首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The X-motif is an in vitro-selected ribozyme that catalyzes RNA cleavage by an internal phosphoester transfer reaction. This ribozyme class is distinguished by the fact that it emerged as the dominant clone among at least 12 different classes of ribozymes when in vitro selection was conducted to favor the isolation of high-speed catalysts. We have examined the structural and kinetic properties of the X-motif in order to provide a framework for its application as an RNA-cleaving agent and to explore how this ribozyme catalyzes phosphoester transfer with a predicted rate constant that is similar to those exhibited by the four natural self-cleaving ribozymes. The secondary structure of the X-motif includes four stem elements that form a central unpaired junction. In a bimolecular format, two of these base-paired arms define the substrate specificity of the ribozyme and can be changed to target different RNAs for cleavage. The requirements for nucleotide identity at the cleavage site are GD, where D = G, A, or U and cleavage occurs between the two nucleotides. The ribozyme has an absolute requirement for a divalent cation cofactor and exhibits kinetic behavior that is consistent with the obligate binding of at least two metal ions.  相似文献   

2.
3.
We obtained a partial sequence of mouse calretinin mRNA from cDNA clones, and designed hammerhead ribozymes to cleave positions within it. With a view to optimising hammerhead ribozymes for eliminating the mRNA in vivo, we varied the length and sequence of the three duplex 'arms' and measured the cleavage of long RNA substrates in vitro at 37 degrees C (as well as 50 degrees C). Precise cleavage occurred, but it could only go to completion with a large excess of ribozyme. The evidence suggests that the rate-limiting step with a large target is not the cleavage, but the formation of the active ribozyme: substrate complex. The efficiency varied unpredictably according to the target site, the length of the substrate RNA, and the length of the ribozyme; secondary structure in vitro may be responsible. We particularly investigated the degree of sequence-specificity. Some mismatches could be tolerated, but shortening of the total basepairing with the substrate to less than 14 bp drastically reduced activity, implying that interaction with weakly-matched RNAs is unlikely to be a serious problem in vivo. These results suggest that specific and complete cleavage of a mRNA in vivo should be possible, given high-level expression of a ribozyme against a favourable target site.  相似文献   

4.
Synthetic regulatory devices are key components for the development of complex biological systems and the reprogramming of cellular functions and networks. Here we describe the selection of tetracycline inducible hammerhead ribozymes. A tetracycline aptamer was fused to the full-length hammerhead ribozyme via a variable linker region. 11 rounds of in vitro selection were applied to isolate linker sequences that mediate tetracycline dependent hammerhead cleavage. We identified allosteric ribozymes that cleave in the presence of 1 μM tetracycline as fast as the full-length ribozyme whereas cleavage is inhibited up to 333-fold in the absence of tetracycline. Reporter gene assays indicate that the allosteric ribozymes can be employed to control gene expression in yeast.  相似文献   

5.
Self-cleaving ribozymes associated with the glmS genes of many Gram-positive bacteria are activated by binding to glucosamine-6-phosphate (GlcN6P). Representatives of the glmS ribozyme class function as metabolite-sensing riboswitches whose self-cleavage activities down-regulate the expression of GlmS enzymes that synthesizes GlcN6P. As with other riboswitches, natural glmS ribozyme isolates are highly specific for their target metabolite. Other small molecules closely related to GlcN6P, such as glucose-6-phosphate, cannot activate self-cleavage. We applied in vitro selection methods in an attempt to identify variants of a Bacillus cereus glmS ribozyme that expand the range of compounds that induce self-cleavage. In addition, we sought to increase the number of variant ribozymes of this class to further examine the proposed secondary structure model. Although numerous variant ribozymes were obtained that efficiently self-cleave, none exhibited changes in target specificity. These findings are consistent with the hypothesis that GlcN6P is used by the ribozyme as a coenzyme for RNA cleavage, rather than an allosteric effector.  相似文献   

6.
7.
Zarrinkar PP  Sullenger BA 《Biochemistry》1999,38(11):3426-3432
Group I ribozymes can repair mutant RNAs via trans-splicing. Unfortunately, substrate specificity is quite low for the trans-splicing reaction catalyzed by the group I ribozyme from Tetrahymenathermophila. We have used a systematic approach based on biochemical knowledge of the function of the Tetrahymena ribozyme to optimize its ability to discriminate against nonspecific substrates in vitro. Ribozyme derivatives that combine a mutation which indirectly slows down the rate of the chemical cleavage step by weakening guanosine binding with additional mutations that weaken substrate binding have greatly enhanced specificity with short oligonucleotide substrates and an mRNA fragment derived from the p53 gene. Moreover, compared to the wild-type ribozyme, reaction of a more specific ribozyme with targeted substrates is much less sensitive to the presence of nonspecific RNA competitors. These results demonstrate how a detailed understanding of the biochemistry of a catalytic RNA can facilitate the design of customized ribozymes with improved properties for therapeutic applications.  相似文献   

8.
Hammerhead ribozymes were transcribed from a dsDNA template containing four random nucleotides between stems II and III, which replace the naturally occurring GAA nucleotides. In vitro selection was used to select hammerhead ribozymes capable of in cis cleavage using denaturing polyacrylamide gels for the isolation of cleaving sequences. Self-cleaving ribozymes were cloned after the first and second rounds of selection, sequenced and characterised. Only sequences containing 5'-HGAA-3', where H is A, C or U, between stems II and III were active; G was clearly not tolerated at this position. Thus, only three sequences out of the starting pool of 256 (4(4)) were active. The Michaelis-Menten parameters were determined for the in trans cleaving versions of these ribozymes and indicate that selected ribozymes are less efficient than the native sequence. We propose that the selected ribozymes accommodate the extra nucleotide as a bulge in stem II.  相似文献   

9.
We have carried out an in vitro selection to obtain an allosteric hairpin ribozyme, which has cleavage activity in the presence of an exogenous short oligonucleotide as a regulator. Random sequences were inserted in a region corresponding to the hairpin loop of the ribozyme. After 12 rounds of selection, DNA templates were cloned. Of a total of 34 clones, 18 contained the same sequence, and the obtained hairpin ribozymes showed the cleavage activity specifically in the presence of the regulator oligonucleotide. All of the clones contained sequences complementary to the regulator oligonucleotide. The ribozymes with high cleavage activities gained characteristic hairpin loops at the random domain, which were similar to each other. In the absence of the oligonucleotide, the loop domain within the allosteric ribozyme probably forms a slipped hairpin loop, and the complementary sequence, with the regulator oligonucleotide located at the single stranded loop, would allow easy access of the oligonucleotide. The binding of the regulator oligonucleotide triggers a structural change of the hairpin loop to form an active conformation. Furthermore, we constructed an allosteric hammerhead ribozyme by introducing the characteristic hairpin loop. The modified hammerhead ribozyme was also changed to an allosteric ribozyme, which was activated by the addition of the regulator oligonucleotide. The characteristic hairpin loop, which was proved to be regulated by an exogenous oligonucleotide in this report, may be used to control RNA functions in various fields.  相似文献   

10.
Hormes R  Sczakiel G 《Biochimie》2002,84(9):897-903
The structure and function of small complexes formed between trans-cleaving hammerhead ribozymes and their substrates are being intensely studied in vitro. Conversely, target strands for hammerhead ribozymes in living cells are usually much longer, and cleavage kinetics in vitro of long substrates are usually approximately 100-fold slower. However, on the mechanistic level, not much is known about the influence of substrate length on cleavage kinetics. Here, we describe the influence of the length of the substrate strand on cleavage kinetics in vitro of two trans-cleaving hammerhead ribozymes. Progressive extension of the 3' end of the substrate decreases cleavage kinetics in a length-dependent manner. A six-nucleotide protruding 3' end of helix I is related to a decrease of the cleavage rate by one order of magnitude. Extension of the 5' end of the substrate shows a more complex relationship of the length-related decrease of cleavage activity. Decreased cleavage activity can be compensated by increased magnesium concentrations. An explanation of this finding does not seem to include major influences of the extended substrate on the thermal stability or the global structural arrangement of the three double-strand helices of the hammerhead structure. We hypothesize that long-range influences between the termini of the substrate strand and the catalytic centre could be responsible for decreased cleavage rates.  相似文献   

11.
Natural hammerhead ribozymes are mostly found in some viroid and viroid-like RNAs and catalyze their cis cleavage during replication. Hammerheads have been manipulated to act in trans and assumed to have a similar catalytic behavior in this artificial context. However, we show here that two natural cis-acting hammerheads self-cleave much faster than trans-acting derivatives and other reported artificial hammerheads. Moreover, modifications of the peripheral loops 1 and 2 of one of these natural hammerheads induced a >100-fold reduction of the self-cleavage constant, whereas engineering a trans-acting artificial hammerhead into a cis derivative by introducing a loop 1 had no effect. These data show that regions external to the central conserved core of natural hammerheads play a role in catalysis, and suggest the existence of tertiary interactions between these peripheral regions. The interactions, determined by the sequence and size of loops 1 and 2 and most likely of helices I and II, must result from natural selection and should be studied in order to better understand the hammerhead requirements in vivo.  相似文献   

12.
Ribozymes in the age of molecular therapeutics   总被引:4,自引:0,他引:4  
Ribozymes are RNA molecules capable of sequence-specific cleavage of other RNA molecules. Since the discovery of the first group I intron ribozyme in 1982, new classes of ribozymes, each with their own unique reaction, target site specifications, and potential applications, have been identified. These include hammerhead, hairpin, hepatitis delta, varkud satellite, groups I and II intron, and RNase P ribozymes, as well as the ribosome and spliceosome. Meanwhile, ribozyme engineering has enabled the in vitro selection of synthetic ribozymes with unique properties. This, along with advances in ribozyme delivery methods and expression systems, has led to an explosion in the potential therapeutic applications of ribozymes, whether for anti-cancer or anti-viral therapy, or for gene repair.  相似文献   

13.
Kinetics of hairpin ribozyme cleavage in yeast.   总被引:3,自引:1,他引:2       下载免费PDF全文
Hairpin ribozymes catalyze a self-cleavage reaction that provides a simple model for quantitative analyses of intracellular mechanisms of RNA catalysis. Decay rates of chimeric mRNAs containing self-cleaving ribozymes give a direct measure of intracellular cleavage kinetics in yeast. Intracellular ribozyme-mediated cleavage occurs at similar rates and shows similar inhibition by ribozyme mutations as ribozyme-mediated reactions in vitro, but only when ribozymes are located in a favorable mRNA sequence context. The impact of cleavage on mRNA abundance is shown to depend directly on intrinsic mRNA stability. Surprisingly, cleavage products are no more labile than uncleaved mRNAs despite the loss of terminal cap structures or poly (A).  相似文献   

14.
For a long time nucleic acid-based approaches directed towards controlling the propagation of Hepatitis C Virus (HCV) have been considered to possess high potential. Towards this end, ribozymes (i.e. RNA enzymes) that specifically recognize and subsequently catalyze the cleavage of their RNA substrate present an attractive molecular tool. Here, the unique properties of a new generation of ribozymes are taken advantage of in order to develop an efficient and durable ribozyme-based technology with which to target HCV (+) RNA strands. These ribozymes resulted from the coupling of a specific on/off adaptor (SOFA) to the ribozyme domain derived from the Hepatitis Delta Virus (HDV). The former switches cleavage activity “on” solely in the presence of the desired RNA substrate, while the latter was the first catalytic RNA reported to function naturally in human cells, specifically in hepatocytes. In order to maximize the chances for success, a step-by-step approach was used for both the design and the selection of the ribozymes. This approach included the use of both bioinformatics and biochemical methods for the identification of the sites possessing the greatest potential for targeting, and the subsequent in vitro testing of the cleavage activities of the corresponding SOFA-HDV ribozymes. These efforts led to a significant improvement in the ribozymes'' designs. The ability of the resulting SOFA-HDV ribozymes to inhibit HCV replication was further examined using a luciferase-based replicon. Although some of the ribozymes exhibited high levels of cleavage activity in vitro, none appears to be a potential long term inhibitor in cellulo. Analysis of recent discoveries in the cellular biology of HCV might explain this failure, as well as provide some ideas on the potential limits of using nucleic acid-based drugs to control the propagation of HCV. Finally, the above conclusions received support from experiments performed using a collection of SOFA-HDV ribozymes directed against HCV (−) strands.  相似文献   

15.
Most researchers who intend to suppress a particular gene are interested primarily in the application of ribozyme technology rather than its mechanistic details. This article provides some background information and describes a straightforward strategy to generate and test a special design of a ribozyme: the asymmetric hammerhead ribozyme. This version of a hammerhead ribozyme carries at its 5' end the catalytic domain and at its 3' end a relatively long antisense flank that is complementary to the target RNA. Asymmetric hammerhead ribozymes can be constructed via polymerase chain reaction amplification, and rules are provided on how to select the DNA oligonucleotides required for this reaction. In addition to details on construction, we describe how to test asymmetric hammerhead ribozymes for association with the target RNA in vitro, so that RNA constructs can be selected and optimized for fast hybridization with their target RNA. This test can allow one to minimize association problems caused by the secondary structure of the target RNA. Additionally, we describe the in vitro cleavage assay and the determination of the cleavage rate constant. Testing for efficient cleavage is also a prerequisite for reliable and successful application of the technology. A carefully selected RNA will be more promising when eventually used for target suppression in living cells.  相似文献   

16.
Stathmin is a major cytosolic phosphoprotein that plays an important role in the control of cellular proliferation by regulating the dynamics of the microtubules that make up the mitotic spindle. Because stathmin is expressed at high levels in all human cancers, it is an attractive molecular target for anticancer interventions. We had shown previously that antisense stathmin inhibition results in marked abrogation of the transformed phenotype of leukemic cells in vitro and in vivo. Unlike the antisense approach, ribozymes can catalytically cleave several molecules of target RNA. This may provide a more efficient strategy for downregulating genes, such as stathmin, that are expressed at very high levels in cancer cells. We designed several antistathmin hammerhead ribozymes and tested their cleavage activity against short synthetic stathmin RNA substrates. In vitro cleavage studies demonstrated site-specific cleavage of stathmin RNA that was dependent on ribozyme concentration and duration of exposure to ribozyme. The most active antistathmin ribozyme was capable of cleaving >90% stathmin RNA in a catalytic manner, cleaving multiple substrate molecules per ribozyme molecule. We also demonstrated that the designed antistathmin ribozymes are capable of selectively cleaving native stathmin RNA in a mixture of total RNA isolated from leukemic cells. These antistathmin ribozymes may provide a novel and effective form of gene therapy that may be applicable to a wide variety of human cancers.  相似文献   

17.
From in vitro selection studies, DNA structures have been found that cleave target RNA sequence specifically and show a certain similarity to the well-investigated hammerhead ribozymes. Such DNA enzymes are more resistant to nuclease-mediated degradation than RNA enzymes. On the other hand, their cleavage activity is lower than the activity of hammerhead ribozymes. In the present study, we improved the activity of DNA enzymes by adding oligonucleotide facilitators complementary to the 5' and the 3' ends of the substrate to the cleavage reaction. DNA enzyme activity in vitro was monitored under multiple turnover conditions using short RNA model substrates. We have shown that oligonucleotide facilitators strongly enhance the multiple turnover activity of the DNA enzyme reaction. In one of our model systems with a suitable facilitator combination, we were able to observe a more than 200-fold enhancement of the k(cat)/Km value. The comparison of two DNA enzyme-substrate systems showed that the principal effects of the facilitators were independent of the substrate sequence. However, the degree of facilitator effect was noticeably dependent on the basic catalytic efficiency of DNA enzymes. Furthermore, the efficiency of the DNA enzyme reaction with facilitator was compared with the reaction of a DNA enzyme with a stem sequence extended by the sequence of the facilitator. The multiple turnover activity of such a "long DNA enzyme" is higher than the activity of the short DNA enzyme without facilitators. However, when compared with the multiple turnover reactions of the short DNA enzyme with facilitator, the reaction with the long DNA enzyme is considerably slower. The results obtained with our model systems demonstrate that oligonucleotide facilitators enable DNA enzymes to act as effective multiple turnover catalysts by cleavage of RNA substrates.  相似文献   

18.
In vitro selection was used to enrich for highly efficient RNA phosphodiesterases within a size-constrained (18 nt) ribonucleotide domain. The starting population (g0) was directed in trans against an RNA oligonucleotide substrate immobilised to an avidin-magnetic phase. Four rounds of selection were conducted using 20 mM Mg2+to fractionate the population on the basis of divalent metal ion-dependent phosphodiesterase activity. The resulting generation 4 (g4) RNA was then directed through a further two rounds of selection using low concentrations of Mg2+. Generation 6 (g6) was composed of sets of active, trans cleaving minimised ribozymes, containing recognised hammerhead motifs in the conserved nucleotides, but with highly variable linker domains (loop II-L.1-L.4). Cleavage rate constants in the g6 population ranged from 0.004 to 1.3 min-1at 1 mM Mg2+(pH 8.0, 37 degrees C). Selection was further used to define conserved positions between G(10.1) and C(11.1) required for high cleavage activity at low Mg2+concentration. At 10 mM MgCl2the kinetic phenotype of these molecules was comparable to a hammerhead ribozyme with 4 bp in helix II. At low Mg2+concentration, the disparity in cleavage rate constants increases in favour of the minimised ribozymes. Favourable kinetic traits appeared to be a general property for specific selected linker sequences, as the high rates of catalysis were transferable to a different substrate system.  相似文献   

19.
In vitro activity of minimised hammerhead ribozymes.   总被引:2,自引:2,他引:0       下载免费PDF全文
A number of minimised hammerhead ribozymes (minizymes) which lack stem II have been kinetically characterised. These minizymes display optimal cleavage activity at temperatures around 37 degrees C. The cleavage reactions of the minizymes are first order in hydroxide ion concentration up to around pH 9.3 above which the cleavage rate constants decline rapidly. The reactions show a biphasic dependence on magnesium-ion concentration; one of the interactions has an apparent dissociation constant of around 20 mM while the other appears to be very weak, showing no sign of saturation at 200 mM MgCl2. The minizymes are significantly less active than comparable, full-size ribozymes when cleaving short substrates. However, at a particular site in a transcribed TAT gene from HIV-1, minizymes are more effective than ribozymes.  相似文献   

20.
Engineered RNase P ribozymes are promising gene-targeting agents that can be used in both basic research and clinical applications. We have previously selected ribozyme variants for their activity in cleaving an mRNA substrate from a pool of ribozymes containing randomized sequences. In this study, one of the variants was used to target the mRNA encoding thymidine kinase (TK) of herpes simplex virus 1 (HSV-1). The variant exhibited enhanced cleavage and substrate binding and was at least 30 times more efficient in cleaving TK mRNA in vitro than the ribozyme derived from the wild type sequence. Our results provide the first direct evidence to suggest that a point mutation at nucleotide 95 of RNase P catalytic RNA from Escherichia coli (G(95) --> U(95)) increases the rate of cleavage, whereas another mutation at nucleotide 200 (A(200) --> C(200)) enhances substrate binding of the ribozyme. A reduction of about 99% in TK expression was observed in cells expressing the variant, whereas a 70% reduction was found in cells expressing the ribozyme derived from the wild type sequence. Thus, the RNase P ribozyme variant is highly effective in inhibiting HSV-1 gene expression. Our study demonstrates that ribozyme variants increase their cleavage activity and efficacy in blocking gene expression in cells through enhanced substrate binding and rate of cleavage. These results also provide insights into the mechanism of how RNase P ribozymes efficiently cleave an mRNA substrate and, furthermore, facilitate the development of highly active RNase P ribozymes for gene-targeting applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号