首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Foodborne Salmonella ecology in the avian gastrointestinal tract   总被引:2,自引:0,他引:2  
Foodborne Salmonella continues to be a major cause of salmonellosis with Salmonella Enteritidis and S. Typhimurium considered to be responsible for most of the infections. Investigation of outbreaks and sporadic cases has indicated that food vehicles such as poultry and poultry by-products including raw and uncooked eggs are among the most common sources of Salmonella infections. The dissemination and infection of the avian intestinal tract remain somewhat unclear. In vitro incubation of Salmonella with mammalian tissue culture cells has shown that invasion into epithelial cells is complex and involves several genetic loci and host factors. Several genes are required for the intestinal phase of Salmonella invasion and are located on Salmonella pathogenicity island 1 (SPI 1). Salmonella pathogenesis in the gastrointestinal (GI) tract and the effects of environmental stimuli on gene expression influence bacterial colonization and invasion. Furthermore, significant parameters of Salmonella including growth physiology, nutrient availability, pH, and energy status are considered contributing factors in the GI tract ecology. Approaches for limiting Salmonella colonization have been primarily based on the microbial ecology of the intestinal tract. In vitro studies have shown that the toxic effects of short chain fatty acids (SCFA) to some Enterobacteriaceae, including Salmonella, have resulted in a reduction in population. In addition, it has been established that native intestinal microorganisms such as Lactobacilli provide protective mechanisms against Salmonella in the ceca. A clear understanding of the key factors involved in Salmonella colonization in the avian GI tract has the potential to lead to better approach for more effective control of this foodborne pathogen.  相似文献   

2.
Intracellular activities of Salmonella enterica in murine dendritic cells   总被引:4,自引:2,他引:2  
Dendritic cells (DC) efficiently phagocytose invading bacteria, but fail to kill intracellular pathogens such as Salmonella enterica serovar Typhimurium (S. Typhimurium). We analysed the intracellular fate of Salmonella in murine bone marrow-derived DC (BM-DC). The intracellular proliferation and subcellular localization were investigated for wild-type S. Typhimurium and mutants deficient in Salmonella pathogenicity island 2 (SPI2), a complex virulence factor that is essential for systemic infections in the murine model and intracellular survival and replication in macrophages. Using a segregative plasmid to monitor intracellular cell division, we observed that, in BM-DC, S. Typhimurium represents a static, non-dividing population. In BM-DC, S. Typhimurium resides in a membrane-bound compartment that has acquired late endosomal markers. However, these bacteria respond to intracellular stimuli, because induction of SPI2 genes was observed. S. Typhimurium within DC are also able to translocate a virulence protein into their host cells. SPI2 function was not required for intracellular survival in DC, but we observed that the maturation of the Salmonella-containing vesicle is different in DC infected with wild-type bacteria and a strain deficient in SPI2. Our observations indicate that S. Typhimurium in DC are able to modify normal processes of their host cells.  相似文献   

3.
Salmonella spp. possess a conserved type III secretion system encoded within the pathogenicity island 1 (SPI1; centisome 63), which mediates translocation of effector proteins into the host cell cytosol to trigger responses such as bacterial internalization. Several translocated effector proteins are encoded in other regions of the Salmonella chromosome. It remains unclear how this complex chromosomal arrangement of genes for the type III apparatus and the effector proteins emerged and how the different effector proteins cooperate to mediate virulence. By Southern blotting, PCR, and phylogenetic analyses of highly diverse Salmonella spp., we show here that effector protein genes located in the core of SPI1 are present in all Salmonella lineages. Surprisingly, the same holds true for several effector protein genes located in distant regions of the Salmonella chromosome, namely, sopB (SPI5, centisome 20), sopD (centisome 64), and sopE2 (centisomes 40 to 42). Our data demonstrate that sopB, sopD, and sopE2, along with SPI1, were already present in the last common ancestor of all contemporary Salmonella spp. Analysis of Salmonella mutants revealed that host cell invasion is mediated by SopB, SopE2, and, in the case of Salmonella enterica serovar Typhimurium SL1344, by SopE: a sopB sopE sopE2-deficient triple mutant was incapable of inducing membrane ruffling and was >100-fold attenuated in host cell invasion. We conclude that host cell invasion emerged early during evolution by acquisition of a mosaic of genetic elements (SPI1 itself, SPI5 [sopB], and sopE2) and that the last common ancestor of all contemporary Salmonella spp. was probably already invasive.  相似文献   

4.
5.
6.
7.
8.
Taking possession: biogenesis of the Salmonella-containing vacuole   总被引:7,自引:1,他引:6  
The Gram-negative pathogen Salmonella enterica can survive and replicate within a variety of mammalian cells. Regardless of the cell type, internalized bacteria survive and replicate within the Salmonella -containing vacuole, the biogenesis of which is dependent on bacterially encoded virulence factors. In particular, Type III secretion systems translocate bacterial effector proteins into the eukaryotic cell where they can specifically interact with a variety of targets. Salmonella has two distinct Type III secretion systems that are believed to have completely different functions. The SPI2 system is induced intracellularly and is required for intracellular survival in macrophages; it plays no role in invasion but is categorized as being required for Salmonella -containing vacuole biogenesis. In contrast, the SPI1 Type III secretion system is induced extracellularly and is essential for invasion of nonphagocytic cells. Its role in post-invasion processes has not been well studied. Recent studies indicate that Salmonella -containing vacuole biogenesis may be more dependent on SPI1 than previously believed. Other non-SPI2 virulence factors and the host cell itself may play critical roles in determining the intracellular environment of this facultative intracellular pathogen. In this review we discuss the recent advances in determining the mechanisms by which Salmonella regulate Salmonella -containing vacuole biogenesis and the implications of these findings.  相似文献   

9.
Salmonella enterica serovar Typhimurium (STM) is an invasive, facultative intracellular pathogen that has evolved sophisticated molecular mechanisms to establish an intracellular niche within a specialised vesicular compartment, the Salmonella‐containing vacuole (SCV). The loss of the SCV and release of STM into the cytosol of infected host cells was observed, and a bimodal intracellular lifestyle of STM in the SCV versus life in the cytosol is currently discussed. We set out to investigate the parameters affecting SCV integrity and cytosolic release. A fluorescent protein‐based cytosolic reporter approach was established to quantify, time‐resolved, and on a single cell level, the release of STM into the cytosol of host cells. We observed that the extent of SCV damage and cytosolic release is highly dependent on experimental conditions such as multiplicity of infection, type of host cell line, and STM strain background. Trigger invasion mediated by the Salmonella Pathogenicity Island 1‐encoded type III secretion system (SPI1‐T3SS) and its effector proteins promoted cytosolic release, whereas cytosolic bacteria were rarely observed if entry was mediated by zipper invasion. Presence of SPI1‐T3SS effector SopE was identified as major factor for damage of the SCV in the early phase after STM invasion and sopE‐expressing strains showed higher levels of cytosolic release.  相似文献   

10.
The outcome of Salmonella infection in the mammalian host favors whoever succeeds best in disturbing the equilibrium between coordinate expression of bacterial (virulence) genes and host defense mechanisms. Intracellular persistence in host cells is critical for pathogenesis and disease, because Salmonella typhimurium strains defective in this property are avirulent. We examined whether similar host defense mechanisms are required for growth control of two S. typhimurium mutant strains. Salmonella pathogenicity island 2 (SPI2) and virulence plasmid-cured Salmonella mutants display similar virulence phenotypes in immunocompetent mice, yet their gene loci participate in independent virulence strategies. We determined the role of TNF-alpha and IFN-gamma as well as different T cell populations in infection with these Salmonella strains. After systemic infection, IFN-gamma was essential for growth restriction of plasmid-cured S. typhimurium, while SPI2 mutant infections were controlled in the absence of IFN-gamma. TNFRp55-deficiency restored systemic virulence to both Salmonella mutants. After oral inoculation, control of plasmid-cured bacteria substantially relied on both IFN-gamma and TNF-alpha signaling while control of SPI2 mutants did not. However, for both mutants, ultimate clearance of bacteria from infected mice depended on alphabeta T cells.  相似文献   

11.
12.
The presence of human-pathogenic, enteric bacteria on the surface and in the interior of raw produce is a significant health concern. Several aspects of the biology of the interaction between these bacteria and alfalfa (Medicago sativa) seedlings are addressed here. A collection of enteric bacteria associated with alfalfa sprout contaminations, along with Escherichia coli K-12, Salmonella enterica serotype Typhimurium strain ATCC 14028, and an endophyte of maize, Klebsiella pneumoniae 342, were labeled with green fluorescent protein, and their abilities to colonize the rhizosphere and the interior of the plant were compared. These strains differed widely in their endophytic colonization abilities, with K. pneumoniae 342 and E. coli K-12 being the best and worst colonizers, respectively. The abilities of the pathogens were between those of K. pneumoniae 342 and E. coli K-12. All Salmonella bacteria colonized the interiors of the seedlings in high numbers with an inoculum of 10(2) CFU, although infection characteristics were different for each strain. For most strains, a strong correlation between endophytic colonization and rhizosphere colonization was observed. These results show significant strain specificity for plant entry by these strains. Significant colonization of lateral root cracks was observed, suggesting that this may be the site of entry into the plant for these bacteria. At low inoculum levels, a symbiosis mutant of Medicago truncatula, dmi1, was colonized in higher numbers on the rhizosphere and in the interior by a Salmonella endophyte than was the wild-type host. Endophytic entry of M. truncatula appears to occur by a mechanism independent of the symbiotic infections by Sinorhizobium meliloti or mycorrhizal fungi.  相似文献   

13.
14.
To infect an animal host, Salmonella enterica serovar Typhimurium must penetrate the intestinal epithelial barrier. This process of invasion requires a type III secretion system encoded within Salmonella pathogenicity island I (SPI1). We found that a mutant with deletions of the acetate kinase and phosphotransacetylase genes (ackA-pta) was deficient in invasion and SPI1 expression but that invasion gene expression was completely restored by supplying medium conditioned by growth of the wild-type strain, suggesting that a signal produced by the wild type, but not by the ackA-pta mutant, was required for invasion. This mutant also excreted 68-fold-less formate into the culture medium, and the addition of sodium formate to cultures restored both the expression of SPI1 and the invasion of cultured epithelial cells by the mutant. The effect of formate was pH dependent, requiring a pH below neutrality, and studies in mice showed that the distal ileum, the preferred site of Salmonella invasion in this species, had the appropriate formate concentration and pH to elicit invasion, while the cecum contained no detectable formate. Furthermore, we found that formate affected the major regulators of SPI1, hilA and hilD, but that the primary routes of formate metabolism played no role in its activity as a signal.  相似文献   

15.
肿瘤是机体在各种致瘤因子作用下,局部组织细胞异常增生所形成的赘生物。肿瘤治疗一直是临床上的一个难题,而放疗、化疗和手术等常规的肿瘤治疗方法均具有明显的局限性。早期研究发现某些厌氧菌或兼性厌氧菌具有抗肿瘤效应,例如兼性厌氧菌鼠伤寒沙门氏菌可以通过某些机制选择性定殖于肿瘤并抑制肿瘤生长,其应用于肿瘤治疗具有许多潜在的优势。过去的一二十年里,已有不少研究者通过遗传操作减弱沙门菌毒力,提高其定殖肿瘤的靶向性,或以减毒沙门菌作为载体向肿瘤靶向递呈各种治疗分子,并在许多动物试验中观察到遗传改造沙门菌的良好抗肿瘤效应。随着沙门菌抗肿瘤研究的不断深入,应用遗传改造的沙门菌有希望成为一条更有效的肿瘤治疗途径。本文将从沙门菌的抗肿瘤机制、遗传改造的沙门菌介导肿瘤治疗的研究进展和目前研究存在的问题等方面进行综述。  相似文献   

16.
The probiotic Escherichia coli strain Nissle 1917 (Mutaflor) of serotype O6:K5:H1 was reported to protect gnotobiotic piglets from infection with Salmonella enterica serovar Typhimurium. An important virulence property of Salmonella is invasion of host epithelial cells. Therefore, we tested for interference of E. coli strain Nissle 1917 with Salmonella invasion of INT407 cells. Simultaneous administration of E. coli strain Nissle 1917 and Salmonella resulted in up to 70% reduction of Salmonella invasion efficiency. Furthermore, invasion of Yersinia enterocolitica, Shigella flexneri, Legionella pneumophila and even of Listeria monocytogenes were inhibited by the probiotic E. coli strain Nissle 1917 without affecting the viability of the invasive bacteria. The observed inhibition of invasion was not due to the production of microcins by the Nissle 1917 strain because its isogenic microcin-negative mutant SK22D was as effective as the parent strain. Reduced invasion rates were also achieved if strain Nissle 1917 was separated from the invasive bacteria as well as from the INT407 monolayer by a membrane non-permeable for bacteria. We conclude E. coli Nissle 1917 to interfere with bacterial invasion of INT407 cells via a secreted component and not relying on direct physical contact with either the invasive bacteria or the epithelial cells.  相似文献   

17.
Intracellular Salmonella inhibit antigen presentation by dendritic cells   总被引:3,自引:0,他引:3  
Dendritic cells (DC) are important APCs linking innate and adaptive immunity. During analysis of the intracellular activities of Salmonella enterica in DC, we observed that viable bacteria suppress Ag-dependent T cell proliferation. This effect was dependent on the induction of inducible NO synthase by DC and on the function of virulence genes in Salmonella pathogenicity island 2 (SPI2). Intracellular activities of Salmonella did not affect the viability, Ag uptake, or maturation of DC, but resulted in reduced presentation of antigenic peptides by MHC class II molecules. Increased resistance to reinfection was observed after vaccination of mice with SPI2-deficient Salmonella compared with mice vaccinated with SPI2-proficient Salmonella, and this correlated with an increased amount of CD4(+) as well as CD8(+) T cells. Our study is the first example of interference of an intracellular bacterial pathogen with Ag presentation by DC. The subversion of DC functions is a novel strategy deployed by this pathogen to escape immune defense, colonize host organs, and persist in the infected host.  相似文献   

18.
The classic expression pattern of the Fis global regulatory protein during batch culture consists of a high peak in the early logarithmic phase of growth, followed by a sharp decrease through mid-exponential growth phase until Fis is almost undetectable at the end of the exponential phase. We discovered that this pattern is contingent on the growth regime. In Salmonella enterica serovar Typhimurium cultures grown in non-aerated SPI1-inducing conditions, Fis can be detected readily in stationary phase. On the other hand, cultures grown with standard aeration showed the classic Fis expression pattern. Sustained Fis expression in non-aerated cultures was also detected in some Escherichia coli strains, but not in others. This novel pattern of Fis expression was independent of sequence differences in the fis promoter regions of Salmonella and E. coli. Instead, a clear negative correlation between the expression of the Fis protein and of the stress-and-stationary-phase sigma factor RpoS was observed in a variety of strains. An rpoS mutant displayed elevated levels of Fis and had a higher frequency of epithelial cell invasion under these growth conditions. We discuss a model whereby Fis and RpoS levels vary in response to environmental signals allowing the expression and repression of SPI1 invasion genes.  相似文献   

19.
Regulation of enteric endophytic bacterial colonization by plant defenses   总被引:1,自引:0,他引:1  
Bacterial endophytes reside within the interior of plants without causing disease or forming symbiotic structures. Some endophytes, such as Klebsiella pneumoniae 342 (Kp342), enhance plant growth and nutrition. Others, such as Salmonella enterica serovar Typhimurium (S. typhimurium), are human pathogens that contaminate raw produce. Several lines of evidence are presented here to support the hypothesis that plant defense response pathways regulate colonization by endophytic bacteria. An ethylene-insensitive mutant of Medicago truncatula is hypercolonized by Kp342 compared to the parent genotype. Addition of ethylene, a signal molecule for induced systemic resistance in plants, decreased endophytic colonization in Medicago spp. This ethylene-mediated inhibition of endophytic colonization was reversed by addition of the ethylene action inhibitor, 1-methylcyclopropene. Colonization of Medicago spp. by S. typhimurium also was affected by exogenous ethylene. Mutants lacking flagella or a component of the type III secretion system of Salmonella pathogenicity island 1 (TTSS-SPI1) colonize the interior of Medicago spp. in higher numbers than the wild type. Arabidopsis defense response-related genotypes indicated that only salicylic acid (SA)-independent defense responses contribute to restricting colonization by Kp342. In contrast, colonization by S. typhimurium is affected by both SA-dependent and -independent responses. S. typhimurium mutants further delineated these responses, suggesting that both flagella and TTSS-SPI1 effectors can be recognized. Flagella act primarily through SA-independent responses (compromising SA accumulation still affected colonization in the absence of flagella). Removal of a TTSS-SPI1 effector resulted in hypercolonization regardless of whether the genotype was affected in either SA-dependent or SA-independent responses. Consistent with these results, S. typhimurium activates the promoter of PR1, a SA-dependent pathogenesis-related gene, while S. typhimurium mutants lacking the TTSS-SPI1 failed to activate this promoter. These observations suggest approaches to reduce contamination of raw produce by human enteric pathogens and to increase the number of growth-promoting bacteria in plants.  相似文献   

20.

Background

Several facultative anaerobic bacteria with potential therapeutic abilities are known to preferentially colonize solid tumors after systemic administration. How they efficiently find and invade the tumors is still unclear. However, this is an important issue to be clarified when bacteria should be tailored for application in cancer therapy.

Methodology/Principal Findings

We describe the initial events of colonization of an ectopic transplantable tumor by Salmonella enterica serovar Typhimurium. Initially, after intravenous administration, bacteria were found in blood, spleen, and liver. Low numbers were also detected in tumors associated with blood vessels as could be observed by immunohistochemistry. A rapid increase of TNF-α in blood was observed at that time, in addition to other pro-inflammatory cytokines. This induced a tremendous influx of blood into the tumors by vascular disruption that could be visualized in H&E stainings and quantified by hemoglobin measurements of tumor homogenate. Most likely, together with the blood, bacteria were flushed into the tumor. In addition, blood influx was followed by necrosis formation, bacterial growth, and infiltration of neutrophilic granulocytes. Depletion of TNF-α retarded blood influx and delayed bacterial tumor-colonization.

Conclusion

Our findings emphasize similarities between Gram-negative tumor-colonizing bacteria and tumor vascular disrupting agents and show the involvement of TNF-α in the initial phase of tumor-colonization by bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号