首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
The human BPI (bactericidal/permeability-increasing protein), stored in primary azurophilic granula of neutrophil granulocytes and produced by mucosal epithelia, has been known for decades to bind LPS (lipopolysaccharide) with very high affinity and to efficiently kill Gram-negative bacteria. Thus BPI potentially represents a central component of the innate immune system to directly combat microbes and modulate subsequent adaptive immune responses. Especially in the lungs, which are frequently exposed to a variety of inhaled pathogens, antimicrobial innate defence molecules such as BPI, are of exceptional relevance. In the present review, we highlight possible functions of BPI during acute pneumonia and CF (cystic fibrosis)-associated chronic infections in the lung.  相似文献   

3.
Systemic release of endotoxin (LPS) after Gram-negative infection initiates a cascade of host cytokines that are thought to be the direct cause of shock, multisystem organ failure, and death. Endogenous LPS-binding proteins may play a role in regulating LPS toxicity in vivo. The human neutrophil granule protein bactericidal/permeability-increasing protein (BPI) shares sequence homology and immunocrossreactivity with an acute phase lipopolysaccharide binding protein (LBP) which has been shown to bind to LPS and accelerate LPS activation of neutrophils and macrophages. Although structurally similar, LBP and BPI are apparently functionally antagonistic. We previously showed that BPI inhibits LPS-mediated neutrophil activation in vitro. Here we demonstrate that BPI binds to LPS near the lipid A domain, and formation of the LPS-BPI complex abrogates detrimental host responses to LPS. For example, BPI blocks LPS-stimulated TNF release in vitro and in vivo, and LPS complexed to BPI is not pyrogenic in rabbits. Results demonstrating that BPI is released by stimulated human neutrophils further support the idea that BPI functions extracellularly in vivo to neutralize endotoxin. Taken together, these data argue that BPI neutralizes the toxic effects of LPS in vivo, and that BPI may represent a new therapeutic approach to the treatment of endotoxic shock.  相似文献   

4.
Bactericidal/permeability-increasing protein (BPI) is a cationic antimicrobial protein produced by polymorphonuclear leukocytes, that specifically interacts with and kills Gram-negative bacteria. BPl competes with lipopolysaccharide-binding protein (LBP) secreted by liver cells into blood plasma for binding to lipopolysaccharide (LPS) and thus reduces the proinflammatory effects of LPS. We have developed a time-resolved fluoroimmunoassay for BPI and measured the concentration of BPI in human serum and plasma samples. The assay is based on a rabbit antibody against recombinant BPI. This antibody specifically adheres to polymorphonuclear leukocytes in immunostained human tissues. The difference in the serum concentration of BPI between unselected hospitalized patients with and without an infection was statistically significant. The mean concentration of BPI in serum samples was 28.3 mug/l (range 1.64-132, S.D. 26.8, n = 83). In contrast, there was no difference between the two groups in the BPI levels in plasma samples. For all individuals tested, BPI levels were consistently higher in plasma samples compared to the matched serum samples. The mean concentration of BPI in plasma samples was 52.3 mug/l (range 0.9-403, S.D. 60.6, n = 90). There was a positive correlation between the concentration of BPI and the white blood cell count as well as between the BPI concentration and C-reactive protein (CRP) in serum samples. In conclusion, the present study demonstrates that BPI can be quantified reliably by time-resolved fluoroimmunoassay in human serum samples.  相似文献   

5.
The various functions of gelsolin in extracellular compartments are not yet clearly defined but include actin scavenging and antiinflammatory effects. Gelsolin was recently reported to bind endotoxin (LPS) from various Gram-negative bacteria with high affinity. In this study we investigate whether gelsolin also interacts with bacterial wall molecules of Gram-positive bacteria such as lipoteichoic acid (LTA) and whether gelsolin's interaction with bacterial lipids from Gram-negative or Gram-positive bacteria affects their cellular inflammatory responses. A peptide based on the PPI binding site of gelsolin (160-169) binds purified LTA at the same molecular ratio that it binds phosphatidylinositol 4,5-bisphosphate. The OD of recombinant human plasma gelsolin was found to decrease following the addition of purified LTA, and the binding of gelsolin to LTA inhibits F-actin depolymerization by gelsolin. Simultaneously, the ability of LTA to activate translocation of NF-kappaB, E-selectin expression, and adhesion of neutrophils to LTA-treated human aortic endothelial cells was compromised by gelsolin. Gelsolin was able to partially inhibit LPS- or LTA-induced release of IL-8 from human neutrophils but was unable to prevent Gram-positive Bacillus subtilis or Gram-negative Pseudomonas aeruginosa growth and had no effect on the antibacterial activity of the cathelicidin-derived antibacterial peptide LL37. These data suggest that extracellular gelsolin is involved in the host immune recognition of LTA or LPS following release of these molecules from the bacterial outer membrane during cell division or attack by drugs and immune components.  相似文献   

6.
Endotoxin (lipopolysaccharide (LPS)), a component of Gram-negative bacteria, is among the most potent proinflammatory substances known. The lipid-A region of this molecule initiates the production of multiple host-derived inflammatory mediators, including cytokines (e.g. tumor necrosis factor-alpha (TNFalpha)). It has been a continuous effort to identify methods of interfering with the interaction between enteric LPS and inflammatory cells using natural and synthetic LPS analogs. Some of these LPS analogs (e.g. Rhodobacter spheroides LPS/lipid-A derivatives) are antagonists in human cells but act as potent agonists with cells of other species. Data reported here indicate that structurally novel LPS from symbiotic, nitrogen-fixing bacteria found in association with the root nodules of legumes do not stimulate human monocytes to produce TNFalpha. Furthermore, LPS from one of these symbiotic bacterial species, Rhizobium sp. Sin-1, significantly inhibits the synthesis of TNFalpha by human cells incubated with Escherichia coli LPS. Rhizobium Sin-1 LPS exerts these effects by competing with E. coli LPS for binding to LPS-binding protein and by directly competing with E. coli LPS for binding to human monocytes. Rhizobial lipid-A differs significantly from previously characterized lipid-A analogs in phosphate content, fatty acid acylation patterns, and carbohydrate backbone. These structural differences define the rhizobial lipid-A compounds as a potentially novel class of LPS antagonists that might well serve as therapeutic agents for the treatment of Gram-negative sepsis.  相似文献   

7.
Lipopolysaccharides (LPS), otherwise termed 'endotoxins', are outer-membrane constituents of Gram-negative bacteria, and play a key role in the pathogenesis of 'Septic Shock', a major cause of mortality in the critically ill patient. We had previously defined the pharmacophore necessary for small molecules to specifically bind and neutralize LPS and, using animal models of sepsis, have shown that the sequestration of circulatory LPS by small molecules is a therapeutically viable strategy. Polyamidoamine dendrimers, with the surface amines substoichiometrically derivatized with alkyl groups bind LPS with high affinity, neutralize LPS-induced inflammatory responses in vitro, and afford protection in a murine model of endotoxic shock. Dendrimers represent a new class of potentially useful compounds for the therapy of Gram-negative sepsis.  相似文献   

8.
Much of the inflammatory response of the body to bloodborne Gram-negative bacteria occurs in the liver and spleen, the major organs that remove these bacteria and their lipopolysaccharide (LPS, endotoxin) from the bloodstream. We show here that LPS undergoes deacylation in the liver and spleen by acyloxyacyl hydrolase (AOAH), an endogenous lipase that selectively removes the secondary fatty acyl chains that are required for LPS recognition by its mammalian signaling receptor, MD-2-TLR4. We further show that Kupffer cells produce AOAH and are required for hepatic LPS deacylation in vivo. AOAH-deficient mice did not deacylate LPS and, whereas their inflammatory responses to low doses of LPS were similar to those of wild type mice for approximately 3 days after LPS challenge, they subsequently developed pronounced hepatosplenomegaly. Providing recombinant AOAH restored LPS deacylating ability to Aoah(-/-) mice and prevented LPS-induced hepatomegaly. AOAH-mediated deacylation is a previously unappreciated mechanism that prevents prolonged inflammatory reactions to Gram-negative bacteria and LPS in the liver and spleen.  相似文献   

9.
Lipopolysaccharide (LPS) is responsible for many of the inflammatory responses and pathogenic effects of Gram-negative bacteria, however, it also induces protective immune responses. LPS induces the production of inflammatory cytokines such as TNF-α, IL-6, and IL-12 from dendritic cells (DCs) and macrophages. It is thought that IL-12 is required for one of the protective immune responses induced by LPS, the T helper 1 (Th1)-immune response, which include the production of IFN-γ from Th1cells and IgG2c class switching. Here, we clearly demonstrate that intracellular delivery of LPS by LPS-formulated liposomes (LPS-liposomes) does not induce the production of inflammatory cytokines from DCs, but enhances Th1-immune responses via type-I IFNs, independent of IL-12. Collectively, our results strongly suggest that LPS-liposomes can effectively induce Th1-immune responses without inducing unnecessary inflammation, and may be useful as an immune adjuvant to induce protective immunity.  相似文献   

10.
BPI (bactericidal/permeability-increasing protein) is a 55?kDa anti-infective molecule expressed in neutrophil and eosinophil granules and on some epithelial cells. BPI's high affinity for the lipid A region of endotoxin targets its opsonizing, microbicidal and endotoxin-neutralizing activities towards Gram-negative bacteria. Several immunocompromised patient populations demonstrate BPI deficiency, including newborns, those with anti-neutrophil cytoplasmic antibodies (as in cystic fibrosis and HIV infection) and those exposed to radiochemotherapy. BPI may be replenished by administering agents that induce its expression or by administration of recombinant BPI congeners, potentially shielding BPI-deficient individuals against Gram-negative bacterial infection, endotoxemia and its toxic sequelae.  相似文献   

11.
We have recently reported the use of the highly selective and reversible binding of the potent bactericidal/permeability-increasing protein (BPI) to target Gram-negative bacteria (Escherichia coli) for its isolation from crude extracts of human polymorphonuclear leukocytes (PMN). We now report the use of the same procedure for the purification from rabbit PMN of BPI and also of a novel 15-kDa species that consists of two nearly identical isoforms. These 15-kDa proteins have no demonstrable antibacterial activities by themselves. However, one isoform (p15A) potentiates strongly and the other (p15B) weakly the early antibacterial effects of both rabbit and human BPI. Both isoforms inhibit the late lethal action of BPI. Whereas the potentiating effect is specific for BPI the inhibitory effect is seen also with another antibacterial protein of PMN granules, azurocidin. Thus, we have identified in rabbit PMN a previously unrecognized 15-kDa protein species that may modulate during phagocytosis the antimicrobial effects of BPI (and other granule proteins).  相似文献   

12.
We have isolated, after limited proteolysis of the bactericidal/permeability-increasing protein (BPI) of human neutrophils, a 25-kDa fragment that possesses the bactericidal and envelope-altering activities of the 60-kDa parent protein. On a molar basis, the fragment is as potent as holo-human BPI against rough Escherichia coli, is more potent than holo-BPI against more resistant smooth E. coli, and retains the specificity of BPI toward Gram-negative bacteria. NH2-terminal amino acid sequence analysis shows that the fragment is derived from the NH2 terminus of the BPI molecule. These findings suggest that all of the molecular determinants of the antibacterial properties of BPI reside within the NH2-terminal 25-kDa segment, implying a novel structural/functional organization for a cytotoxic protein.  相似文献   

13.
LPS, a molecule produced by Gram-negative bacteria, is known to activate both innate immune cells such as macrophages and adaptive immune B cells via TLR4 signaling. Although TLR4 is also expressed on T cells, LPS was observed not to affect T cell proliferation or cytokine secretion. We now report, however, that LPS can induce human T cells to adhere to fibronectin via TLR4 signaling. This response to LPS was confirmed in mouse T cells; functional TLR4 and MyD88 were required, but T cells from TLR2 knockout mice could respond to LPS. The human T cell response to LPS depended on protein kinase C signaling and involved the phosphorylation of the proline-rich tyrosine kinase (Pyk-2) and p38. LPS also up-regulated the T cell expression of suppressor of cytokine signaling 3, which led to inhibition of T cell chemotaxis toward the chemokine stromal cell-derived factor 1alpha (CXCL12). Thus, LPS, through TLR4 signaling, can affect T cell behavior in inflammation.  相似文献   

14.
Flagellin is the major structural protein of the flagella of Gram-negative bacteria. Recent work has demonstrated that flagellin is a potent trigger of innate immune responses in a number of eukaryotic cells and organisms, including both mammals and plants. In several different human epithelial cell lines, this innate immune response involves toll-like receptor 5 (TLR5). The mechanisms by which flagellin activates TLR5 and the importance of this interaction in other model systems of flagellin-induced inflammation remain unknown. In this work, random and site-directed mutagenesis of the inflammatory flagellin from enteroaggregative Escherichia coli identified two regions in the conserved D1 domain that are required for interleukin-8 release and TLR5 activation. In contrast, large regions of the variable domain could be excised without reducing the inflammatory activity. In addition, regions of the protein analogous to epitopes that trigger innate immune responses in plants are not involved in Caco-2 flagellin responses. These results highlight the complexity of the interaction between bacterial flagellin and its eukaryotic recognition partners and provide the basis for further studies to characterize the innate immune response to flagellin.  相似文献   

15.
Lipopolysaccharide (LPS) from the outer cell wall of Gram-negative bacteria is a potent stimulator of the mammalian innate immune system. The Toll-like receptor 4 (TLR4) pathway triggers the inflammatory responses induced by LPS in a process that requires the interaction of LPS-bound myeloid differentiation-2 (MD-2) with TLR4. Here we propose two possible mechanisms for LPS recognition and signalling that take into account both the structural information available for TLR4 and MD-2, and the determinants of endotoxicity, namely, the acylation and phosphorylation patterns of LPS. In our first model, LPS induces the association of two TLR4-MD-2 heterodimers by binding to two different molecules of MD-2 through the acyl chains of lipid A. In our second model, the binding of LPS to a single TLR4-MD-2 complex facilitates the recruitment of a second TLR4-MD-2 heterodimer. These models contrast with the activation of Drosophila Toll, where the receptor is crosslinked by a dimeric protein ligand.  相似文献   

16.
Peng  Jinxiu  Qiu  Shuai  Jia  Fengjing  Zhang  Lishi  He  Yuhang  Zhang  Fangfang  Sun  Mengmeng  Deng  Yabo  Guo  Yifei  Xu  Zhaoqing  Liang  Xiaolei  Yan  Wenjin  Wang  Kairong 《Amino acids》2021,53(1):23-32

Protonectin was a typical amphiphilic antimicrobial peptide with potent antimicrobial activity against Gram-positive and Gram-negative bacteria. In the present study, when its eleventh amino acid in the sequence was substituted by phenylalanine, the analog named phe-Prt showed potent antimicrobial activity against Gram-positive bacteria, but no antimicrobial activity against Gram-negative bacteria, indicating a significant selectivity between Gram-positive bacteria and Gram-negative bacteria. However, when Gram-negative bacteria were incubated with EDTA, the bacteria were susceptible to phe-Prt. Next, the binding effect of phe-Prt with LPS was determined. Our result showed that LPS could hamper the bactericidal activity of phe-Prt against Gram-positive bacteria. The result of zeta potential assay further confirmed the binding effect of phe-Prt with LPS for it could neutralize the surface charge of E. coli and LPS. Then, the effect of phe-Prt on the integrity of outer membrane of Gram-negative bacteria was determined. Our results showed that phe-Prt had a much weaker disturbance to the outer membrane of Gram-negative bacteria than the parent peptide protonectin. In summary, the introduction of l-phenylalanine into the sequence of antimicrobial peptide protonectin made phe-Prt show significant selectivity against Gram-positive bacteria, which could partly be attributed to the delay effect of LPS for phe-Prt to access to cell membrane. Although further study is still needed to clarify the exact mechanism of selectivity, the present study provided a strategy to develop antimicrobial peptides with selectivity toward Gram-positive and Gram-negative bacteria.

  相似文献   

17.
Lipopolysaccharide (LPS) is the major molecular component of the outer membrane of Gram-negative bacteria and serves as a physical barrier providing the bacteria protection from its surroundings. LPS is also recognized by the immune system as a marker for the detection of bacterial pathogen invasion, responsible for the development of inflammatory response, and in extreme cases to endotoxic shock. Because of these functions, the interaction of LPS with LPS binding molecules attracts great attention. One example of such molecules are antimicrobial peptides (AMPs). These are large repertoire of gene-encoded peptides produced by living organisms of all types, which serve as part of the innate immunity protecting them from pathogen invasion. AMPs are known to interact with LPS with high affinities. The biophysical properties of AMPs and their mode of interaction with LPS determine their biological function, susceptibility of bacteria to them, as well as the ability of LPS to activate the immune system. This review will discuss recent studies on the molecular mechanisms underlying these interactions, their effects on the resistance of the bacteria to AMPs, as well as their potential to neutralize LPS-induced endotoxic shock.  相似文献   

18.
Lipopolysaccharide (LPS) is the major molecular component of the outer membrane of Gram-negative bacteria and serves as a physical barrier providing the bacteria protection from its surroundings. LPS is also recognized by the immune system as a marker for the detection of bacterial pathogen invasion, responsible for the development of inflammatory response, and in extreme cases to endotoxic shock. Because of these functions, the interaction of LPS with LPS binding molecules attracts great attention. One example of such molecules are antimicrobial peptides (AMPs). These are large repertoire of gene-encoded peptides produced by living organisms of all types, which serve as part of the innate immunity protecting them from pathogen invasion. AMPs are known to interact with LPS with high affinities. The biophysical properties of AMPs and their mode of interaction with LPS determine their biological function, susceptibility of bacteria to them, as well as the ability of LPS to activate the immune system. This review will discuss recent studies on the molecular mechanisms underlying these interactions, their effects on the resistance of the bacteria to AMPs, as well as their potential to neutralize LPS-induced endotoxic shock.  相似文献   

19.
革兰氏阴性菌细胞外壁中的脂多糖结构即内毒素,经常是引发脓毒症、菌血症等系统性炎症反应的"元凶"。近十余年的研究发现,细菌透性增加蛋白(bactericidal/permeability-increasing protein,BPI)具有特有的中和内毒素和拮抗革兰氏阴性菌的能力, 是一种抗感染的天然的分子靶。大量的临床研究结果已经显示其用药的有效性和安全性。近几年来国外生物药业公司正努力将重组人BPI推向市场。  相似文献   

20.
A novel homolog of BPI was cloned from the hemocyte cDNA of Crassostrea gigas and designed as Cg-BPI2, which share the highest sequence identity with the well-known Cg-BPI (designed as Cg-BPI1). The complete cDNA of Cg-BPI2 included an open reading frame (ORF) of 1440 bp, and 3' and 5' untranslated regions (UTR's) of 49 bp and 166 bp, respectively. The ORF encoded a putative protein of 479 amino acids with predicted 22-aa hydrophobic signal peptide. The phylogenetic analysis showed that one of the gene duplications could have resulted in the emergence of two homologs of BPI in oysters, which probably might have occurred after the gastropod-bivalve divergence. Furthermore, molecular modeling analysis showed that both Cg-BPIs are similar to a highly extended boomerang like shape of human BPI, consisting of an N- and C-terminal barrel and a central β-sheet. Comparison of the electrostatic surface potentials revealed that surfaces of Cg-BPI2 have more intense positive charge than that of human BPI and the Cg-BPI1. The recombinant N-terminal barrel domain showed a high affinity to LPS and can effectively kill Gram-negative bacteria. The mRNAs of two Cg-BPIs were observed in all tissues examined with the highest expression in gills. The mRNAs expression profiles in response to bacterial challenge revealed that they were inducible under infection, but with a distinct and complementary expression patterns between Cg-BPI1 and Cg-BPI2. Our findings of this second BPI gene demonstrated presence of its gene duplication for the first time in invertebrate and it appears to be one of effective LPS-binding AMPs in elimination of Gram-negative pathogens C. gigas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号