首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
成体哺乳动物中枢神经损伤后早期轴突再生失败的一个主要原因是由于髓磷脂抑制分子的存在。Nogo、髓磷脂相关糖蛋白以及少突胶质细胞髓磷脂糖蛋白等神经再生抑制因子的发现,大大促进了中枢神经再生分子机制的研究。它们均能独立通过Nogo-66受体产生对轴突再生的抑制效应,髓磷脂抑制分子及其信号转导机制的研究日益成为中枢神经再生的研究热点,髓磷脂及其信号转导分子特别是Nogo-66受体、p75神经营养素受体成为损伤后促进轴突再生、抑制生长锥塌陷的主要治疗靶点。抑制上述抑制因子及相关受体NgR或p75NTR可能有助于中枢神经损伤的修复,围绕这些抑制因子及其相关受体介导的信号转导途径,人们提出了多种治疗中枢神经损伤的新思路,其中免疫学方法尤其受到关注。  相似文献   

2.
Glial inhibition of CNS axon regeneration   总被引:13,自引:0,他引:13  
Damage to the adult CNS often leads to persistent deficits due to the inability of mature axons to regenerate after injury. Mounting evidence suggests that the glial environment of the adult CNS, which includes inhibitory molecules in CNS myelin as well as proteoglycans associated with astroglial scarring, might present a major hurdle for successful axon regeneration. Here, we evaluate the molecular basis of these inhibitory influences and their contributions to the limitation of long-distance axon repair and other types of structural plasticity. Greater insight into glial inhibition is crucial for developing therapies to promote functional recovery after neural injury.  相似文献   

3.
Multiple signals regulate axon regeneration through the nogo receptor complex   总被引:10,自引:0,他引:10  
Several myelin-derived proteins have been identified as components of central nervous system (CNS) myelin, which prevents axonal regeneration in the adult vertebrate CNS. The discovery of the receptor for these proteins was a major step toward understanding the failure of axon regeneration. The receptor complex consists of at least three elements: the p75 receptor (p75NTR), the Nogo receptor and LINGO-1. Downstream from the receptor complex, RhoA activation has been shown to be a key element of the signaling mechanism of these proteins. Rho activation arrests axon growth, and blocking Rho activation promotes axon regeneration in vivo. Recent studies have identified conventional protein kinase C as an additional necessary component for axon growth inhibition. Possible crosstalk downstream of these signals should be explored to clarify all the inhibitory signals and may provide an efficient molecular target against injuries to the CNS.  相似文献   

4.
Park JB  Yiu G  Kaneko S  Wang J  Chang J  He XL  Garcia KC  He Z 《Neuron》2005,45(3):345-351
A major obstacle for successful axon regeneration in the adult central nervous system (CNS) arises from inhibitory molecules in CNS myelin, which signal through a common receptor complex on neurons consisting of the ligand-binding Nogo-66 receptor (NgR) and two transmembrane coreceptors, p75 and LINGO-1. However, p75 expression is only detectable in subpopulations of mature neurons, raising the question of how these inhibitory signals are transduced in neurons lacking p75. In this study, we demonstrate that TROY (also known as TAJ), a TNF receptor family member selectively expressed in the adult nervous system, can form a functional receptor complex with NgR and LINGO-1 to mediate cellular responses to myelin inhibitors. Also, both overexpressing a dominant-negative TROY or presence of a soluble TROY protein can efficiently block neuronal response to myelin inhibitors. Our results implicate TROY in mediating myelin inhibition, offering new insights into the molecular mechanisms of regeneration failure in the adult nervous system.  相似文献   

5.
Injury to the central nervous system (CNS) initiates a cascade of responses that is inhibitory to the regeneration of neurons and full recovery. At the site of injury, glial cells conspire with an inhibitory biochemical milieu to construct both physical and chemical barriers that prevent the outgrowth of axons to or beyond the lesion site. These inhibitors include factors derived from myelin, repulsive guidance cues, and chondroitin sulfate proteoglycans. Each bind receptors on the axon surface to initiating intracellular signaling cascades that ultimately result in cytoskeletal reorganization and growth cone collapse. Here, we present an overview of the molecules, receptors, and signaling pathways that inhibit CNS regeneration, with a particular focus on the intracellular signaling machinery that may function as convergent targets for multiple inhibitory ligands.  相似文献   

6.
Signaling the pathway to regeneration   总被引:16,自引:0,他引:16  
Snider WD  Zhou FQ  Zhong J  Markus A 《Neuron》2002,35(1):13-16
Robust axon regeneration occurs after peripheral nerve injury through coordinated activation of a genetic program and local intracellular signaling cascades. Although regeneration-associated genes are being identified with increasing frequency, most aspects of regeneration-associated intracellular signaling remain poorly understood. Two independent studies now report that upregulation of cAMP is a component of the PNS regeneration program that can be exploited to enhance axon regeneration through the normally inhibitory CNS environment.  相似文献   

7.
Axon regeneration in the injured adult CNS is reportedly inhibited by myelin-derived inhibitory molecules, after binding to a receptor complex comprised of the Nogo-66 receptor (NgR1) and two transmembrane co-receptors p75/TROY and LINGO-1. However, the post-injury expression pattern for LINGO-1 is inconsistent with its proposed function. We demonstrated that AMIGO3 levels were significantly higher acutely than those of LINGO-1 in dorsal column lesions and reduced in models of dorsal root ganglion neuron (DRGN) axon regeneration. Similarly, AMIGO3 levels were raised in the retina immediately after optic nerve crush, whilst levels were suppressed in regenerating optic nerves, induced by intravitreal peripheral nerve implantation. AMIGO3 interacted functionally with NgR1-p75/TROY in non-neuronal cells and in brain lysates, mediating RhoA activation in response to CNS myelin. Knockdown of AMIGO3 in myelin-inhibited adult primary DRG and retinal cultures promoted disinhibited neurite growth when cells were stimulated with appropriate neurotrophic factors. These findings demonstrate that AMIGO3 substitutes for LINGO-1 in the NgR1-p75/TROY inhibitory signalling complex and suggests that the NgR1-p75/TROY-AMIGO3 receptor complex mediates myelin-induced inhibition of axon growth acutely in the CNS. Thus, antagonizing AMIGO3 rather than LINGO-1 immediately after CNS injury is likely to be a more effective therapeutic strategy for promoting CNS axon regeneration when combined with neurotrophic factor administration.  相似文献   

8.
Factors inside and outside neurons control the process of axonal growth and regeneration. Recently, it has become apparent that neurons are determined intrinsically for their ability to grow axons. In the mammalian CNS, the intrinsic machinery of neurons that triggers the growth of axons during early embryonic stages is shut down at a certain point in development; as a consequence, axon elongation and regeneration cannot occur in postnatal life. The proto-oncogene Bcl-2 has been recognized to act as a key regulator for the program of axon elongation inside neurons. However, expressing the gene Bcl-2 in CNS neurons is not sufficient to induce nerve regeneration in the adult CNS, eliminating the inhibitory mechanism in the mature CNS environment is still required. Recently, the formation of glia scar has been reported to be the major limiting factor in the CNS environment that blocks nerve regeneration. These new discoveries challenge the classical view of nerve regeneration in the mammalian CNS. It opens up a new dimension in the study of the cellular and molecular mechanisms underlying neurodevelopmental and neurodegenerative diseases.  相似文献   

9.
Inhibitors of neuronal regeneration: mediators and signaling mechanisms   总被引:14,自引:0,他引:14  
Neuritogenesis and its inhibition are opposite and balancing processes during development as well as pathological states of adult neuron. In particular, the inability of adult central nervous system (CNS) neurons to regenerate upon injury has been attributed to both a lack of neuritogenic ability and the presence of neuronal growth inhibitors in the CNS environment. I review here recent progress in our understanding of neuritogenic inhibitors, with particular emphasis on those with a role in the inhibition of neuronal regeneration in the CNS, their signaling cascades and signal mediators. Neurotrophines acting through the tropomyosin-related kinase (Trk) family and p75 receptors promote neuritogenesis, which appears to require sustained activation of the mitogen activated protein (MAP) kinase pathway, and/or the activation of phosphotidylinositol 3-kinase (PI3 kinase). During development, a plethora of guidance factors and their receptors navigate the growing axon. However, much remained to be learned about the signaling receptors and pathways that mediate the activity of inhibitors of CNS regeneration. There is growing evidence that neuronal guidance molecules, particularly semaphorins, may also have a role as inhibitors of CNS regeneration. Although direct links have not yet been established in many cases, signals from these agents may ultimately converge upon the modulators and effectors of the Rho-family GTPases. Rho-family GTPases and their effectors modulate the activities of actin modifying molecules such as cofilin and profilin, resulting in cytoskeletal changes associated with growth cone extension or retraction.  相似文献   

10.
Growth and guidance cues for regenerating axons: where have they gone?   总被引:7,自引:0,他引:7  
Both attractive and repellent cues are required to guide developing axons to their targets in the central nervous system. Critical guidance molecules in the developing brain include the semaphorins, netrins, slits, and ephrins. Current research indicates that many of these molecules and their receptors are expressed in the adult central nervous system (CNS), and that injury can alter the levels of these ligands/receptors. Recent studies have begun the process of elucidating the functions of these receptors in adult mammals, and the effects that they have on the regeneration of adult neurons. This review addresses our current knowledge with respect to the response of adult CNS neurons to axonal injury, interventions for enhancing the survival and regeneration of injured neurons, and the expression of developmental axon guidance cues in the injured mature CNS, with specific focus on the retino-tectal projection.  相似文献   

11.
Failure of axon regeneration in the adult mammalian central nervous system (CNS) is at least partly due to inhibitory molecules associated with myelin. Recent studies suggest that an axon surface protein, the Nogo receptor (NgR), may play a role in this process through an unprecedented degree of crossreactivity with myelin-associated inhibitory ligands. Here, we report the 1.5 A crystal structure and functional characterization of a soluble extracellular domain of the human Nogo receptor. Nogo receptor adopts a leucine-rich repeat (LRR) module whose concave exterior surface contains a broad region of evolutionarily conserved patches of aromatic residues, possibly suggestive of degenerate ligand binding sites. A deep cleft at the C-terminal base of the LRR may play a role in NgR association with the p75 coreceptor. These results now provide a detailed framework for focused structure-function studies aimed at assessing the physiological relevance of NgR-mediated protein-protein interactions to axon regeneration inhibition.  相似文献   

12.
Anamniote animals, such as fish and amphibians, are able to regenerate damaged CNS nerves following injury, but regeneration in the mammalian CNS tracts, such as the optic nerve, does not occur. However, severed adult mammalian retinal axons can regenerate into peripheral nerve segments grafted into the brain and this finding has emphasized the importance of the environment in explaining regenerative failure in the adult mammalian CNS. Following lesions, regenerating axons encounter the glial cells, oligodendrocytes and astro-cytes, and their derivatives, respectively myelin and the astrocytic scar. Experiments to investigate the influence of these components on axon growth in culture have revealed cell-surface and extracellular matrix molecules that inhibit axon extension and growth cone motility. Structural and functional characterization of these ligands and their receptors is underway, and may solve the interesting neurobiological conundrum posed by the failure of mammalian CNS regeneration. Simultaneously, this might allow new possibilities for treatment of the severe clinical disabilities resulting from injury to the brain and spinal cord.  相似文献   

13.
Fu  Haitao  Han  Gonghai  Li  Haojiang  Liang  Xuezhen  Hu  Die  Zhang  Licheng  Tang  Peifu 《Neurochemical research》2019,44(9):2057-2067

In the adult central nervous system (CNS), axon regeneration is a major hurdle for functional recovery after trauma. The intrinsic growth potential of an injured axon varies widely between neurons. The underlying molecular mechanisms of such heterogeneity are largely unclear. In the present study, the adult zebrafish dataset GSE56842 were downloaded. Differentially expressed genes (DEGs) were sorted and deeply analyzed by bioinformatics methods. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed with the DAVID. A DEGs-associated protein–protein interaction network was constructed from the STRING database and visualized with Cytoscape software. In total, 621 DEGs were identified. GO analysis showed that the biological processes of DEGs focused mainly on the Notch signaling pathway, cell differentiation and positive regulation of neuron differentiation. The molecular functions mainly included calcium-transporting ATPase activity and calcium ion binding and structural constituents of the cytoskeleton. The cellular components included the plasma membrane, spectrin, and cytoplasmic and membrane-bound vesicles. KEGG pathway analysis showed that these DEGs were mainly involved in the metabolic pathway and Notch signaling pathway, and subnetworks revealed that genes within modules were involved in the metabolic pathway, Wnt signaling pathway, and calcium signaling pathway. This study identified DEG candidate genes and pathways involved in the heterogeneity of the intrinsic growth ability between neurons after spinal cord injury in adult zebrafish, which could facilitate our understanding of the molecular mechanisms underlying axon regeneration, and these candidate genes and pathways could be therapeutic targets for the treatment of CNS injury.

  相似文献   

14.
After central nervous system (CNS) trauma, axons have a low capacity for regeneration. Regeneration failure is associated with a muted regenerative response of the neuron itself, combined with a growth-inhibitory and cytotoxic post-injury environment. After spinal cord injury (SCI), resident and infiltrating immune cells (especially microglia/macrophages) contribute significantly to the growth-refractory milieu near the lesion. By targeting both the regenerative potential of the axon and the cytotoxic phenotype of microglia/macrophages, we may be able to improve CNS repair after SCI. In this review, we discuss molecules shown to impact CNS repair by affecting both immune cells and neurons. Specifically, we provide examples of pattern recognition receptors, integrins, cytokines/chemokines, nuclear receptors and galectins that could improve CNS repair. In many cases, signaling by these molecules is complex and may have contradictory effects on recovery depending on the cell types involved or the model studied. Despite this caveat, deciphering convergent signaling pathways on immune cells (which affect axon growth indirectly) and neurons (direct effects on axon growth) could improve repair and recovery after SCI. Future studies must continue to consider how regenerative therapies targeting neurons impact other cells in the pathological CNS. By identifying molecules that simultaneously improve axon regenerative capacity and drive the protective, growth-promoting phenotype of immune cells, we may discover SCI therapies that act synergistically to improve CNS repair and functional recovery.  相似文献   

15.
Identification of Nogo-66 receptor (NgR) and homologous genes in fish   总被引:2,自引:0,他引:2  
The Nogo-66 receptor NgR has been implicated in the mediation of inhibitory effects of central nervous system (CNS) myelin on axon growth in the adult mammalian CNS. NgR binds to several myelin-associated ligands (Nogo-66, myelin associated glycoprotein, and oligodendrocyte-myelin glycoprotein), which, among other inhibitory proteins, impair axonal regeneration in the CNS of adult mammals. In contrast to mammals, severed axons readily regenerate in the fish CNS. Nevertheless, fish axons are repelled by mammalian oligodendrocytes in vitro. Therefore, the identification of fish NgR homologs is a crucial step towards understanding NgR functions in vertebrate systems competent of CNS regeneration. Here, we report the discovery of four zebrafish (Danio rerio) and five fugu (Takifugu rubripes) NgR homologs. Synteny between fish and human, comparable intron-exon structures, and phylogenetic analyses provide convincing evidence that the true fish orthologs were identified. The topology of the phylogenetic trees shows that the extra fish genes were produced by duplication events that occurred in ray-finned fishes before the divergence of the zebrafish and pufferfish lineages. Expression of zebrafish NgR homologs was detected relatively early in development and prominently in the adult brain, suggesting functions in axon growth, guidance, or plasticity.  相似文献   

16.
Chondroitin sulphate proteoglycans (CSPGs) are axon growth inhibitory molecules present in the glial scar that play a part in regeneration failure after damage to the CNS and which restrict CNS plasticity. Removal of chondroitin sulphate glycosaminoglycan (GAG) chains with chondroitinase-ABC (chABC) in models of CNS injury promotes both axon regeneration and plasticity. We have analysed the immediate and long-term effects of a single injection of chABC on CSPGs, GAGs and axon regeneration. We made unilateral nigrostriatal lesions in adult rats accompanied by an adjacent infusion of either chABC or a bacterial-derived control enzyme (penicillinase). Within 24 h of chABC treatment there was digestion of GAGs, including hyaluronan, and a reduction in neurocan in an area extending 1.5 mm around the injection site. Around 50% of GAG is inaccessible to chABC digestion, even in tissue digested in vitro, which probably represents intracellular stores. In control penicillinase treated animals, total GAGs recovered from the lesioned brains were up-regulated by 4-fold 7 days after injury and gradually decreased to normal at 28 days post-lesion. In chondroitinase-treated animals, the total GAG remained at low level throughout the 28-day experimental period. This suggests the persistence of active chABC for at least 10 days after injection which is able to digest CSPGs released from cells during this time. This was confirmed by immunological detection of enzyme for 10 days and by retrieval of active enzyme from the brain at 10 days after injection. Our results suggest that a single injection of chABC can produce an environment conducive to CNS repair for over 10 days.  相似文献   

17.
Gu WL  Lu PH 《生理科学进展》2007,38(2):101-105
硫酸软骨素蛋白多糖(chondroitin sulfate proteoglycans,CSPGs)是中枢神经系统(CNS)细胞外基质中的重要组成成分,在CNS的发育、成熟后正常功能的维持中发挥重要功能,如发育中影响神经细胞的迁移和轴突生长,成年后参与神经可塑性的控制等;而病理条件下,如CNS受损后又可做为胶质瘢痕的重要组分抑制受损神经的再生。研究发现,用酶降解CSPGs的糖氨多糖链或阻断其合成可以有效地削弱CSPGs对受损神经的抑制作用,促进轴突再生。然而,精确调控CSPGs特定时空表达模式的分子机制,以及功能发挥所涉及的完整信号转导通路还有待进一步研究。  相似文献   

18.
Neurotrophins play important roles in the response of adult neurons to injury. The intracellular signaling mechanisms used by neurotrophins to regulate survival and axon growth in the mature CNS in vivo are not well understood. The goal of this study was to define the role of the extracellular signal-regulated kinases 1/2 (Erk1/2) pathway in the survival and axon regeneration of adult rat retinal ganglion cells (RGCs), a prototypical central neuron population. We used recombinant adeno-associated virus (AAV) to selectively transduce RGCs with genes encoding constitutively active or wild-type mitogen-activated protein kinase kinase 1 (MEK1), the upstream activator of Erk1/2. In combination with anterograde and retrograde tracing techniques, we monitored neuronal survival and axon regeneration in vivo. MEK1 gene delivery led to robust and selective transgene expression in multiple RGC compartments including cell bodies, dendrites, axons and targets in the brain. Furthermore, MEK1 activation induced in vivo phosphorylation of Erk1/2 in RGC bodies and axons. Quantitative analysis of cell survival demonstrated that Erk1/2 activation promoted robust RGC neuroprotection after optic nerve injury. In contrast, stimulation of the Erk1/2 pathway was not sufficient to induce RGC axon growth beyond the lesion site. We conclude that the Erk1/2 pathway plays a key role in the survival of axotomized mammalian RGCs in vivo, and that activation of other signaling components is required for axon regeneration in the growth inhibitory CNS environment.  相似文献   

19.
Unlike mammals, fish have the capacity for functional adult CNS regeneration, which is due, in part, to their ability to express axon growth-related genes in response to nerve injury. One such axon growth-associated gene is gap43, which is expressed during periods of developmental and regenerative axon growth, but is not expressed in CNS neurons that do not regenerate in adult mammals. We previously demonstrated that cis-regulatory elements of gap43 that are sufficient for developmental expression are not sufficient for regenerative expression in the zebrafish. Here we have identified a 3.6kb genomic sequence from Fugu rubripes that can promote reporter gene expression in the nervous system during both development and regeneration in zebrafish. This compact sequence is advantageous for functional dissection of regions important for axon growth-associated gene expression during development and/or regeneration. In addition, this sequence will also be useful for targeting gene expression to neurons during periods of growth and plasticity.  相似文献   

20.
Gaining a basic understanding of the inhibitory molecules and the intracellular signaling involved in axon development and repulsion after neural lesions is of clear biomedical interest. In recent years, numerous studies have described new molecules and intracellular mechanisms that impair axonal outgrowth after injury. In this scenario, the role of glycogen synthase kinase 3 beta (GSK3β) in the axonal responses that occur after central nervous system (CNS) lesions began to be elucidated. GSK3β function in the nervous tissue is associated with neural development, neuron polarization, and, more recently, neurodegeneration. In fact, GSK3β has been considered as a putative therapeutic target for promoting functional recovery in injured or degenerative CNS. In this review, we summarize current understanding of the role of GSK3β during neuronal development and regeneration. In particular, we discuss GSK3β activity levels and their possible impact on cytoskeleton dynamics during both processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号