首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
目的:探讨orexin-A(OXA)受体介导的生长抑素激动剂ODT8-SST 对大鼠摄食和饮水的调节作用相关作用机制。方法:在光 照周期内,大鼠40 只随机分8 组,侧脑室(icv)分别注射不同剂量ODT8-SST 或生理盐水(NS);大鼠56 只随机分8 组分别侧脑 室注射不同剂量OXA 受体(OX1R)拮抗剂SB-334867 或NS;2小时后测量大鼠摄食量和饮水量。结果:与NS组相比,实验组大 鼠侧脑室注射ODT8-SST(1 ug/rat),2 小时后摄食量和饮水量均显著增加(P<0.05)。大鼠侧脑室注射SB-334867(16 ug/rat)完全 抑制了由侧脑室注射ODT8-SST 后引起的摄食量和饮水量的增加;与此相反,大鼠给予SST2 拮抗剂S-406-028 预处理之后,可阻 止侧脑室注射ODT8-SST 引发的促进食欲作用,但不会影响侧脑室注射OXA(10.7 ug/rat)诱导的摄食量和饮水量的增加。结论: 侧脑室注射ODT8-SST 可促进摄食和饮水,该过程可能由OX1R所介导;orexin-A 促进摄食作用不依赖大脑SST2 通路的激活。  相似文献   

2.
Half of Sprague-Dawley rats develop and defend diet-induced obesity (DIO) or diet resistance (DR) when fed a high-energy (HE) diet. Here, adult male rats were made DIO or DR after 10 wk on HE diet. Then half of each group was food restricted for 8 wk on chow to maintain their body weights at 90% of their respective baselines. Rate and magnitude of weight loss were comparable, but maintenance energy intake and the degree of sympathetic activity (24-h urine norepinephrine) inhibition were 17 and 29% lower, respectively, in restricted DR than DIO rats. Restricted DIO rats reduced adipose depot weights, plasma leptin, and insulin levels by 35%. Restricted DR rats reduced none of these. When fed ad libitum, both DR and DIO rats returned to the body weights of their respective chow-fed phenotype controls within 2 wk. This was associated with increased adipose mass and leptin and insulin levels only in DIO rats. Thus DR rats appear to alter primarily their lean body mass, whereas DIO rats primarily alter their adipose mass during chronic caloric restriction and refeeding.  相似文献   

3.
Amylin infusion reduces food intake and slows body weight gain in rodents. In obese male rats, amylin (but not pair feeding) caused a preferential reduction of fat mass with protein preservation despite equal body weight loss in amylin-treated (fed ad libitum) and pair-fed rats. In the present study, the effect of prior or concurrent food restriction on the ability of amylin to cause weight loss was evaluated. Retired female breeder rats were maintained on a high-fat diet (40% fat) for 9 wk. Prior to drug treatment, rats were either fed ad libitum or food restricted for 10 days to lose 5% of their starting body weight. They were then subdivided into treatment groups that received either vehicle or amylin (100 microgxkg(-1)xday(-1) via subcutaneous minipump) and placed under either a restricted or ad libitum feeding schedule (for a total of 8 treatment arms). Amylin 1) significantly reduced body weight compared with vehicle under all treatment conditions, except in always restricted animals, 2) significantly decreased percent body fat in all groups, and 3) preserved lean mass in all groups. These results indicate that amylin's anorexigenic and fat-specific weight loss properties can be extended to a variety of nutritive states in female rats.  相似文献   

4.
Objective: The purpose of the present study was to examine the metabolic effects of a specific histamine H3 receptor antagonist, the cinnamic amide NNC 0038‐0000‐1202 (NNC 38‐1202). Research Methods and Procedures: Effects of NNC 38‐1202 on paraventricular levels of histamine and acute effects on food intake were followed in normal rats, whereas effects on body weight homeostasis and lipid metabolism were studied in a rat model of diet‐induced obesity (DIO). Results: NNC 38‐1202, administered as single oral doses of 15 and 30 mg/kg, significantly (p < 0.01) increased paraventricular histamine by 339 ± 54% and 403 ± 105%, respectively, compared with basal levels. The same doses produced significant (p < 0.01) reductions in food intake. In DIO rats receiving NNC 38‐1202 in a daily dose of 5 mg/kg for 22 days, a decrease in food intake was associated with a significant (p < 0.001) net loss of body weight (?11.0 ± 4.8 grams), compared with rats receiving vehicle, which gained 13.6 ± 3.0 grams. Also, NNC 38‐1202 significantly (p < 0.05) reduced plasma triglycerides by ~42%, in parallel with increases in plasma free fatty acids and β‐hydroxybutyrate levels. Despite reductions in food intake and body weight following administration of NNC 38‐1202, no sign of a decrease in energy expenditure was observed, and whole‐body lipid oxidation was significantly (p < 0.05) increased in the period after dosing. Discussion: The present study suggests that antagonistic targeting of the histamine H3 receptor decreases food intake, body weight, and plasma TG levels and, thus, represents an interesting approach to treatment of obesity and associated hyperlipidemia.  相似文献   

5.
We investigate whether leptin treatment to lactating rats affects food intake, body weight and leptin serum concentration and its anorectic effect on their adult offspring. Lactating rats were divided into 2 groups: Lep-single injected with recombinant rat leptin (8 microg/100 g of body weight, daily for the last 3 consecutive days of lactation) and control group (C) that received the same volume of saline. After weaning all pups had free access to the control diet, their body weight and food intake were monitored at each 4 days until 180 days of age, when they were tested for its food intake and response to either leptin (0.5 mg/kg body wt, ip) or saline vehicle. The offspring of the leptin-treated dams gained more weight and had higher food intake from day 37 onward (p<0.05), higher amount of retroperitoneal white adipose tissue (RPWAT) (37%, p<0.05) and higher leptin serum concentration (40%, p<0.05) at 180 days of age compared to control group. The food intake at 2, 4, 6 and 24 h was unaffected after acute injection of leptin in these animals, suggesting resistance to the anorectic effect of leptin. The maternal leptin treatment during lactation makes their adult offspring more susceptible to overweight with resistance to the anorectic effect of leptin.  相似文献   

6.
Weight loss in obese humans produces a relative leptin deficiency, which is postulated to activate potent orexigenic and energy conservation mechanisms to restrict weight loss and promote weight regain. Here we determined whether leptin replacement alone or with GLP-1 receptor agonist exendin-4 attenuates weight regain or promotes greater weight loss in weight-reduced diet-induced obese (DIO) rats. Forty percent restriction in daily intake of a high-fat diet in DIO rats for 4 wk reduced body weight by 12%, body fat by 29%, and plasma leptin by 67% and normalized leptin sensitivity. When food restriction ended, body weight, body fat, and plasma leptin increased rapidly. Daily administration of leptin [3-h intraperitoneal (ip) infusions (4 nmol·kg(-1)·h(-1))] at onset and end of dark period for 3 wk did not attenuate hyperphagia and weight regain, nor did it affect mean daily meal sizes or meal numbers. Exendin-4 (50 pmol·kg(-1)·h(-1)) infusions during the same intervals prevented postrestriction hyperphagia and weight regain by normalizing meal size. Coadministration of leptin and exendin-4 did not reduce body weight more than exendin-4 alone. Instead, leptin began to attenuate the inhibitory effects of exendin-4 on food intake, meal size, and weight regain by the end of the second week of administration. Plasma leptin in rats receiving leptin was sevenfold greater than in rats receiving vehicle and 17-fold greater than in rats receiving exendin-4. Together, these results do not support the hypothesis that leptin replacement alone or with exendin-4 attenuates weight regain or promotes greater weight loss in weight-reduced DIO rats.  相似文献   

7.
We investigated the effect of subdiaphragmatic vagal deafferentation (SDA) on food intake, body weight gain, and metabolism in obese (fa/fa) and lean (Fa/?) Zucker rats. Before and after recovery from surgery, food intake and body weight gain were recorded, and plasma glucose and insulin were measured in tail-prick blood samples. After implantation of a jugular vein catheter, an intravenous glucose tolerance test (IVGTT) was performed, followed by minimal modeling to estimate the insulin sensitivity index. Food intake relative to metabolic body weight (g/kg(0.75)) and daily body weight gain after surgery were lower (P < 0.05) in SDA than in sham obese but not lean rats. Before surgery, plasma glucose and insulin concentrations were lower (P < 0.05) in lean than in obese rats but did not differ between surgical groups within both genotypes. Four weeks after surgery, plasma glucose and insulin were still similar in SDA and sham lean rats but lower (P < 0.05) in SDA than in sham obese rats. IVGTT revealed a downward shift of the plasma insulin profile by SDA in obese but not lean rats, whereas the plasma glucose profile was unaffected. SDA decreased (P < 0.05) area under the curve for insulin but not glucose in obese rats. The insulin sensitivity index was higher in lean than in obese rats but was not affected by SDA in both genotypes. These results suggest that elimination of vagal afferent signals from the upper gut reduces food intake and body weight gain without affecting the insulin sensitivity index measured by minimal modeling in obese Zucker rats.  相似文献   

8.
9.
Chen Y  Heiman ML 《Regulatory peptides》2000,92(1-3):113-119
Leptin is a hormone synthesized and secreted from adipose tissue. To study the physiologic effects of chronic leptin treatment, normal adult female Sprague-Dawley rats were injected subcutaneously for 35 days. Twice daily injections (250 microgram/day, b.i.d.) resulted in a significant (P<0.05) decrease in food intake that was maintained for 10 days before gradually returning to control level by day 21. Leptin decreased body weight by a maximum of 12% of the initial body weight on day 22 and remained reduced for the duration of the treatment. After 35 days of treatment, visible peritoneal adipose tissue was not detected. Body composition analysis showed that chronic injection of leptin resulted in a dramatic decrease in fat content (28+/-2 to 4+/-2 g, P<0.05; mean+/-SEM) while the lean content remained unchanged. Rats pair-fed to the leptin-treated group but treated with vehicle had the same body composition (23+/-3 g fat mass) as that measured for the ad libitum fed controls. Using indirect calorimetry we observed that leptin decreased respiratory quotient and thus increased fat oxidation. Leptin also prevented energy expenditure reduction typically associated with food restriction. Leptin treatment for 35 days decreased plasma triglyceride (0.75+/-0.07 to 0.30+/-0.03 mM, P<0.05), free fatty acid (0.56+/-0.06 to 0.32+/-0.04 mM) and insulin (3.2+/-0.5 to 1. 4+/-0.4 ng/ml, P<0.05) concentrations despite the fact that food intake was normalized by day 35. Withdrawal of leptin triggered hyperphagia indicating that leptin biology remained throughout the duration of the chronic treatment. These data suggest that leptin reduces fat mass by initially decreasing appetite and by maintaining enhanced fat utilization even when food intake has returned to that of vehicle-treated control.  相似文献   

10.
The aim was to investigate the effects of intestinal electrical stimulation (IES) on food intake, body weight, and gastric emptying in rats. An experiment on food intake and weight change was performed in 22 rats on a control diet and 10 diet-induced obese (DIO) rats for 4 wk with IES or sham IES. The effect of IES on gastric emptying was performed in another 20 rats in the control group. We found that 1) in control rats, 4-wk IES resulted in a reduction of 18.2% in the total amount of food intake compared with sham-IES (P = 0.02); the rats treated with IES had a weight change of -1 +/- 7.8g (P = 0.03), which was equivalent to a weight loss of 6.2% due to IES when adjusted for normal growing. 2) Acute IES delayed gastric emptying by 20% in the control rats (P < 0.01). 3) In the DIO rats, 1-wk IES with the same parameters as those used in the control rats resulted in a significant reduction in the total amount of food intake (126.6 +/- 6.3 g vs. 116.9 +/- 3.2 g, P < 0.01). More reduction in food intake was noted, and a significant weight change was also observed when stimulation energy was increased. 4) No adverse events were observed in any of the experiments. In conclusion, IES delays gastric emptying, reduces food intake, and decreases weight gain in control growing rats. These data suggest that it is worthy to explore therapeutic potentials of IES for obesity.  相似文献   

11.
Red wine is a beverage that can exert a broad spectrum of health-promoting actions both in humans and laboratory animal models if consumed moderately. However, information about its effect on body weight is scarce. We have evaluated the effect of moderate red wine consumption on body weight and energy intake in male Zucker lean rats fed a hypercaloric diet for 8 weeks. For this purpose, we used three 5-animal groups: a high-fat diet group (HFD), a high-fat-diet red-wine-drinking group (HFRWD), and a standard diet group (SD). After 8 weeks, the HFRWD group had a lower body weight gain (175.66 +/- 2.78% vs 188.22 +/- 4.83%; P<.05) and lower energy intake (269.45 +/- 4.02 KJ/animal.day vs day vs 300.81 +/- 4.52 KJ/animal.day; P<.05) and had less fat mass at epididymal location respect to the whole body weight (0.014 +/- 0.001 vs 0.017 +/- 0.001; P<.05) than the HFD group. However, the red wine didn't modified the fed efficiency 0.012 +/- 0.001 g/KJ for HFRWD group versus 0.013 +/- 0.001 g/KJ for the HFD one (P=.080). These findings, though preliminary, show that moderate red wine intake can prevent the increase of body weight by modulating energy intake in a rat diet-induced model of obesity.  相似文献   

12.
Peptide YY(3-36) [PYY(3-36)] is a gut-brain peptide that decreases food intake when administered by intravenous infusion to lean and obese humans and rats. However, chronic administration of PYY(3-36) by osmotic minipump to lean and obese rodents produces only a transient reduction in daily food intake and weight gain. It has recently been shown that 1-h intravenous infusions of PYY(3-36) every other hour for 10 days produced a sustained reduction in daily food intake, body weight, and adiposity in lean rats. Here, we determined whether intermittent delivery of PYY(3-36) can produce a similar response in diet-induced obese rats. During a 21-day period, obese rats (body fat >25%) received twice daily intraperitoneal infusion of vehicle (n = 18) or PYY(3-36) (n = 24) during hours 1-3 and 7-9 of the dark period. Rats had free access to both a 45% fat solid diet and a 29% fat liquid diet; intakes were determined from continuous computer recording of changes in food container weights. To sustain a 15-25% reduction in daily caloric intake, the initial PYY(3-36) dose of 30 pmol.kg(-1).min(-1) was reduced to 10 pmol.kg(-1).min(-1) on day 10 and then increased to 17 pmol.kg(-1).min(-1) on day 13. This dosing strategy produced a sustained reduction in daily caloric intake of 11-32% and prevented body weight gain (8 +/- 6 vs. 51 +/- 11 g) and fat deposition (4.4 +/- 7.6 vs. 41.0 +/- 12.8 g). These results indicate that intermittent intraperitoneal infusion of PYY(3-36) can produce a sustained reduction in food intake and adiposity in diet-induced obese rodents consuming palatable high-fat foods.  相似文献   

13.
We have previously shown that combined amylin + leptin agonism elicits synergistic weight loss in diet‐induced obese (DIO) rats. Here, we assessed the comparative efficacy of amylin, leptin, or amylin + leptin in the maintenance of amylin + leptin–mediated weight loss. DIO rats pretreated with the combination of rat amylin (50 µg/kg/day) and murine leptin (125 µg/kg/day) for 4 weeks were subsequently infused with either vehicle, amylin, leptin, or amylin + leptin for an additional 4 weeks. Food intake, body weight, body composition, plasma parameters, and the expression of key metabolic genes in liver and white adipose tissue (WAT) were assessed. Amylin + leptin treatment (weeks 0–4) reduced body weight to 87.5% of baseline. Rats subsequently maintained on vehicle or leptin regained all weight (to 104.2 and 101.2% of baseline, respectively), those maintained on amylin had partial weight regain (97.0%). By contrast, weight loss was largely maintained with continued amylin + leptin treatment (91.4%), associated with a 10% decrease in adiposity. Cumulative food intake (weeks 5–8) was reduced by amylin and amylin + leptin, but not by leptin alone. Amylin + leptin, but not amylin or leptin alone, reduced plasma triglycerides (by 55%), total cholesterol (by 19%), and insulin (by 57%) compared to vehicle. Amylin + leptin also reduced hepatic stearoyl‐CoA desaturase‐1 (Scd1) mRNA, and increased WAT mRNA levels of adiponectin, fatty acid synthase (Fasn), and lipoprotein lipase (Lpl). We conclude that, in DIO rats, maintenance of amylin + leptin–mediated weight loss requires continued treatment with both agonists, and is accompanied by sustained improvements in body composition, and indices of lipid metabolism and insulin sensitivity.  相似文献   

14.
The glucagon-like-peptide-1 receptor (GLP-1R) agonists, liraglutide (Victoza) and the synthetic product of exendin-4 (Byetta), are approved for type II diabetes mellitus (T2DM) treatment and may be efficacious in obesity treatment as well, in part, due to the drugs' resistance to enzymatic degradation and prolonged half-life relative to endogenous GLP-1. To address the need to directly compare the food intake- and body weight-suppressive effects of these two GLP-1R ligands, acute and chronic dosing experiments were performed. Once-daily (q.d.) exendin-4 (0, 0.33, 1.5, and 3.0 μg/kg) and liraglutide (0, 50, 100, and 300 μg/kg, q.d.) both reduced the chow intake in nonobese rats in a dose-dependent fashion following either intraperitoneal (IP) or subcutaneous (SC) administration, whereas only liraglutide reduced 24 and 48 h body weight in nonobese, chow-maintained rats. Chow intake and body weight suppression by liraglutide were of greater magnitude and shorter latency following IP compared to SC delivery, whereas for exendin-4, the magnitude of intake-suppression was similar for IP and SC administration. The effects of chronic delivery (7 consecutive days; IP) of liraglutide (25 and 50 μg/kg; q.d.) and exendin-4 (3 μg/kg; q.d. and twice-daily (b.i.d.)) on food intake and body weight were also examined in diet-induced obese (DIO) rats. Liraglutide (50 μg/kg q.d.) and exendin-4 (3 μg/kg b.i.d.) were comparable in suppressing overall high fat/sucrose diet (HFS; 60% kcal from fat) intake. Both drugs regimens yielded marked weight loss over the 7-day period. The weight loss effect of liraglutide was achieved in the first 2 days and remained stable for the duration of the experiment; weight loss with exendin-4 appeared more linear over the 7-day period. In conclusion, administration of the GLP-1R ligands, exendin-4 (b.i.d.) and liraglutide (q.d.), lead to comparable and pronounced suppression of food intake and body weight in DIO rats, suggesting a potential role for these drugs as a clinical tool for obesity treatment.  相似文献   

15.

Objective

Acute administration of cannabinoid CB1 receptor agonists, or the ingestion of cannabis, induces short-term hyperphagia. However, the incidence of obesity is lower in frequent cannabis users compared to non-users. Gut microbiota affects host metabolism and altered microbial profiles are observed in obese states. Gut microbiota modifies adipogenesis through actions on the endocannabinoid system. This study investigated the effect of chronic THC administration on body weight and gut microbiota in diet-induced obese (DIO) and lean mice.

Methods

Adult male DIO and lean mice were treated daily with vehicle or THC (2mg/kg for 3 weeks and 4 mg/kg for 1 additional week). Body weight, fat mass, energy intake, locomotor activity, whole gut transit and gut microbiota were measured longitudinally.

Results

THC reduced weight gain, fat mass gain and energy intake in DIO but not lean mice. DIO-induced changes in select gut microbiota were prevented in mice chronically administered THC. THC had no effect on locomotor activity or whole gut transit in either lean or DIO mice.

Conclusions

Chronic THC treatment reduced energy intake and prevented high fat diet-induced increases in body weight and adiposity; effects that were unlikely to be a result of sedation or altered gastrointestinal transit. Changes in gut microbiota potentially contribute to chronic THC-induced actions on body weight in obesity.  相似文献   

16.
Gastric electrical stimulation (GES) has been used to treat obesity with unclear mechanisms and limited parameter ranges. This study explores effects of GES parameters on ventral medial hypothalamic (VMH) activity, feeding, and body weight in diet-induced obese (DIO) rats. For experiment 1, discharge rates were recorded in 39 gastric distension-responsive (GD-R) neurons in 12 DIO rats. Basal rates were compared with rates under GES using varied pulse amplitudes, widths, frequencies, and train-on times. For experiment 2, a crossover experiment in 16 DIO rats measured food intake and weight effects of GES pulse width, the parameter with the steepest neuronal response gradient in experiment 1. Treatments were sham and 0.5-, 2.0-, and 5.0-ms pulse GES. In experiment 1, 11 of 13 GES parameter sets tested produced significantly (P < 0.05) altered discharge rates of GD-R neurons. Increases in pulse amplitude (P < 0.05) and width (P < 0.0001) produced significant upward linear trends in response over the range tested, with the trend being strongest for pulse width. In experiment 2, over 4 days of 0.5-, 2.0-, and 5.0-ms GES treatment, food intake was 9.6% (P < 0.05), 21.0% (P < 0.0001), and 47.3% (P < 0.0001) lower than under sham-GES, whereas body weight changes were 0.7 (P = 0.48), 2.2 (P < 0.05), and 3.5 (P < 0.002) percentage points lower, respectively. We concluded that GES pulse width increases had the largest effect on VMH neuronal activity, and these effects were paralleled by pulse width-dependent reductions in food intake and body weight. Lengthening pulse width beyond the range used in prior clinical studies may be critical to making GES a viable obesity treatment.  相似文献   

17.
Growing evidence suggests that oxytocin plays an important role in the regulation of energy balance and that central oxytocin administration induces weight loss in diet-induced obese (DIO) animals. To gain a better understanding of how oxytocin mediates these effects, we examined feeding and neuronal responses to oxytocin in animals rendered obese following exposure to either a high-fat (HFD) or low-fat diet (LFD). Our findings demonstrate that peripheral administration of oxytocin dose-dependently reduces food intake and body weight to a similar extent in rats maintained on either diet. Moreover, the effect of oxytocin to induce weight loss remained intact in leptin receptor-deficient Koletsky (fa(k)/fa(k)) rats relative to their lean littermates. To determine whether systemically administered oxytocin activates hindbrain areas that regulate meal size, we measured neuronal c-Fos induction in the nucleus of the solitary tract (NTS) and area postrema (AP). We observed a robust neuronal response to oxytocin in these hindbrain areas that was unexpectedly increased in rats rendered obese on a HFD relative to lean, LFD-fed controls. Finally, we report that repeated daily peripheral administration of oxytocin in DIO animals elicited a sustained reduction of food intake and body weight while preventing the reduction of energy expenditure characteristic of weight-reduced animals. These findings extend recent evidence suggesting that oxytocin circumvents leptin resistance and induces weight-loss in DIO animals through a mechanism involving activation of neurons in the NTS and AP, key hindbrain areas for processing satiety-related inputs.  相似文献   

18.
Objective: To characterize the meal patterns of free feeding Sprague‐Dawley rats that become obese or resist obesity when chronically fed a high‐fat diet. Research Methods and Procedures: Male Sprague‐Dawley rats (N = 120) were weaned onto a high‐fat diet, and body weight was monitored for 19 weeks. Rats from the upper [diet‐induced obese (DIO)] and lower [diet‐resistant (DR)] deciles for body‐weight gain were selected for study. A cohort of chow‐fed (CF) rats weight‐matched to the DR group was also studied. Food intake was continuously monitored for 7 consecutive days using a BioDAQ food intake monitoring system. Results: DIO rats were obese, hyperphagic, hyperleptinemic, hyperinsulinemic, hyperglycemic, and hypertriglyceridemic relative to the DR and CF rats. The hyperphagia of DIOs was caused by an increase in meal size, not number. CF rats ate more calories than DR rats; however, this was because of an increase in meal number, not size. When expressed as a function of lean mass, CF and DR rats consumed the same amount of calories. The intermeal intervals of DIO and DR rats were similar; both were longer than CF rats. The nocturnal satiety ratio of DIO rats was significantly lower than DR and CF rats. The proportion of calories eaten during the nocturnal period did not differ among groups. Discussion: The hyperphagia of a Sprague‐Dawley rat model of chronic diet‐induced obesity is caused by an increase in meal size, not number. These results are an important step toward understanding the mechanisms underlying differences in feeding behavior of DIO and DR rats.  相似文献   

19.
The gut hormone peptide YY (PYY) was recently proposed to comprise an endogenous satiety factor. We have studied acute anorectic functions of PYY(3-36) in mice and rats, as well as metabolic effects of chronic PYY(3-36) administration to diet-induced obese (DIO) mice and rats. A single intraperitoneal injection of PYY(3-36) inhibited food intake in mice, but not in rats. We next investigated the effects of increasing doses (100, 300, and 1,000 microg.kg-1.day-1) of PYY(3-36) administered subcutaneously via osmotic minipumps on food intake and body weight in DIO C57BL/6J mice. Whereas only the highest dose (1,000 microg.kg-1.day-1) of PYY(3-36) significantly reduced food intake over the first 3 days, body weight gain was dose dependently reduced, and on day 28 the group treated with 1,000 microg.kg-1.day-1 PYY(3-36) weighed approximately 10% less than the vehicle-treated group. Mesenteric, epididymal, retroperitoneal, and inguinal fat pad weight was dose dependently reduced. Subcutaneous administration of PYY(3-36) (250 and 1,000 microg.kg-1.day-1) for 28 days reduced body weight and improved glycemic control in glucose-intolerant DIO rats. Neither 250 nor 1,000 microg/kg PYY(3-36) elicited a conditioned taste aversion in male rats.  相似文献   

20.
Although the rat is usually not considered to be sensitive to photoperiod, under some experimental conditions photoperiod responses are unmasked. In addition, we have observed photoperiod-induced changes in body weight gain in lean and obese Zucker rats. In this experiment, body mass, food intake, body composition, brown adipose tissue (BAT) thermogenic state, and blood concentrations of corticosterone, insulin, and glucose were evaluated under one of two lighting conditions: a short (10 h light: 14 h dark) or a long (14 h light: 10 h dark) photoperiod. Plasma corticosterone and glucose concentrations measured under fasting conditions were unaffected by photoperiod in either genotype. The amount of BAT mitochondrial protein isolated was less in long photoperiod rats. BAT mitochondrial GDP binding was unaffected by photoperiod in the lean rats, but tended to be lower in long photoperiod obese rats than in short photoperiod obese rats. Although, photoperiod had no effect on daily food intake of rats exposed to the short versus long photoperiod, body mass was heaviest in obese rats raised in long photoperiod. Plasma insulin was increased in both lean and obese rats in long photoperiod. In addition, fat storage appeared to shift to internal depots in the lean rats exposed to long photoperiod. Our data demonstrate that photoperiod does have an effect on male Zucker rats with respect to body weight and fat distribution, with the obese rats being more sensitive to changes in photoperiod than the lean rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号