both lack of substantial changes in the amplitude and occurring phase shifts of the rhythm, recorded in our experiments suggest its endogenous character. Our results prove that diurnal rhythm of ambient temperature selection by bee workers may be entrained by light–dark cycles. This implies a critical role of photoperiod in the modulation of nychthemeral oscillations of thermal preference in honeybees.  相似文献   

19.
Behavioral rhythms of the Nile tilapia were investigated to better characterize its circadian system. To do so, the locomotor activity patterns of both male and female tilapia reared under a 12:12 h light-dark (LD) cycle were studied, as well as in males the existence of endogenous rhythmicity under free-running conditions (DD and 45 min LD pulses). When exposed to an LD cycle, the daily pattern of activity differed between individuals: some fish were diurnal, some nocturnal, and a few displayed an arrhythmic pattern. This variability would be typical of the plastic circadian system of fish. Moreover, reproductive events clearly affected the behavioral rhythms of female tilapia, a mouth-brooder teleost species. Under DD, 50% (6 of 12) of male fish showed circadian rhythms with an average period (τ) of 24.1±0.2 h, whereas under the 45 min LD pulses, 58% (7 of 12) of the fish exhibited free-running activity rhythms with an average τ of 23.9±0.5 h. However, interestingly in this case, activity was always confined to the dark phase. Furthermore, when the LD cycle was reversed, a third of the fish showed gradual resynchronization to the new phase, taking 7–10 days to be completely re-entrained. Taken together, these results suggest the existence of an endogenous circadian oscillator that controls the expression of locomotor activity rhythms in the Nile tilapia, although its anatomical localization remains unknown.  相似文献   

20.
In the present study, 10 greater amberjack Seriola dumerili held individually were given free access to self-feeder, and trigger actuations were continuously monitored. Most (80%) of greater amberjack developed stable self-feeding activity within 1 week. The fish was a rigidly diurnal feeder under a 12L:12D cycle, with a feeding peak of 1–3 h occurring just after the onset of lights. Under constant conditions, all 10 individual fish exhibited free-running self-feeding rhythms, which persisted for 43 days without a sign of damping out. As far as is known, this seems to be the longest record of free-running behavioural rhythms in fishes. Except one fish free-ran at a period length (τ) of 25·2 h, τ of free-running self-feeding rhythms in the other nine fish was shorter than 24 h, ranging from 20·0 h to 21·5 h. In addition, phase transients of feeding activity were observed in response to the advancement of lights on. It is concluded that feeding activity in greater amberjack is mediated by endogenous circadian oscillators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号