首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Levels of amide and ureide biogenic enzymes were compared in the plant cytosol fractions of root nodules from soybean ( Glycine max L. Merr., cv. Williams), pintobean ( Phaseolus vulgaris L. cv. Pinto) and Lupin ( Lupinus angustifolius L. cv. Frost). Enzymes of purine oxidation were found to be present in significant quantities only in ureide-transporting pintobean and soybean nodules. The levels of these enzymes were low in lupin, but this amide-exporter had significantly higher levels of asparagine synthetase. Enzymes of de novo purine biosynthesis and glycine biosynthesis were present at higher levels in pintobean and soybean, consistent with a role for de novo purine biosynthesis in ureide biogenesis. The low levels of these enzymes in lupin are consistent with a role in general purine and amino acid metabolism in these nodules, not directly related to the synthesis of transport compounds for fixed atmospheric nitrogen. Amino acid concentrations in soybean, pintobean and lupin nodules reflected the metabolic differences between amide and ureide plants. The comparative data presented are consistent with a pathway of ureide biogenesis using glutamine, glutamate and aspartate synthesized via reactions catalyzed by glutamine synthetase, glutamate synthase and aspartate aminotransferase in the de novo synthesis of purines followed by oxidation of these purines to produce the ureides allantoin and allantoic acid.  相似文献   

2.
Enzymes involved in the pathway of de novo serine biosynthesis (L-phosphoserine aminotransferase) and in alternative pathways of serine utilization (L-serine hydroxymethyltransferase, L-serine dehydratase and L-serine aminotransferase) were assayed in normal adult and fetal rat tissues and in a range of transplantable sat tumors. Serine dehydratase and serine aminotransferase activities were essentially confined to normal adult liver and kidney, whereas phosphoserine aminotransferase and serine hydroxymethyltransferase activities showed a more ubiquitous tissue distribution. In particular, phosphoserine aminotransferase and serine hydroxymethyltransferase activities were appreciable in neoplastic tissues, in the absence of the other enzymes of serine utilization. The pattern of enzyme distribution suggests that the synthesis of serine de novo is metabolically coupled to its utilization for nucleotide biosynthesis in tumors of differing tissue origins.  相似文献   

3.
Enzymes of serine metabolism in normal and neoplastic rat tissues   总被引:3,自引:0,他引:3  
Enzymes involved in the pathway of de novo serine biosynthesis (L-phosphoserine aminotransferase) and in alternative pathways of serine utilization (L-serine hydroxymethyltransferase, L-serine dehydratase and L-serine aminotransferase) were assayed in normal adult and fetal rat tissues and in a range of transplantable rat tumors. Serine dehydratase and serine aminotransferase activities were essentially confined to normal adult liver and kidney, whereas phosphoserine aminotransferase and serine hydroxymethyltransferase activities showed a more ubiquitous tissue distribution. In particular, phosphoserine aminotransferase and serine hydroxymethyltransferase activities were appreciable in neoplastic tissues, in the absence of the other enzymes of serine utilization. The pattern of enzyme distribution suggests that the synthesis of serine de novo is metabolically coupled to its utilization for nucleotide biosynthesis in tumors of differing tissue origins.  相似文献   

4.
Activities of ammonium assimilating enzymes glutamate dehydrogenase (GDH), glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) as well as the amino acid content were higher in nodules compared to roots. Their activities increased at 40 and 60 d after sowing, with a peak at 90 d, a time of maximum nitrogenase activity. The GS/GOGAT ratio had a positive correlation with the amino acid content in nodules. Higher activities of AST than ALT may be due to lower glutamine and higher asparagine content in xylem. The data indicated that glutamine synthetase and glutamate synthase function as the main route for the assimilation of fixed N, while NADH-dependent glutamate dehydrogenase may function at higher NH4 + concentration in young and senescing nodules. Enzyme activities in lentil roots reflected a capacity to assimilate N for making the amino acids they may need for both growth and export to upper parts of the plant. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The aims of this study were twofold: (i) to determine quantitatively the contribution of glutamate/glutamine cycling to total astrocyte/neuron substrate trafficking for the replenishment of neurotransmitter glutamate; and (ii) to determine the relative contributions of anaplerotic flux and glutamate/glutamine cycling to total glutamine synthesis. In this work in vivo and in vitro (13)C NMR spectroscopy were used, with a [2-(13)C]glucose or [5-(13)C]glucose infusion, to determine the rates of glutamate/glutamine cycling, de novo glutamine synthesis via anaplerosis, and the neuronal and astrocytic tricarboxylic acid cycles in the rat cerebral cortex. The rate of glutamate/glutamine cycling measured in this study is compared with that determined from re-analysis of (13)C NMR data acquired during a [1-(13)C]glucose infusion. The excellent agreement between these rates supports the hypothesis that glutamate/glutamine cycling is a major metabolic flux ( approximately 0.20 micromol/min/g) in the cerebral cortex of anesthetized rats and the predominant pathway of astrocyte/neuron trafficking of neurotransmitter glutamate precursors. Under normoammonemic conditions anaplerosis was found to comprise 19-26% of the total glutamine synthesis, whilst this fraction increased significantly during hyperammonemia ( approximately 32%). These findings indicate that anaplerotic glutamine synthesis is coupled to nitrogen removal from the brain (ammonia detoxification) under hyperammonemic conditions.  相似文献   

6.
B. Dahlbender  D. Strack 《Planta》1986,169(3):382-392
The relationships between the metabolism of malate, nitrogen assimilation and biosynthesis of amino acids in response to different nitrogen sources (nitrate and ammonium) have been examined in cotyledons of radish (Raphanus sativus L.). Measurements of the activities of some key enzymes and pulse-chase experiments with [14C]malate indicate the operation of an anaplerotic pathway for malate, which is involved in the synthesis of glutamine during increased ammonia assimilation. It is most likely that the tricarboxylicacid cycle is supplied with carbon through entry of malate, formed via the phosphoenolpyruvate (PEP)-carboxylation pathway, when 2-oxoglutarate leaves the cycle to serve as precursor for an increased synthesis of glutamine via glutamate. This might occur predominantly in the cytosol via the activity of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle, the NADH-dependent GOGAT being the rate-limiting activity.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - GDH glutamate dehydrogenase - GOGAT glutamate synthase (glutamine: 2-oxoglutarate aminotransferase) - GOT aspartate aminotransferase (glutamate: oxaloacetate transaminase) - GS glutamine synthetase - HPLC high-performance liquid chromatography - MCF extraction medium of methanol: chloroform: 7M formic acid, 12:5:3, by vol. - MDH malate dehydrogenase - MSO L-methionine, sulfoximine - PEPCase phosphoenolpyruvate carboxylase - TLC thin-layer chromatography  相似文献   

7.
Glutathione is the most abundant non-protein thiol in the cell, with roles in cell cycle regulation, detoxification of xenobiotics, and maintaining the redox tone of the cell. The glutathione content is controlled at several levels, the most important being the rate of de novo synthesis, which is mediated by two enzymes, glutamate cysteine ligase (GCL), and glutathione synthetase (GS), with GCL being rate-limiting generally. The GCL holoenzyme consists of a catalytic (GCLC) and a modulatory (GCLM) subunit, which are encoded by separate genes. In the present study, the signaling mechanisms leading to de novo synthesis of GSH in response to physiologically relevant concentrations of 4-hydroxy-2-nonenal (4HNE), an endproduct of lipid peroxidation, were investigated. We demonstrated that exposure to 4HNE resulted in increased content of both Gcl mRNAs, both GCL subunits, phosphorylated JNK1 and c-Jun proteins, as well as Gcl TRE sequence-specific AP-1 binding activity. These increases were attenuated by pretreating the cells with a novel membrane-permeable JNK pathway inhibitor, while chemical inhibitors of the p38 or ERK pathways were ineffective. These data reveal that de novo GSH biosynthesis in response to 4HNE signals through the JNK pathway and suggests a major role for AP-1 driven expression of both Gcl genes in HBE1 cells.  相似文献   

8.
The relationship between neuronal glutamate turnover, the glutamate/glutamine cycle and de novo glutamate synthesis was examined using two different model systems, freshly dissected rat retinas ex vivo and in vivo perfused rat brains. In the ex vivo rat retina, dual kinetic control of de novo glutamate synthesis by pyruvate carboxylation and transamination of alpha-ketoglutarate to glutamate was demonstrated. Rate limitation at the transaminase step is likely imposed by the limited supply of amino acids which provide the alpha-amino group to glutamate. Measurements of synthesis of (14)C-glutamate and of (14)C-glutamine from H(14)CO(3) have shown that (14)C-amino acid synthesis increased 70% by raising medium pyruvate from 0.2 to 5 mM. The specific radioactivity of (14)C-glutamine indicated that approximately 30% of glutamine was derived from (14)CO(2) fixation. Using gabapentin, an inhibitor of the cytosolic branched-chain aminotransferase, synthesis of (14)C-glutamate and (14)C-glutamine from H(14)CO(3)(-) was inhibited by 31%. These results suggest that transamination of alpha-ketoglutarate to glutamate in Müller cells is slow, the supply of branched-chain amino acids may limit flux, and that branched-chain amino acids are an obligatory source of the nitrogen required for optimal rates of de novo glutamate synthesis. Kinetic analysis suggests that the glutamate/glutamine cycle accounts for 15% of total neuronal glutamate turnover in the ex vivo retina. To examine the contribution of the glutamate/glutamine cycle to glutamate turnover in the whole brain in vivo, rats were infused intravenously with H(14)CO(3)(-). (14)C-metabolites in brain extracts were measured to determine net incorporation of (14)CO(2) and specific radioactivity of glutamate and glutamine. The results indicate that 23% of glutamine in the brain in vivo is derived from (14)CO(2) fixation. Using published values for whole brain neuronal glutamate turnover, we calculated that the glutamate/glutamine cycle accounts for approximately 60% of total neuronal turnover. Finally, differences between glutamine/glutamate cycle rates in these two model systems suggest that the cycle is closely linked to neuronal activity.  相似文献   

9.
The deep-sea tube worm Riftia pachyptila (Vestimentifera) from hydrothermal vents lives in an intimate symbiosis with a sulfur-oxidizing bacterium. That involves specific interactions and obligatory metabolic exchanges between the two organisms. In this work, we analyzed the contribution of the two partners to the biosynthesis of pyrimidine nucleotides through both the "de novo" and "salvage" pathways. The first three enzymes of the de novo pathway, carbamyl-phosphate synthetase, aspartate transcarbamylase, and dihydroorotase, were present only in the trophosome, the symbiont-containing tissue. The study of these enzymes in terms of their catalytic and regulatory properties in both the trophosome and the isolated symbiotic bacteria provided a clear indication of the microbial origin of these enzymes. In contrast, the succeeding enzymes of this de novo pathway, dihydroorotate dehydrogenase and orotate phosphoribosyltransferase, were present in all body parts of the worm. This finding indicates that the animal is fully dependent on the symbiont for the de novo biosynthesis of pyrimidines. In addition, it suggests that the synthesis of pyrimidines in other tissues is possible from the intermediary metabolites provided by the trophosomal tissue and from nucleic acid degradation products since the enzymes of the salvage pathway appear to be present in all tissues of the worm. Analysis of these salvage pathway enzymes in the trophosome strongly suggested that these enzymes belong to the worm. In accordance with this conclusion, none of these enzyme activities was found in the isolated bacteria. The enzymes involved in the production of the precursors of carbamyl phosphate and nitrogen assimilation, glutamine synthetase and nitrate reductase, were also investigated, and it appears that these two enzymes are present in the bacteria.  相似文献   

10.
The maximum catalytic activities of carbamoyl-phosphate synthase II, a limiting enzyme for pyrimidine nucleotide synthesis, are very much less than those of glutaminase, a limiting enzyme for glutamine utilization, in lymphocytes and macrophages; and the flux through the pathway for pyrimidine formation de novo is only about 0.4% of the rate of glutamine utilization by lymphocytes. The Km of synthase II for glutamine is about 16 microM and the concentration of glutamine necessary to stimulate lymphocyte proliferation half-maximally is about 21 microM. This agreement suggests that the importance of glutamine for these cells is provision of nitrogen for biosynthesis of pyrimidine nucleotides (and probably purine nucleotides). However, the glutamine concentration necessary for half-maximal stimulation of glutamine utilization (glutaminolysis) by the lymphocytes is 2.5 mM. The fact that the rate of glutamine utilization by lymphocytes is markedly in excess of the rate of the pathway for pyrimidine nucleotide synthesis de novo and that the Km and 'half-maximal concentration' values are so different, suggests that the glutaminolytic pathway is independent of the use of glutamine nitrogen for pyrimidine synthesis.  相似文献   

11.
There exist differences between 12-day-old and adult rats in the onset of seizures induced by some inhibitors of glutamate decarboxylase (GAD). The aim of study was to investigate if there are differences between both groups in activities of rat brain alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the enzymes involved in glutamate metabolism, after the administration of 3-mercaptopropionic acid as specific GAD inhibitor or isoniazid as less specific general inhibitor of pyridoxal enzymes. Activities of both aminotransferases in a supernatant 20,000 g of the whole brain (containing predominantly cytosolic isoforms of enzymes) were increased at the beginning of 3-mercaptopropionic acid-induced generalized tonic-clonic seizures. At isoniazid-induced generalized tonic-clonic seizures, a significant increase in both enzyme activities was observed in adult rat brain. In the 12-day-old rat brain, ALT and AST activities reached about 40% and about 50–60% of adult control levels, respectively. In in vitro experiments, no influence of 3-mercaptopropionic acid on transaminase activities was found and an inhibitory effect of isoniazid on the enzymes was confirmed. Increased aminotransferase activities might participate in the enhanced synthesis of excitatory amino acid neurotransmitters in the nervous system, which may take a part in the initiation of epileptic seizures. Alternatively, the increased AST activity may be connected with an increased transport of NADH from the cytosol to mitochondria, while the increased ALT activity would represent the transformation of pyruvate to alanine as a consequence of increased glycolysis.  相似文献   

12.
It has been previously demonstrated that ammonia exposure of neurons and astrocytes in co-culture leads to net synthesis not only of glutamine but also of alanine. The latter process involves the concerted action of glutamate dehydrogenase (GDH) and alanine aminotransferase (ALAT). In the present study it was investigated if the glutamine synthetase (GS) inhibitor methionine sulfoximine (MSO) would enhance alanine synthesis by blocking the GS-dependent ammonia scavenging process. Hence, co-cultures of neurons and astrocytes were incubated for 2.5 h with [U-13C]glucose to monitor de novo synthesis of alanine and glutamine in the absence and presence of 5.0 mM NH4Cl and 10 mM MSO. Ammonia exposure led to increased incorporation of label but not to a significant increase in the amount of these amino acids. However, in the presence of MSO, glutamine synthesis was blocked and synthesis of alanine increased leading to an elevated content intra- as well as extracellularly of this amino acid. Treatment with MSO led to a dramatic decrease in glutamine content and increased the intracellular contents of glutamate and aspartate. The large increase in alanine during exposure to MSO underlines the importance of the GDH and ALAT biosynthetic pathway for ammonia fixation, and it points to the use of a GS inhibitor to ameliorate the brain toxicity and edema induced by hyperammonemia, events likely related to glutamine synthesis.  相似文献   

13.
Several alternative pathways of purine nucleotide synthesis coexist in cells and the relative importance of each pathway for maintaining purine nucleotide concentrations in cells have been studied. Specific inhibitors were used to block these synthetic routes in Ehrlich ascites tumor cells in vivo and the effect of inhibiting each pathway was evaluated by measuring intracellular purine nucleotide concentrations by high-speed liquid chromatography. The results of this study indicate that adenosine triphosphate and guanosine triphosphate concentrations of Ehrlich ascites tumor cells are maintained primarily by purine biosynthesis de novo although other pathways do make significant contributions.  相似文献   

14.
Abstract Glutamine uptake in the cyanobiont Nostoc ANTH was energy-dependent and repressed in ammonia-grown cells. l -Methionine- dl -sulphoximine (MSX), a glutamate analogue and an inhibitor of glutamine synthetase (GS), did not affect glutamine uptake whereas azaserine, an inhibitor of glutamate synthase (GOGAT) did, suggesting that GS activity is not necessarily involved in the glutamine uptake system and that increased intracellular glutamine level regulates its own uptake. Repression of glutamine uptake by ammonia did not require de novo protein synthesis but required GS activity, suggesting that ammonia itself was not the repressor signal. The derepression of the glutamine uptake system did not require GS activity but required de novo protein synthesis.  相似文献   

15.
To elucidate the metabolic characteristics of recombinant CHO cells expressing glutamine synthetase (GS) in the medium with or without glutamine, the concentrations of extra- and intracellular metabolites and the activities of key metabolic enzymes involved in glutamine metabolism pathway were determined. In the absence of glutamine, glutamate was utilized for glutamine synthesis, while the production of ammonia was greatly decreased. In addition, the expression of recombinant protein was increased by 18%. Interestingly, the intracellular glutamine maintained almost constant, independent of the presence of glutamine or not. Activities of glutamate-oxaloacetate aminotransferase (GOT), glutamate-pyruvate aminotransferase (GPT), and glutamate dehydrogenase (GDH) increased in the absence of glutamine. On the other hand, intracellular isocitrate and the activities of its downstream isocitrate dehydrogenase in the TCA cycle increased also. In combination with these two factors, a 8-fold increase in the intracellular α-ketoglutarate was observed in the culture of CHO-GS cells in the medium without glutamine.  相似文献   

16.
Glutamate metabolic pathways and retinal function   总被引:1,自引:0,他引:1  
Glutamate is a major neurotransmitter in the CNS but is also a key metabolite intimately coupled to amino acid production/degradation. We consider the effect of inhibition of two key glutamate metabolic enzymes: glutamine synthetase (GS) and aspartate aminotransferase on retinal function assessed using the electroretinogram to consider photoreceptoral (a-wave) and post-receptoral (b-wave) amplitudes. Quantitative immunocytochemistry was used to assess amino acid levels within photoreceptors, ganglion and Müller cells secondary to GS inhibition. Intravitreal injections of methionine sulfoximine reduced GS immunoreactivity in the rat retina. Additionally, glutamate and its precursor aspartate was reduced in photoreceptors and ganglion cells, but elevated in Müller cells. This reduction in neuronal glutamate was consistent with a deficit in neurotransmission (−75% b-wave reduction). Exogenous glutamine supply completely restored the b-wave, whereas other amino acid substrates (lactate, pyruvate, α-ketoglutarate, and succinate) only partially restored the b-wave (16–20%). Inhibition of the aminotranferases using aminooxyacetic acid had no effect on retinal function. However, aminooxyacetic acid application after methionine sulfoximine further reduced the b-wave (from −75% to −92%). The above data suggest that de novo glutamate synthesis involving aspartate aminotransferase can partially sustain neurotransmission when glutamate recycling is impaired. We also show that altered glutamate homeostasis results in a greater change in amino acid distribution in ganglion cells compared with photoreceptors.  相似文献   

17.
It appears almost incredible that the first indications that glutamate excites brain tissue were obtained during the second half of the 20th century, that vesicles containing glutamate were demonstrated in glutamatergic neurons less than 25 years ago, and that glutamate was not accepted as the major excitatory transmitter until about the same time. During this span of time it has also become realized that glutamate is so much more than a conventional neurotransmitter: (1) astrocytes express vesicles accumulating glutamate by vesicular transporters akin to the vesicular glutamate transporters in glutamatergic neurons, and they release glutamate by exocytosis; (2) a series of metabolic processes in astrocytes (glutamate uptake, glutamine synthetase activity, glutamine release) are involved in neuronal reutilization of transmitter glutamate; (3) glutamine may also be utilized for synthesis of GABA, the major inhibitory transmitter; (4) de novo synthesis of glutamate accounts for 20% of cerebral glucose metabolism, all of which initially occurs in astrocytes, and at steady state a corresponding amount of glutamate is oxidatively degraded, mainly or exclusively in astrocytes; (5) tissue contents of glutamate/glutamine increase during enhanced glutamatergic activity, i.e., astrocytic de novo synthesis exceeds astrocytic metabolic degradation of glutamate.  相似文献   

18.
19.
Phosphoribosylpyrophosphate synthetase activity was determined in Friend virus-inducted erythroleukemic cells in culture, stimulated to differentiate in the presence of dimethylsulfoxide. The activity of phosphoribosylpyrophosphate synthetase did not decrease in cells which had acquired the specialized function of hemoglobin synthesis, nor was the phosphoribosylpyrophosphate content of untreated erythroleukemic cells significantly different from that of cultures exposed to dimethylsulfoxide for 96 hours. However, the rate of the early steps of de novo purine biosynthesis as measured by the incorporation of [1-14C] glycine and [1-14C] formate into formyglycinamide ribonucleotide, was significantly lower in differentiating cell cultures. The addition of glutamine or ammonia increased glycine incorporation of control cultures, but failed to do so in treated cultures. In the course of the normal development of erythrocytes in vivo, phosphoribosylpyrophosphate synthetase activity is preserved, while the capacity to synthesize purines de novo is lost, as is the activity of the phosphoribosyl-l-amine synthesizing enzymes. Our present study suggests that the rate of de novo purine biosynthesis in this erythroleukemic cell line is not limited by the availability of phosphoribosylphrophosphate, but rather by a decrease in the phosphoribosyl-l-amine synthesizing enzymes. These findings provide further evidence that during dimethylsulfoxide-stimulated erythroid maturation, the same regulatory mechanisms are operative as in normal cellular development, and that ammonia-dependent purine biosynthesis is subject to the same regulatory mechanisms as is glutamine-dependent biosynthesis.  相似文献   

20.
The concentrations of glutathione precursors in human erythrocytes were investigated. 300muM glutamate, 375 muM glycine, and 10muM cysteine were found by automated amino acid analysis. The concentration of 2-aminobutyrate, the precursor of ophthalmic acid, was 15muM. The influence of the activities of endogenous or added glutamyl-cysteine synthetase and glutathione synthetase on the rate of glutathione biosynthesis was measured in membrane-free hemolysates under physiological conditions. The results show that the rate of the overall biosynthesis mainly depends on the formation of the dipeptide glutamyl-cysteine. The effect of glutathione precursor concentrations on the synthesis of the tripeptide was investigated at constant (endogenous) activities of the synthesizing enzymes. The rate was not enhanced by addition of glutamate and/or glycine unless cysteine or glutamyl-cysteine was also added. It is concluded that the concentration of cysteine limits the actual rate of the glutamyl-cysteine-synthetase reaction in vivo. No cysteine or bis(glutamyl)cystine was detected in human hemolysate; however, these disulfides were converted to glutathione. This indicates that erythrocytes have an appropriate system for their reduction, since the disulfides themselves are not substrates for the glutathione-synthesizing enzymes. Studies with intact human red cells indicate that the uptake of cysteine is the rate-determining step in the biosynthesis of glutathione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号