首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Summary The neuronal subpopulations in the cat stellate, lower lumbar and sacral sympathetic ganglia were studied with regard to the cellular distribution of immunoreactivity to tyrosine hydroxylase (TH), acetylcholinesterase (AChE) and various neuronal peptides. Coexistence of neuropeptide Y (NPY)- and galanin (GAL)-like immunoreactivity (LI) was found in a high proportion of the neuronal cell bodies; these cells also contained immunoreactivity to TH, confirming their presumably noradrenergic nature. Some TH- and GAL-immunoreactive principal ganglion cells lacked NPY-LI. Two populations (scattered and clustered) of vasoactive intestinal polypeptide (VIP)- and peptide histidine isoleucine (PHI)-positive cell bodies were found in the sympathetic ganglia studied. The scattered VIP/PHI neurons also contained AChE-LI, calcitonin gene-related peptide (CGRP)-and, following culture, substance P (SP)-LI. The clustered type only contained AChE-LI. In the submandibular and sphenopalatine ganglia, neurons were AChE- and VIP/ PHI-immunoreactive but lacked CGRP- and SP-LI. Many GAL- and occasional TH-positive neurons were found in these ganglia. In the spinal ganglia, single NPY-immunoreactive sensory neuronal cells were observed, in addition to CGRP- and SP-positive neurons. The present results show that there are at least two populations of sympathetic cholinergic neurons in the cat. Retrograde tracing experiments indicate that the scattered type of cholinergic neurons contains four vasodilator peptides (VIP, PHI, CGRP, SP) and provides an important input to sweat glands, whereas the clustered type (containing VIP and PHI) mainly innervates blood vessels in muscles.  相似文献   

2.
The distribution and ontogeny of four neuropeptides in developing chick lumbosacral sensory and sympathetic ganglia were studied using immunohistochemical techniques. Antibodies to two of these peptides, substance P (SP) and calcitonin gene-related peptide (CGRP), stained small neurons in the medial part of the dorsal root ganglia from embryonic Day 5 and Day 10, respectively, whereas neurons in the lateral part of the ganglia were negative; this distribution persisted throughout development. Both sets of neurons apparently send fibers to the dorsal horn of the spinal cord: SP to laminae I and II, and CGRP to lamina I, suggesting that the SP- and CGRP-positive sensory neurons are nociceptive or thermoreceptive. This correlation between the presence of SP or CGRP in a neuron and a particular functional modality thus provides evidence for a functional distinction between the mediodorsal and ventrolateral zones that are apparent during the development of chick dorsal root ganglia. Moreover, this study suggests that the type of neuron that develops within the dorsal root ganglion correlates with its position within the ganglion. In contrast to SP and CGRP, somatostatin (SOM) and vasoactive intestinal polypeptide (VIP) immunoreactivities were not seen in the lumbosacral sensory ganglia at any stage during development. However, both were present in sympathetic ganglia: SOM from embryonic Day 4.5 and VIP from embryonic Day 10. VIP immunoreactivity persisted throughout development in a large number of sympathetic neurons, but the number of cells with SOM immunoreactivity decreased from embryonic Day 10 onward. SOM therefore appears to be present only transiently in most chick lumbosacral sympathetic cells.  相似文献   

3.
The enteric nervous system is of great importance for maintenance and proper function of the gastrointestinal tract. The aim of this study was to quantify myenteric neuronal subpopulations expressing calcitonin gene-related peptide (CGRP), galanin, neuropeptide Y (NPY), somatostatin, vasoactive intestinal peptide (VIP) and nitric oxide synthase (NOS) in rat colon in vivo and after culturing. Further we investigated if culturing in the presence of CGRP, galanin, VIP, S-nitroso-N-acetyl-d,l-penicillamine (SNAP, a NO donor) or N-nitro-l-arginine methyl ester (l-NAME, a NOS inhibitor) affect neuronal survival.

After 4 days of culturing the proportions of neurons expressing CGRP, NPY, somatostatin or VIP increased as compared to in vivo, while the proportions of neurons expressing galanin or NOS did not change. Neuronal survival was unaffected after culturing in media enriched with CGRP, galanin, VIP, SNAP or l-NAME. Neither did addition of CGRP, galanin nor VIP to the cultures affect the relative numbers of neurons expressing CGRP, galanin or VIP respectively. Addition of SNAP or l-NAME did not change the percentage of neurons expressing NOS.

In conclusion, cultured rat colonic myenteric neurons increase their expression of CGRP, NPY, somatostatin and VIP, suggesting that these neuropeptides are of importance for neuronal survival.  相似文献   


4.
Summary A monoclonal antibody (mAb), 129CD8 was raised against a C-terminal fragment (aa28–37) of -human calcitonin gene-related peptide (CGRP) coupled to bovine serum albumin. The specificity of the monoclonal antibody 129CD8 was corroborated by dot immunobinding experiments, enzyme-linked immunoassay and immunostaining of tissue sections. In vitro studies showed that the mAb 129CD8 readily recognized the fragment 28–37 of -human CGRP and to a slightly lesser degree whole -human CGRP and the fragments containing the C-terminal part of the molecule. The mAb 129CD8 also recognized the -human CGRP but not the -rat CGRP. The mAb 129CD8 did not react with substance P, katacalcin, calcitonin, amylin or fragments of -human CGRP lacking the C-terminal part of the molecule.Immunocytochemical staining was performed on human skin, guinea-pig thyroid and salivary glands and the trigeminal ganglion, and rat thyroid gland. Our findings demonstrate, in keeping with previous studies, that in human skin, nerve fibres containing CGRP immunoreactivity are found in both epidermis and dermis. In accordance with previous investigators, the Merkel cells were immunoreactive for CGRP. In the guinea-pig and rat thyroid gland CGRP immunoreactivity was localized in the C-cells. The distribution of CGRP immunoreactivity in the guinea-pig salivary glands is different from that previously reported for rat salivary glands. In the guinea-pig trigeminal ganglion, CGRP immunoreactivity was localized mainly in small-sized neurons and fibres traversing the ganglion. Double staining with substance P performed on guinea-pig trigeminal ganglion revealed four types of sensory neurons, those containing both peptides, those containing only substance P or CGRP and those lacking both peptides. Guinea-pig parotid gland, but not the submandibular or sublingual glands, contained periacinar fibres exhibiting both immunoreactivities. Substance P-positive, CGRP-positive fibres were also seen around parotid and submandibular, but not around sublingual, gland ducts. All glands received perivascular innervation showing immunoreactivities for both peptides. The present results support the idea that in the peripheral nervous system only a subpopulation of sensory neurons contains both substance P and CGRP. Consequently, colocalization of substance P and CGRP indicates a sensory nerve, while those containing either substance P or CGRP may be sensory or parasympathetic.  相似文献   

5.
Visceral pain/hypersensitivity is a cardinal symptom of functional gastrointestinal disorders. With their peripheral and central (spinal) projections, sensory neurons in the dorsal root ganglia (DRG) are the "gateway" for painful signals emanating from both somatic and visceral structures. In contrast to somatic pain, the neurochemical pathways involved in visceral pain/hypersensitivity have not been well studied. We hypothesized the neuropeptide changes in spinal cord and DRG during visceral pain would mirror similar changes in somatic nociception. Noxious (painful) colorectal distension (CRD) was done by distending a rectal balloon up to 60 mm Hg phasically for 1 h in Sprague-Dawley rats. The spinal content of calcitonin gene-related peptide (CGRP), substance P (SP), galanin and vasoactive intestinal peptide (VIP) as well as their mRNAs in DRG were measured at 0, 4 and 24 h after the CRD. Visceromotor reflex (VMR) was measured by recording the electromyogram at the abdominal muscle in response to CRD. Distal colorectum was removed for evaluating the presence of inflammation. No significant evidence of histological inflammation was seen in the colonic mucosa/submucosa after repeated CRD, which is confirmed by myeloperoxidase assay. The spinal content of CGRP and SP decreased significantly 4 h after CRD, while galanin and VIP levels increased gradually and reached highest level at 24 h (p<0.05). The mRNAs in DRG of the neuropeptides were significantly upregulated after CRD (p<0.05). VMR recording showed the rat's colon became hypersensitive 4 h after CRD, a sequence parallel to the spinal changes of CGRP and SP in timeframe. Noxious mechanical distension of the colorectum causes an acute change in the spinal levels of excitatory neurotransmitters (CGRP and SP), probably reflecting central release of these peptides from sensory neurons and contributing to the hypersensitivity following the noxious CRD. This is followed by a slower change in the levels of the inhibitory neurotransmitter galanin and VIP. Such stimulation results in significant alternation of the gene expression in DRG, reflecting the plasticity of the neuronal response. In the absence of visceral inflammation, the aforementioned neuropeptides are important mediators in the processing of visceral pain/hypersensitivity.  相似文献   

6.
Summary The pancreas and gastrointestinal tract (GIT) of adults and of an embryonic stage of 11 cm long (about half the length of newborn fish) of the spiny dogfish,Squalus acanthias, were investigated immunocytochemically for the occurrence of the gastro-entero-pancreatic (GEP) neurohormonal peptides. In the pancreas of adult forms 5 endocrine cell types were seen, namely insulin-, somatostatin-, glucagon-, pancreatic polypeptide (PP)- and gastric inhibitory peptide (GIP)-immunoreactive cells. These cell types form scatterd islets and were seen sometimes to surround small ducts. GIP-immunoreactivity cells did not occur in glucagon-containing cells. In the mucosa of GIT of adults 18 endocrine cell types were observed, viz. insulin-, somatostatin-, glucagon-, glicentin-, PP-, polypeptide YY (PYY)-, vasoactive intestinal polypeptide (VIP)-, GIP-, gastrin C-terminus, CCK-, neurotensin N-terminus-, bombesin/gastrin releasing peptide (GRP)-, substance P-, enkephalin-, -endorphin, -endorphin-, serotonin- and calcitonin immunoreactive cells. These cells occurred mostly in the intestine. All these cell types were of the open type, except glucagon- and glicentin-immunoreactive cells in the stomach, which seemed to be of the closed type. In the muscle layers and the submucosa, VIP and substance P-immunoreactive nerves and neurons were observed. In the pancreas of the dogfish embryo only 3 endocrine cell types could be demonstrated, namely insulin-, somatostatin- and glucagon-immunoreactive cells. In the mucosa of the GIT of the embryos studied 12 endocrine cell types were detected, viz. insulin-, somatostatin-, glucagon-, PP-, PYY-, VIP, GIP, gastrin C-terminus-, CCK-, neurotensin N-terminus-, enkephalin- and serotonin immunoreactive cells. The number of these cells, except that of PYY-immunoreactive cells, was lower than that of adults and in some cases their distribution did not correspond with that of adults.  相似文献   

7.
Intrinsic reflexes of the lower esophageal sphincter (LES) are mediated by specific arrangements of excitatory and inhibitory nerves. We have previously described an excitatory reflex at the feline LES mediated by a bombesin-like peptide (BN) which causes release of substance P (SP) to directly contract the LES. Galanin is a neurotransmitter in the enteric nervous system which colocalizes in neurons containing vasoactive intestinal peptide (VIP). The aims of this study were to determine: (1) the distribution of galanin at the feline LES; (2) the effect of galanin on basal LES tone; (3) the effect of galanin on agonist-induced LES contractions by BN, SP and bethanechol; and (4) the effect of galanin on LES relaxation induced by esophageal distension and exogenous VIP. Galanin-like immunoreactivity (galanin-LI) was localized in neurons that were widely distributed throughout the LES and adjacent organs. Galanin-LI was most abundant in the circular muscle, muscularis mucosa and myenteric plexus of the LES. In anesthetized cats, intra-arterial galanin had no effect on basal LES pressure in a dose range of 10−11 to 10−6 g/kg. Galanin (5 10−7 g/kg) reduced the LES contractile response to SP by 65 ± 8% (P = 0.0001). This galanin-mediated inhibition of SP was not blocked by tetrodotoxin. Galanin similarly decreased the LES contractile response to BN (63 ± 7%, P = 0.005) and bethanechol (55 ± 17%, P = 0.012). Galanin had no effect on the LES relaxation induced by esophageal distension or exogenous VIP. We conclude: (1) galanin-LI is present in neurons at the feline LES; (2) galanin has no effect on basal sphincter tone, but inhibits contractions of the LES by both direct and indirect agonists; and (3) galanin does not effect the LES relaxation induced by esophageal distension or VIP.  相似文献   

8.
The neurochemical coding of neurones located in ganglia of the nerve trunk accompanying the chicken ureter was analysed and quantified using NADPH-diaphorase reactivity and immunohistochemistry against tyrosine hydroxylase (TH), nitric oxide synthase (NOS), calbindin (CAL), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP) and calcitonin gene-related peptide (CGRP) in untreated or colchicine-treated preparation. Almost all neurones were either positive for TH (38%) or for SOM (60%). Only 4% of the neurones were both TH- and SOM-positive and 3% of the neurones exhibited neither TH nor SOM immunoreactivity. The relative numbers of NPY-, NOS-, CAL- and VIP-positive neurones were 57%, 28%, 14% and 7%, respectively. No SP- or CGRP-positive neurones were observed. All NADPH-diaphorase-positive neurones expressed NOS immunoreactivity. Only in some TH-positive neurones was NPY and/or NOS found. Four major subpopulations were found in the ureteric ganglia. The SOM-positive neurones were subdivided into SOM/NPY/NOS- (28% of all neurones), SOM/NPY- (18%) and SOM/CAL/NPY-positive neurones (14%). A subpopulation of these peptid- ergic neurones also contained VIP. About 35% of the neurones contained TH only. Neurones of all subpopulations (72% of the neurones), except most of the CAL-positive neurones, were encircled by dense plexus of varicose SP/CGRP-positive, presumably sensory nerve fibres. Dense plexus of VIP-positive fibres were observed around 89% of the neurones. The chemical coding of the neuronal subpopulations identified in the ganglia accompanying the chicken ureter resembled that observed in the ganglia of Remak’s nerve but was remarkably different from that of the autonomic neurones described in mammalian species.  相似文献   

9.
Grandry corpuscles in the oral mucosa of the upper bill of the duck were immunohistochemically studied using antisera against calcitonin gene-related peptide (CGRP), galanin, methionine-enkephalin, neuropeptide Y (NPY), somatostatin, substance P (SP) and vasoactive intestinal peptide (VIP). Grandry corpuscles in the lamina propria selectively showed only SP-like immunoreactivity. Herbst corpuscles distributed near Grandry corpuscles were negative to all antisera applied. Although immunoreactive products in the Grandry corpuscles were found as granules in the peripheral cytoplasm of the Grandry cell, the axon terminals and satellite cells exhibited no reactivity. In pre-embedding electron-microscopic sections, SP-like immunoreactive products visualized with 3,3-diaminobezidine were localized in the granules of Grandry cells, but no labeling was observed in the cytoplasmic matrix or cell organelles. Electron-immunocytochemical labeling with colloidal gold by the post-embedding method clearly demonstrated that the SP antigen was localized only in the granules. It is presumed that Grandry cells have a secretory function. However, the function and the method of release of the SP contained in the observed granules remains obscure. Some CGRP-, NPY-, SP- and VIP-like-immunoreactive nerve fibers with varicosities associated with blood vessels and nerve fiber bundles of various sizes were observed in the lamina propria, but no such fibers penetrated into the intraepitherial layer. Nerve fibers positive for SP and VIP were also found in the interlobular connective tissue of the palatine glands. Some SP-positive neurons were detected in the vicinity of the palatine glands.  相似文献   

10.
Summary Paraffin sections of cervical and upper thoracic paravertebral ganglia of the cat were investigated by immunohistochemistry using antisera directed against calcitonin gene-related peptide (CGRP). The relationships of CGRP-immunoreactive structures to those exhibiting immunoreactivity to antisera against other regulatory peptides and dopamine--hydroxylase (DBH), respectively, were studied in consecutive sections. Singly scattered CGRP-immunoreactive neuronal perikarya were observed in the superior and middle cervical ganglia as well as in the stellate ganglion. These neurons also displayed immunoreactivity to vasoactive intestinal polypeptide (VIP), and some additionally exhibited faint substance-P immunoreactivity. DBH- and neuropeptide Y-immunoreactive ganglion cells were not identical with CGRP-immunoreactive neuronal cell bodies.According to the immunoreactive properties of varicosities, which abut on CGRP/VIP-immunoreactive perikarya, three types of CGRP/VIP-immunoreactive ganglion cells could be distinguished: (1) CGRP/VIP-immunoreactive neurons being surrounded by somatostatin-immunoreactive nerve fibers, (2) neurons being approached by both DBH- and met-enkephalin-immunoreactive varicosities, and (3) neurons receiving both DBH- and neurotensin-immunoreactive fibers. The stellate and upper thoracic ganglia harbored clusters of intensely VIP-immunoreactive somata, which lacked CGRP-immunoreactivity. Fine somatostatin-immunoreactive and coarse CGRP-immunoreactive fibers were distributed within these clusters, whereas patches of neurotensin-immunoreactive fibers were complementarily arranged. At all segmental levels investigated, a few postganglionic neurons were approached by both CGRP-immunoreactive and substance P-immunoreactive varicosities, but lacked a VIP-immunoreactive innervation. Therefore, CGRP/substance P-immunoreactive fiber baskets appeared rather to be of extraganglionic origin than to emerge from intraganglionic CGRP/VIP/SP neurons. CGRP-immunoreactive cell bodies or fibers were absent in clusters of small paraganglionic cells, but some of the solitary paraganglionic cells displayed CGRP-immunoreactivity. Our findings establish the presence of CGRP-immunoreactivity in a population of sympathetic neurons in the cat. A highly differentiated, segment-dependent organizational pattern of neuropeptides in cervico-thoracic paravertebral ganglia was demonstrated.Supported by Deutsche Forschungsgemeinschaft grant He 919/6-2  相似文献   

11.
M El-Salhy 《Histochemistry》1984,80(2):193-205
The pancreas and gastrointestinal tract (GIT) of adults and of an embryonic stage of 11 cm long (about half the length of newborn fish) of the spiny dogfish, Squalus acanthias, were investigated immunocytochemically for the occurrence of the gastro-entero-pancreatic (GEP) neurohormonal peptides. In the pancreas of adult forms 5 endocrine cell types were seen, namely insulin-, somatostatin-, glucagon-, pancreatic polypeptide (PP)- and gastric inhibitory peptide (GIP)-immunoreactive cells. These cell types form scattered islets and were seen sometimes to surround small ducts. GIP-immunoreactivity cells did not occur in glucagon-containing cells. In the mucosa of GIT of adults 18 endocrine cell types were observed, viz. insulin-, somatostatin-, glucagon-, glicentin, PP-, polypeptide YY (PYY)-, vasoactive intestinal polypeptide (VIP)-, GIP-, gastrin C-terminus, CCK-, neurotensin N-terminus-, bombesin/gastrin releasing peptide (GRP)-, substance P-, enkephalin-, alpha-endorphin, beta-endorphin-, serotonin- and calcitonin immunoreactive cells. These cells occurred mostly in the intestine. All these cell types were of the open type, except glucagon- and glicentin-immunoreactive cells in the stomach, which seemed to be of the closed type. In the muscle layers and the submucosa, VIP and substance P- immunoreactive nerves and neurons were observed. In the pancreas of the dogfish embryo only 3 endocrine cell types could be demonstrated, namely insulin-, somatostatin- and glucagon-immunoreactive cells. In the mucosa of the GIT of the embryos studied 12 endocrine cell types were detected, viz. insulin-, somatostatin-, glucagon-, PP-, PYY-, VIP, GIP, gastrin C-terminus-, CCK-, neurotensin N-terminus-, enkephalin- and serotonin immunoreactive cells. The number of these cells, except that of PYY-immunoreactive cells, was lower than that of adults and in some cases their distribution did not correspond with that of adults.  相似文献   

12.
This immunohistochemical study in zebrafish aims to extend the neurochemical characterization of enteric neuronal subpopulations and to validate a marker for identification of interstitial cells of Cajal (ICC). The expression of neuropeptides and anoctamin 1 (Ano1), a selective ICC marker in mammals, was analyzed in both embryonic and adult intestine. Neuropeptides were present from 3 days postfertilization (dpf). At 3 dpf, galanin-positive nerve fibers were found in the proximal intestine, while calcitonin gene-related peptide (CGRP)- and substance P-expressing fibers appeared in the distal intestine. At 5 dpf, immunoreactive fibers were present along the entire intestinal length, indicating a well-developed peptidergic innervation at the onset of feeding. In the adult intestine, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), galanin, CGRP and substance P were detected in nerve fibers. Colchicine pretreatment enhanced only VIP and PACAP immunoreactivity. VIP and PACAP were coexpressed in enteric neurons. Colocalization stainings revealed three neuronal subpopulations expressing VIP and PACAP: a nitrergic noncholinergic subpopulation, a serotonergic subpopulation and a subpopulation expressing no other markers. Ano1-immunostaining revealed a 3-dimensional network in the adult intestine containing multipolar cells at the myenteric plexus and bipolar cells interspersed between circular smooth muscle cells. Ano1 immunoreactivity first appeared at 3 dpf, indicative of the onset of proliferation of ICC-like cells. It is shown that the Ano1 antiserum is a selective marker of ICC-like cells in the zebrafish intestine. Finally, it is hypothesized that ICC-like cells mediate the spontaneous regular activity of the embryonic intestine.  相似文献   

13.
Summary The pelvic ganglia supply cholinergic and noradrenergic nerve pathways to many organs. Other possible transmitters are also present in these nerves, including peptides. Multiple labelling immunofluorescence techniques were used in this study of the male rat major pelvic ganglion (MPG) to examine: (1) the peptides present in noradrenergic (tyrosine hydroxylase (TH)-positive) and non-noradrenergic (putative cholinergic) neurons, and (2) the types of peptide-containing nerve fibres closely associated with these two groups of neurons. The distribution of the peptide galanin (GAL) within the MPG was also investigated. All of the TH-neurons contained neuropeptide Y (NPY), but none of the other tested peptides. However, many NPY neurons did not contain TH and may have been cholinergic. TH-negative neurons also displayed vasoactive intestinal peptide (VIP), enkephalin (ENK) or GAL. VIP and NPY formed the most common types of putative cholinergic pelvic neurons, but few cells contained both peptides. Many ENK neurons exhibited VIP, NPY or GAL. Varicose nerve terminals surrounding ganglion cells contained ENK, GAL, somatostatin (SOM) and cholecystokinin (CCK). These peptide-immunoreactive fibres were more often associated with the non-noradrenergic (putative cholinergic) than the noradrenergic neurons; two types (SOM and CCK) were preferentially associated with the non-noradrenergic NPY neurons. GAL was distributed throughout the MPG, in small neurons, scattered small, intensely fluorescent (SIF) cells, and both varicose and non-varicose nerve fibres. The nerve fibres were concentrated near the pelvic and penile nerves; most of the varicose fibres formed baskets surrounding individual GAL-negative somata.  相似文献   

14.
Summary The occurrence and distribution of several neuropeptides and transmitter enzymes have been investigated by means of indirect immunofluorescence histochemistry in preaortal and carotid body-like paraganglia of the fetal guinea pig and the newborn pig. Preaortal paraganglia from the celiac and inferior mesenteric ganglion regions in fetal guinea pigs showed cell bodies immunoreactive (IR) for tyrosine hydroxylase (TH), dopamine -hydroxylase (DBH), neuropeptide Y (NPY), galanin (GAL) and metenkephalin (ENK). Almost all cells were IR for TH and DBH, whereas NPY-like immunoreactivity (-LI), GAL-LI and ENK-LI occurred less frequently. Direct double-labeling revealed the coexistence of NPY/GAL, NPY/ENK and GAL/ENK in paraganglion cells from the celiac and inferior mesenteric region. Nerve fibers and terminals were IR for ENK; fibers IR for calcitonin-gene-related peptide (CGRP) were present in the inferior mesenteric ganglion region. Preaortal paraganglia cells from the newborn pig showed TH-LI, DBH-LI, GAL-LI and ENK-LI, the distribution pattern being similar to that seen in the guinea pig; however, NPY-LI was absent. Carotid-body-like paraganglia from the newborn pig showed cell bodies IR to TH, GAL and ENK. Few cells were seen with DBH-LI. A rich supply of nerve fibers with CGRP-LI was present; some fibers exhibited ENK-LI and CCK-LI. In the adjacent superior cervical ganglion, ganglion cell bodies showed immunoreactivity to TH, DBH and NPY. A small number of cells were positive for GAL, CGRP and vasoactive intestinal polypeptide (VIP). Physiological activation of the paraganglia, leading to release or increase in catecholamines, may also change the content of the neuropeptides present in the paraganglia.  相似文献   

15.
The distribution and colocalization of neuropeptides and 5-hydroxytryptamine in the posterior portion of the large intestine of the toad was studied using single- and dual-label immunohistochemistry. Neurons containing colocalized galanin/somatostatin or vasoactive intestinal peptide alone were observed along intramural pelvic nerves. Some of the galanin/somatostatin neurons also contained 5-hydroxytryptamine. Synaptic boutons containing colocalized calcitonin gene-related peptide/vasoactive intestinal peptide were associated with the galanin/somatostatin neurons. The muscle of the large intestine was also innervated by axons containing galamin/somatostatin, vasoactive intestinal peptide/calcitonin gene-related peptide or vasoactive intestinal peptide alone. Nerve fibres containing calcitonin gene-related peptide/substance P, probably representing primary afferent nerves, were also associated with muscle bundles. Submucosal blood vessels carried dense plexuses of fibres containing vasoactive intestinal peptide alone or and calcitonin gene-related peptide/substance P. Adrenergic perivascular nerves also contained galanin and neuropeptide Y.  相似文献   

16.
The morphology and topographical distribution of neurons and terminals containing calcitonin gene-related peptide (CGRP) immunoreactivity in the cat periaqueductal grey (PAG) were studied using a rabbit antiserum raised against the C-terminal region of rat α-CGRP. In normal cats, numerous fibers, but rarely immunoreactive neurons, were observed in the PAG. CGRP-containing fibers showed bouton-like swellings along their length and expanded in terminal clusters of boutons. In many cases, CGRP-positive fibers were also observed in close association with small blood vessels. Immunoreactive fibers were particularly numerous at caudal PAG levels, mostly in its ventrolateral portion. In colchicine-treated cats, the pattern of CGRP-containing fibers was basically unchanged, despite a reduction of both the number of fibers and the intensity of fiber staining; in addition, numerous CGRP-positive neurons were found, mostly in the ventrolateral portion of the caudal PAG. These neurons were fusiform, spheroidal, and triangular in shape. The selective distribution of CGRP-positive elements in the PAG suggests a functional specialization of these neurons in the activation of pain-modulating mechanisms.  相似文献   

17.
The morphology and topographical distribution of neurons and terminals containing calcitonin gene-related peptide (CGRP) immunoreactivity in the cat periaqueductal grey (PAG) were studied using a rabbit antiserum raised against the C-terminal region of rat alpha-CGRP. In normal cats, numerous fibers, but rarely immunoreactive neurons, were observed in the PAG. CGRP-containing fibers showed bouton-like swellings along their length and expanded in terminal clusters of boutons. In many cases, CGRP-positive fibers were also observed in close association with small blood vessels. Immunoreactive fibers were particularly numerous at caudal PAG levels, mostly in its ventrolateral portion. In colchicine-treated cats, the pattern of CGRP-containing fibers was basically unchanged, despite a reduction of both the number of fibers and the intensity of fiber staining; in addition, numerous CGRP-positive neurons were found, mostly in the ventrolateral portion of the caudal PAG. These neurons were fusiform, spheroidal, and triangular in shape. The selective distribution of CGRP-positive elements in the PAG suggests a functional specialization of these neurons in the activation of pain-modulating mechanisms.  相似文献   

18.
Intrinsic choroidal neurons (ICNs) exist in some primates and bird species. They may act on both vascular and non-vascular smooth muscle cells, potentially influencing choroidal blood flow. Here, we report on the chemical coding of ICNs and eye-related cranial ganglia in the chicken, an important model in myopia research, and further to determine synaptic input onto ICN. Chicken choroid, ciliary, superior cervical, pterygopalatine, and trigeminal ganglia were prepared for double or triple immunohistochemistry of calcitonin gene-related peptide (CGRP), choline acetyltransferase (ChAT), dopamine-β-hydroxylase, galanin (GAL), neuronal nitric oxide synthase (nNOS), somatostatin (SOM), tyrosine hydroxylase (TH), vasoactive intestinal polypeptide (VIP), vesicular monoamine-transporter 2 (VMAT2), and α-smooth muscle actin. For documentation, light, fluorescence, and confocal laser scanning microscopy were used. Chicken ICNs express nNOS/VIP/GAL and do not express ChAT and SOM. ICNs are approached by TH/VMAT2-, CGRP-, and ChAT-positive nerve fibers. About 50% of the pterygopalatine ganglion neurons and about 9% of the superior cervical ganglion neurons share the same chemical code as ICN. SOM-positive neurons in the ciliary ganglion are GAL/NOS negative. CGRP-positive neurons in the trigeminal ganglion lack GAL/SOM. The neurochemical phenotype and synaptic input of ICNs in chicken resemble that of other bird and primate species. Because ICNs lack cholinergic markers, they cannot be readily incorporated into current concepts of the autonomic nervous system. The data obtained provide the basis for the interpretation of future functional experiments to clarify the role of these cells in achieving ocular homeostasis.  相似文献   

19.
Enteric neuronal plasticity is probably fundamental in order to withstand injury or changes in intestinal activity. The role of the neuropeptides in neuroprotection is still enigmatic. The expression of galanin and vasoactive intestinal peptide (VIP) and the effects of the two peptides on survival of small intestinal porcine myenteric neurons cultured for 6 days were studied. Immunocytochemistry and cell counting were used to evaluate the numbers of surviving neurons and their expression of galanin and VIP. To reflect the in vivo situation, cryostat sections of porcine mid-jejunum were used. A concentration-dependent and marked increase in neuronal survival was noted when neurons were grown in the presence of VIP (10(-8)-10(-6) M), whereas addition of galanin (10(-8)-10(-6) M) slightly decreased neuronal survival. A dramatic increase in the proportions of myenteric neurons containing VIP or galanin immunoreactivity occurred during culturing. The presence of VIP further increased the number of galanin-expressing neurons. A majority of the galanin-immunoreactive neurons lacked VIP, while all VIP-immunoreactive neurons contained galanin. In conclusion, culturing porcine myenteric neurons in the presence of VIP increases, while the presence of galanin reduces, survival. Culturing significantly increased the proportion of neurons expressing VIP and/or galanin; the presence of VIP further increased the number of galanin-expressing neurons.  相似文献   

20.
R E Papka  D L McNeill 《Peptides》1992,13(4):761-767
Coexistence of immunoreactivity for calcitonin gene-related peptide (CGRP) and galanin (GAL) was examined in varicose nerve endings in female rat pelvic paracervical ganglia (PG) and in perikarya of lumbosacral dorsal root ganglia (DRG). Varicose peptide-containing nerves were closely adjacent to somata of neurons in the PG, certain somata being virtually surrounded by immunoreactive varicosities. Some nerve endings were immunoreactive for either CGRP or GAL; in others, immunoreactivity for CGRP and GAL coexisted. Likewise, many perikarya in DRG were CGRP immunoreactive, fewer were GAL immunoreactive, and in some immunoreactivity for CGRP and GAL coexisted. The results suggest there are subpopulations of neuropeptide-containing sensory nerve endings in the PG; some contain CGRP, some contain GAL, and in some CGRP and GAL coexist. These substances contained in sensory nerve endings could have important roles in pelvic ganglionic functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号