首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
间充质干细胞(mesenchymal stem cells,MSCs)是一种多潜能成体干细胞,具有向成骨细胞分化的能力.在MSCs向成骨细胞分化中,受到多种信号通路调控,其中TGF-β/BMPs、Wnt、MAPK信号通路发挥了重要作用.而且,通过对Smad1蛋白酶体的调节,Wnt和MAPK信号可以对TGF-β/BMPs通路进行调控.在相关信号通路的共同作用下,MSCs向成骨细胞分化.现对MSCs分化过程中TGF-β/BMPs、Wnt、MAPK这三条通路进行了简要综述.  相似文献   

2.
Wnt/β-catenin经典通路在成骨细胞的分化增殖中起着重要作用。目前研究表明,调节任何一个经典Wnt/β-catenin信号转导通路中的因子都能影响成骨细胞的分化增殖。总结经典Wnt/β-catenin通路中各个因子与成骨细胞分化增殖的关系,以便进一步具体深入研究经典Wnt/β-catenin通路对成骨细胞的影响。  相似文献   

3.
MAPK信号通路与脂肪细胞分化   总被引:1,自引:0,他引:1  
周华  蔡国平 《生命的化学》2006,26(6):505-507
促分裂原活化的蛋白激酶(MAPK)通路是真核细胞重要的信号转导通路,主要有ERK、p38和JNK三条途径,参与调控多种细胞应答和生理病理过程。该文重点讨论了MAPK对脂肪细胞分化的调控。其中ERK对脂肪细胞分化的调节具有多样性,随分化进程不同表现为不同的调控功能,p38和JNK也通过不同的机制对脂肪细胞分化发挥相异的调节作用。MAPK信号转导与脂肪分化的紧密联系,使其可能成为调控与脂分化密切相关的代谢疾病如肥胖、糖尿病等的一条关键通路。  相似文献   

4.
间充质干细胞具有向成骨细胞分化的潜能,可体外分离、培养和扩增,是骨组织工程中理想的种子细胞。近年的研究表明间充质干细胞的成骨分化受到多种信号通路的调控,现就其中研究较为深入的MAPK和Notch通路的情况作一简要综述。  相似文献   

5.
丝裂原活化蛋白激酶(MAPK)超家族是介导细胞反应的重要信号系统,主要由MAPK、MAPK激酶(MAPKK)、MAPKK激酶(MAPKKK)等3类保守的蛋白激酶组成,通过级联反应不断磷酸化下游靶蛋白而参与细胞的增殖、分化、衰老、凋亡。辐射损伤使细胞膜受体和其他感应分子激活细胞内的MAPK信号通路,产生一系列应答反应。简要介绍MAPK家族中各条通路在辐射应答中的作用。  相似文献   

6.
丝裂原活化蛋白激酶(MAPK)是酵母、动物和植物等真核生物中普遍存在和高度保守的一类信号转导通路,由MAPKKK、MAPKK和MAPK等3部分组成,在应对生物非生物胁迫、激素、细胞分裂调控及植物生长发育等过程中发挥重要作用。该文对近年来国内外有关MAPK级联通路的组成、在植株体内的生物学功能以及MAPK通路的失活进行了概述,旨在为今后MAPK通路介导的信号转导机制的研究提供参考依据。  相似文献   

7.
该文综述了运动对骨代谢的影响,包括骨组织受到的应力、激素的分泌及营养等方面的作用。该文重点从TGF-β/BMPs(transforming growth factor beta/bone morphogenetic protein)、MAPK(mitogen-activated protein kinase)和Wnt信号通路等方面,综述了运动对间充质干细胞(mesenchymal stem cells,MSCs)向成骨细胞分化的影响,提出了运动强度、时间及肌纤维类型对MSCs向成骨细胞分化的重要作用。同时,提出运动后的疲劳恢复对MSCs向成骨细胞分化的作用十分重要,为运动训练对骨代谢影响提供理论参考。  相似文献   

8.
MAPK信号转导通路参与了人巨细胞病毒的致病过程。MAPK通路中的ERK和p38通路在人巨细胞病毒复制周期中起重要作用,通过磷酸化转录因子引起病毒及宿主相关基因的转录,从而调控人巨细胞病毒的复制;人巨细胞病毒的包膜糖蛋白及其他多种基因表达产物可通过不同机制以一定时序激活MAPK通路,调节自身及宿主细胞相应基因表达,以利于病毒完成其生活周期,并参与病毒的致病过程。深入研究MAPK信号转导通路与人巨细胞病毒感染的关系可为治疗该病毒感染引起的疾病提供新的治疗靶点。  相似文献   

9.
p38与脓毒症     
张泓  李磊  毛恩强 《生命科学》2007,19(4):417-422
近年来在危重病监护方面有重大的进展,但是脓毒症仍有很高的发病率和死亡率[1],其本质是由于感染所致机体过度反应,引发炎症因子的过度分泌而引起的促、抗炎因子平衡失调.脂多糖(lipopolysaccharide,LPS)是引起脓毒症的重要因素之一,它可以激活细胞内多条信号转导通路.丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号转导途径是体内重要的信号转导通路,参与调节胚胎发育、细胞分化、细胞增殖和细胞死亡,其中MAPK家族中的p38与炎症反应有着密切关系.本文着重综述p38的分子结构、p38信号转导通路的激活、p38的底物以及在由脂多糖激活的脓毒症中p38发挥的重要作用和应用p38抑制剂的防治前景.  相似文献   

10.
cAMP反应元件结合蛋白:抗抑郁药信号转导通路的交汇点   总被引:3,自引:0,他引:3  
本文综述了参与抑郁症和抗抑郁药作用的三条信号转导通路:环磷酸腺苷(cAMP)通路、丝裂原活化蛋白激酶(MAPK)通路、钙调蛋白激酶(CaMK)通路,以及cAMP反应元件结合蛋白(cAMP response element binding protein, CREB)作为上述通路交汇点的研究进展,并探讨了新型抗抑郁药的可能作用靶点.  相似文献   

11.
O-GlcNAc糖基化属于蛋白质的翻译后修饰,参与了基因转录、信号转导、细胞分化等重要的细胞生命活动。软骨细胞与成骨细胞是骨骼系统中两种重要的细胞,它们的分化对骨的形成有重要意义。近年来研究表明O-GlcNAc糖基化通过调节多个信号通路中关键分子的活性影响软骨及成骨细胞的分化。为了更好的阐明O-GlcNAc糖基化调控软骨及成骨分化的分子机制,以期为骨关节炎、骨质疏松治疗提供新的干预靶点,我们对O-GlcNAc糖基化调控软骨及成骨分化的研究现状做如下综述。  相似文献   

12.
促分裂原激活的蛋白激酶(MAPK)信号传导通路的研究进展   总被引:12,自引:0,他引:12  
牟金叶  陈晓光 《生命科学》2002,14(4):208-211,203
MAPK信号传导通路在真核生物细胞的生化和分化、细胞周期调节和细胞凋亡过程中发挥着重要的作用。生物化学研究和分子生物学鉴定表明:在酵母和哺乳动物细胞中MAPK信号传导通路都有一个保守的三组分激活模件,该模件内的激酶引发了一系列的磷酸化级联反应。了解MAPK信号传导通路的组成部分、调控方式和作用机制,有助于对因信号传导通路的调节失控而引起的疾病进行预防和治疗。  相似文献   

13.
丝裂原活化蛋白激酶(MAPK)信号通路广泛存在于真核细胞并且高度保守,是生物体内非常重要的信号转导系统之一。胞外刺激信号通过细胞膜上的特异性受体传递给胞内MAPK信号通路,该信号通路通过磷酸化下游转录因子、调节各种酶类来调控转录水平及生化反应等,进而使细胞适应外界环境变化。Hog1 MAPK信号通路能够被胞外高渗透压胁迫等刺激激活,对细胞在高渗环境下的存活至关重要。近年来,越来越多的研究发现虽然该信号通路在真核生物中高度保守,但不同物种中的组成仍有差异,且该信号通路的功能也相对多元化。本文综述了Hog1 MAPK信号通路的组成、功能及其与其他信号通路之间的cross-talk,旨在为今后深入研究该信号通路的作用机制及其与其他信号通路间的cross-talk提供参考。  相似文献   

14.
骨质疏松症是由于骨重建过程中骨形成和骨吸收失平衡导致骨总量丢失所致,与成骨细胞分化密切相关。Hippo通路影响着哺乳动物体内细胞增殖、分化和凋亡过程。Wnt/β-catenin通路在成骨细胞分化中扮演重要角色。Hippo下游的靶基因转录共激活因子TAZ脱磷酸化后具有促进骨髓基质干细胞(BMSCs)向成骨细胞分化,调节成骨特异基因骨钙素表达,调节骨、肾发育,激活Wnt/β-catenin通路转录反应的功能;而激活的Wnt/β-catenin通路能通过抑制β-catenin降解进而抑制TAZ的降解。因此,TAZ与Wnt/β-catenin通路相互调控。但是,对TAZ与Wnt/β-catenin通路串话是否影响BMSCs成骨能力尚不清楚。因此,深入研究TAZ介导的Wnt/β-catenin通路在骨代谢中的作用,将为深入了解骨质疏松的发病机制具有重要意义。  相似文献   

15.
植物MAPK级联途径参与调控ABA信号转导   总被引:3,自引:0,他引:3  
促分裂原活化蛋白激酶(MAPK)级联途径信号通路在真核生物细胞信号的转换和放大过程中起重要作用。MAPK级联途径由三个成员组成,分别是MAPK、MAPKK及MAPKKK,此三个信号组分按照MAPKKK-MAPKK-MAPK的方式依次磷酸化将外源信号级联放大向下传递。大量研究表明,植物MAPK级联途径参与调控脱落酸(ABA)信号转导。因此,该文就ABA和MAPK的生物学功能、ABA信号转导中的磷酸化与去磷酸化以及MAPK级联途径与ABA信号转导之间的关系等方面的研究进展进行综述,以便进一步认识MAPK和ABA信号转导的分子机制。  相似文献   

16.
丝裂原活化蛋白激酶(mitogen-activated proteinkinases,MAPKs)级联反应是细胞内重要的信号传导系统之一,参与细胞生长、发育、分化和凋亡等一系列生理、病理过程.P38 MAPK信号传导通路是MAPK通路的分支之一,介导了应激、炎性细胞因子、细菌产物等多种刺激引起的细胞反应,对细胞周期调控具有重要作用.但对不同的卵巢癌细胞系,或者不同的刺激,P38通路的作用不完全相同,甚至可能相反,提示对P38通路的功能仍需进一步的研究,他可能是肿瘤治疗的新靶点.本文就P38 MAPK信号传导通路与卵巢癌关系作一综述。  相似文献   

17.
丝裂原活化蛋白激酶信号通路相关研究   总被引:1,自引:0,他引:1  
丝裂原活化蛋白激酶信号通路是生物体内重要的信号转导系统之一,参与介导细胞生长、发育、分裂、分化等多种生理反应过程。在哺乳动物细胞中存在5个MAPK亚族,分别是ERK1/2、JNK、p38、ERK3/4和ERK5。MAPK通常定位于细胞质中,受激活后移行进入细胞核,并产生相应的生理作用。  相似文献   

18.
丝裂原活化蛋白激酶(mitogen-activatedproteinkinases,MAPKs)级联反应是细胞内重要的信号传导系统之一,参与细胞生长、发育、分化和凋亡等一系列生理、病理过程.P38MAPK信号传导通路是MAPK通路的分支之一,介导了应激、炎性细胞因子、细菌产物等多种刺激引起的细胞反应,对细胞周期调控具有重要作用.但对不同的卵巢癌细胞系,或者不同的刺激,P38通路的作用不完全相同,甚至可能相反,提示对P38通路的功能仍需进一步的研究,他可能是肿瘤治疗的新靶点.本文就P38MAPK信号传导通路与卵巢癌关系作一综述。  相似文献   

19.
植物对盐胁迫响应的信号转导途径   总被引:3,自引:0,他引:3  
植物通过调控复杂的信号网络来应对盐胁迫。近年来,随着植物基因工程技术的发展,对植物在盐胁迫下信号转导系统的研究取得了一定进展。本文以拟南芥为代表,对盐胁迫下参与调控植物耐盐生理响应的两大类主要信号转导途径——Ca2+依赖型信号转导通路和丝裂原活化蛋白激酶(MAPK)级联反应途径的研究进展进行综述,主要介绍参与各信号转导通路的组件及诱发的耐盐生理响应等方面,并对该研究领域存在的问题及今后可能的研究方向进行展望。  相似文献   

20.
《遗传》2017,(6)
为了比较分析大白猪皮下和肌内脂肪组织的全转录组数据,探究调控脂肪沉积的分子机制,本文采用RNA-seq技术和生物信息学方法鉴定大白猪皮下和肌内脂肪组织基因表达谱,对差异表达基因进行GO(Gene Ontology)分析、信号通路富集分析以及蛋白互作网络分析。大白猪皮下和肌内脂肪组织中有180个基因差异表达,上调基因主要参与细胞增殖、脂质激酶活性和磷脂代谢等与脂质代谢相关的生物学过程正调控,下调基因显著富集于脂肪细胞分化中起重要调控作用的MAPK信号转导通路。差异表达基因主要通过参与脂质代谢及通过MAPK信号转导通路调控脂肪细胞成脂分化,进而影响大白猪皮下和肌内脂肪的沉积。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号