共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Claudia Götz Andreas Gratz Uwe Kucklaender Joachim Jose 《Biochimica et Biophysica Acta (BBA)/General Subjects》2012,1820(7):970-977
BackgroundAbnormally high activity of protein kinase CK2 is linked to various diseases including cancer. Therefore, the inhibition of CK2 is a promising therapeutic strategy to fight this disease.MethodsWe screened a library of synthetic molecules concerning their capacity to inhibit CK2. The activity of CK2 and their IC50 and Ki values were determined by a capillary electrophoresis assay. The effects of the inhibitor in a cell culture model were analyzed by cell counting, a viability assay, cytofluorimetry and Western blot.ResultsThe best CK2 inhibitor found in this screen was 6,7-dichloro-1,4-dihydro-8-hydroxy-4-[(4-methylphenylamino)methylen]dibenzo [b,d]furan-3(2H)-one, which we refer to as “TF”. TF showed tight binding to CK2 with low IC50 (29 nM) and Ki (15 nM) values. TF inhibited only seven out of 61 human kinases tested (> 70% inhibition). Incubation of LNCaP cells with 50 μM TF for 48 h decreased the intracellular CK2 activity by 50%, confirming that the inhibitor is membrane permeable. The decrease in activity was correlated with a severe reduction in cell viability. The reduction in cell viability is at least partly due to the induction of apoptosis.General significanceIn many cancers the protein kinase CK2 is significantly up-regulated and supports the neoplastic phenotype. New therapeutic strategies should be based on diverse reliable inhibitors to reverse the abnormal high levels to normal settings. 相似文献
3.
Chun Wang Canxin Xu Dixian Luo Deliang Cao 《Biochemical and biophysical research communications》2009,385(3):302-5638
Acetyl-CoA carboxylase-α (ACCA) is a rate-limiting enzyme in long chain fatty acid synthesis, playing a critical role in cellular energy storage and lipid synthesis. ACCA is upregulated in multiple types of human cancers and small interfering RNA-mediated ACCA silencing in human breast and prostate cancer cells results in oxidative stress and apoptosis. This study reports for the first time that TOFA (5-tetradecyloxy-2-furoic acid), an allosteric inhibitor of ACCA, is cytotoxic to lung cancer cells NCI-H460 and colon carcinoma cells HCT-8 and HCT-15, with an IC50 at approximately 5.0, 5.0, and 4.5 μg/ml, respectively. TOFA at 1.0-20.0 μg/ml effectively blocked fatty acid synthesis and induced cell death in a dose-dependent manner. The cell death was characterized with PARP cleavage, DNA fragmentation, and annexin-V staining, all of which are the features of the apoptosis. Supplementing simultaneously the cells with palmitic acids (100 μM), the end-products of the fatty acid synthesis pathway, prevented the apoptosis induced by TOFA. Taken together, these data suggest that TOFA is a potent cytotoxic agent to lung and colon cancer cells, inducing apoptosis through disturbing their fatty acid synthesis. 相似文献
4.
《Cell Adhesion & Migration》2013,7(5):447-463
ABSTRACTMelanoma is one of the fastest growing cancers in the United States and is accompanied with a poor prognosis owing to tumors being resistant to most therapies. Atypical protein kinase Cs (aPKC) are involved in malignancy in many cancers. We previously reported that aPKCs play a key role in melanoma's cell motility by regulating cell signaling pathways which induce epithelial-mesenchymal Transition (EMT). We tested three novel inhibitors; [4-(5-amino-4-carbamoylimidazol-1-yl)-2,3-dihydroxycyclopentyl] methyl dihydrogen phosphate (ICA-1T) along with its nucleoside analog 5-amino-1-((1R,2S,3S,4R)-2,3-dihydroxy-4-methylcyclopentyl)-1H-imidazole-4-carboxamide (ICA-1S) which are specific to protein kinase C-iota (PKC-ι) and 8-hydroxy-1,3,6-naphthalenetrisulfonic acid (ζ-Stat) which is specific to PKC-zeta (PKC-ζ) on cell proliferation, apoptosis, migration and invasion of two malignant melanoma cell lines compared to normal melanocytes. Molecular modeling was used to identify potential binding sites for the inhibitors and to predict selectivity. Kinase assay showed >50% inhibition for specified targets beyond 5 μM for all inhibitors. Both ICA-1 and ζ-Stat significantly reduced cell proliferation and induced apoptosis, while ICA-1 also significantly reduced migration and melanoma cell invasion. PKC-ι stimulated EMT via TGFβ/Par6/RhoA pathway and activated Vimentin by phosphorylation at S39. Both ICA-1 and ζ-Stat downregulate TNF-α induced NF-κB translocation to the nucleus there by inducing apoptosis. Results suggest that PKC-ι is involved in melanoma malignancy than PKC-ζ. Inhibitors proved to be effective under in-vitro conditions and need to be tested in-vivo for the validity as effective therapeutics. Overall, results show that aPKCs are essential for melanoma progression and metastasis and that they could be used as effective therapeutic targets for malignant melanoma. 相似文献
5.
Naoaki Tamura Kazuhiro Sugihara Tomoya O Akama Michiko N Fukuda 《Cell cycle (Georgetown, Tex.)》2011,10(1):135-143
Trophinin is an intrinsic membrane protein expressed in trophectoderm cells of embryos and in uterine epithelial cells. Trophinin potentially mediates apical cell adhesion at human embryo implantation sites through trophinin-trophinin binding in these two cell types. Trophinin-mediated cell adhesion activates trophectoderm cells for invasion, whereas the effect of adhesion on maternal side is not known. We show that addition of GWRQ peptide, a previously established peptide that mimics trophinin-mediated cell adhesion, to human endometrial epithelial cells expressing trophinin induces their apoptosis. FAS involvement was excluded, as GWRQ did not bind to FAS, and FAS knockdown did not alter GWRQ-induced apoptosis. Immunoblotting analyses of protein kinases revealed an elevation of PKC-δ protein in GWRQ-bound endometrial epithelial cells. In the absence of GWRQ, PKC-δ associated with trophinin and remained cytoplasmic, but after GWRQ binding to the trophinin extracellular domain, PKC-δ became tyrosine phosphorylated, dissociated from trophinin and entered the nucleus. In PKC-δ knockdown endometrial cells, GWRQ did not induce apoptosis. These results suggest that trophinin-mediated cell adhesion functions as a molecular switch to induce apoptosis through the PKC-δ pathway in endometrial epithelial cells. Thus, trophinin-mediated induction of apoptosis of endometrial epithelial cells, which function as a barrier to embryo invasion, allows trophoblast invasion of maternal tissue and embryo implantation in humans.Key words: blastocyst, embryo implantation, apoptosis, cell adhesion, signal transduction 相似文献
6.
Sanjeev Shukla Pingfu Fu Sanjay Gupta 《Apoptosis : an international journal on programmed cell death》2014,19(5):883-894
Dysfunction of the apoptotic pathway in prostate cancer cells confers apoptosis resistance towards various therapies. A novel strategy to overcome resistance is to directly target the apoptotic pathway in cancer cells. Apigenin, an anticancer agent, selectively toxic to cancer cells induces cell cycle arrest and apoptosis through mechanisms which are not fully explored. In the present study we provide novel insight into the mechanisms of apoptosis induction by apigenin. Treatment of androgen-refractory human prostate cancer PC-3 and DU145 cells with apigenin resulted in dose-dependent suppression of XIAP, c-IAP1, c-IAP2 and survivin protein levels. Apigenin treatment resulted in significant decrease in cell viability and apoptosis induction with the increase of cytochrome C in time-dependent manner. These effects of apigenin were accompanied by decrease in Bcl-xL and Bcl-2 and increase in the active form of Bax protein. The apigenin-mediated increase in Bax was due to dissociation of Bax from Ku70 which is essential for apoptotic activity of Bax. Apigenin treatment resulted in the inhibition of class I histone deacetylases and HDAC1 protein expression, thereby increasing the acetylation of Ku70 and the dissociation of Bax resulting in apoptosis of cancer cells. Furthermore, apigenin significantly reduced HDAC1 occupancy at the XIAP promoter, suggesting that histone deacetylation might be critical for XIAP downregulation. These results suggest that apigenin targets inhibitor of apoptosis proteins and Ku70–Bax interaction in the induction of apoptosis in prostate cancer cells and in athymic nude mouse xenograft model endorsing its in vivo efficacy. 相似文献
7.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2004,1674(2):193-199
As described previously, a natural product isolated from fungus (Acremonium sp.), dehydroaltenusin, is an inhibitor of mammalian DNA polymerase α in vitro [Y. Mizushina, S. Kamisuki, T. Mizuno, M. Takemura, H. Asahara, S. Linn, T. Yamaguchi, A. Matsukage, F. Hanaoka, S. Yoshida, M. Saneyoshi, F. Sugawara, K. Sakaguchi, Dehydroaltenusin, a mammalian DNA polymerase α inhibitor, J. Biol. Chem. 275 (2000) 33957_33961]. In this study, we investigated the interaction of dehydroaltenusin with lipid bilayers using an in vitro liposome system, which is a model of the cell membrane, and found that approximately 4% of dehydroaltenusin was incorporated into liposomes. We also investigated the influence of dehydroaltenusin on cultured cancer cells. Dehydroaltenusin inhibited the growth of HeLa cells with an LD50 value of 38 μM, and as expected, S phase accumulation in the cell cycle. The total DNA polymerase activity of the extract of incubated cells with dehydroaltenusin was 23% lower than that of nontreated cells. Dehydroaltenusin increased cyclin E and cyclin A levels. In the analysis of the cell cycle using G1/S synchronized cells by employing hydroxyurea, the compound delayed both entry into the S phase and S phase progression. In a similar analysis using G2/M synchronized cells by employing nocodazole, the compound accumulated the cells at G1/S and inhibited entry into the S phase. Thus, the pharmacological abrogation of cell proliferation by dehydroaltenusin may prove to be an effective chemotherapeutic agent against tumors. 相似文献
8.
TNFα signaling can promote apoptosis or a regulated form of necrosis. ARC (apoptosis repressor with CARD (caspase recruitment domain)) is an endogenous inhibitor of apoptosis that antagonizes both the extrinsic (death receptor) and intrinsic (mitochondrial/ER) apoptosis pathways. We discovered that ARC blocks not only apoptosis but also necrosis. TNFα-induced necrosis was abrogated by overexpression of wild-type ARC but not by a CARD mutant that is also defective for inhibition of apoptosis. Conversely, knockdown of ARC exacerbated TNFα-induced necrosis, an effect that was rescued by reconstitution with wild-type, but not CARD-defective, ARC. Similarly, depletion of ARC in vivo exacerbated necrosis caused by infection with vaccinia virus, which elicits severe tissue damage through this pathway, and sensitized mice to TNFα-induced systemic inflammatory response syndrome. The mechanism underlying these effects is an interaction of ARC with TNF receptor 1 that interferes with recruitment of RIP1, a critical mediator of TNFα-induced regulated necrosis. These findings extend the role of ARC from an apoptosis inhibitor to a regulator of the TNFα pathway and an inhibitor of TNFα-mediated regulated necrosis. 相似文献
9.
Objectives
To investigate the functional roles of bone marrow stromal cell antigen 2 (BST2) in gastric cancer (GC) cells and its implications in the development of GC patients.Results
BST2 was frequently overexpressed in GC tissues compared with the adjacent non-tumorous tissues, and high BST2 expression was correlated with tumor stage and lymphatic metastasis. Furthermore, in vitro experiments demonstrated that knockdown of BST2 by siRNA inhibited cell proliferation, induced apoptosis and repressed cell motility in GC cells. In addition, the pro-tumor function of BST2 in GC was mediated partly through the NF-κB signaling.Conclusion
BST2 possesses the oncogenic potential in GC by regulating the proliferation, apoptosis, and migratory ability of GC cells, thereby BST2 could be a potential therapeutic target for the treatment of GC.10.
S. Desai P. Pillai H. Win-Piazza M. Acevedo-Duncan 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(6):1190-1197
The focus of this research was to investigate the role of protein kinase C-iota (PKC-ι) in regulation of Bad, a pro-apoptotic BH3-only molecule of the Bcl-2 family in glioblastoma. Robust expression of PKC-ι is a hallmark of human glioma and benign and malignant meningiomas. The results were obtained from the two human glial tumor derived cell lines, T98G and U87MG. In these cells, PKC-ι co-localized and directly associated with Bad, as shown by immunofluorescence, immunoprecipitation, and Western blotting. Furthermore, in-vitro kinase activity assay showed that PKC-ι directly phosphorylated Bad at phospho specific residues, Ser-112, Ser-136 and Ser-155 which in turn induced inactivation of Bad and disruption of Bad/Bcl-XL dimer. Knockdown of PKC-ι by siRNA exhibited a corresponding reduction in Bad phosphorylation suggesting that PKC-ι may be a Bad kinase. PKC-ι knockdown also induced apoptosis in both the cell lines. Since, PKC-ι is an essential downstream mediator of the PI (3)-kinase, we hypothesize that glioma cell survival is mediated via a PI (3)-kinase/PDK1/PKC-ι/Bad pathway. Treatment with PI (3)-kinase inhibitors Wortmannin and LY294002, as well as PDK1 siRNA, inhibited PKC-ι activity and subsequent phosphorylation of Bad suggesting that PKC-ι regulates the activity of Bad in a PI (3)-kinase dependent manner. Thus, our data suggest that glioma cell survival occurs through a novel PI (3)-kinase/PDK1/PKC-ι/BAD mediated pathway. 相似文献
11.
α-Enolase inhibits apoptosis and promotes cell invasion and proliferation of skin cutaneous melanoma
Zhang Kun Tian Ruoxi Zhang Wancong Li Yishuai Zeng Ning Liang Yan Tang Shijie 《Molecular biology reports》2022,49(9):8241-8250
Molecular Biology Reports - The glycolytic enzyme, α-Enolase (ENO1), catalyzes the production of phosphoenolpyruvate from 2-phosphoglycerate, thereby enhancing glycolysis and contributing to... 相似文献
12.
Accumulating evidence suggested that transient receptor potential melastatin 2–antisense RNA (TRPM2-AS) played crucial roles in the progression of human cancers. However, the role of TRPM2-AS was still unknown in osteosarcoma. The aim of this study was to explore the clinical significance of TRPM2-AS in osteosarcoma patients, and determine the role of TRPM2-AS on osteosarcoma cell proliferation and apoptosis. In our results, we identified a novel oncogenic long noncoding RNA TRPM2-AS, which was overexpressed in osteosarcoma tissues and cells, and correlated with advanced Enneking stage, large tumor size and high histological grade in osteosarcoma cases. Survival analysis indicated that osteosarcoma patients with high TRPM2-AS expression had an obviously shorter overall survival time than those with low TRPM2-AS expression. Loss-of-function studies suggested that suppression of TRPM2-AS expression inhibited osteosarcoma cell proliferation and induced cell apoptosis through upregulating cleaved caspase-3 and cleaved caspase-9 expression. In conclusion, TRPM2-AS acts as an oncogenic long noncoding RNA and predicts poor prognosis in osteosarcoma. 相似文献
13.
(-)-Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound found in green tea. It has been reported to possess a wide range of pharmacological properties, and is one of the most promising chemopreventive agents for cancer. To provide a better understanding of the preventive effect of EGCG on liver cancer, we examined EGCG for its effect on proliferation and cell cycle progression in a human liver cancer cell line, Hep G2. The results showed that EGCG inhibited the proliferation of Hep G2 by inducing apoptosis and blocking cell cycle progression in the G1 phase. ELISA showed that EGCG significantly increased the expression of p53 and p21/WAF1 protein, and this contributed to cell cycle arrest. An enhancement in Fas/APO-1 and its two form ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), as well as Bax protein, was responsible for the apoptotic effect induced by EGCG. Taken together, our study suggests that the induction of p53 and the activity of the Fas/FasL apoptotic system play major roles in the antiproliferative activity of EGCG in Hep G2 cells. 相似文献
14.
15.
Glioblastoma is a highly aggressive type of brain cancer which currently has limited options for treatment. It is imperative to develop combination therapies that could cause apoptosis in glioblastoma. The aim of this study was to characterize the affect of modified ICA-1, a PKC-iota inhibitor, on the growth pattern of various glioblastoma cell lines. T98G and U87 glioblastoma cells were treated with ICA-1 alone and the absolute cell numbers of each group were determined for cell growth expansion analysis, cell viability analysis, and cell death analysis. Low dose ICA-1 treatment alone significantly inhibited cell growth expansion of high density glioblastoma cells without inducing cell death. However, the high dose ICA-1 treatment regimen provided significant apoptosis for glioblastoma cells. Furthermore, this study was conducted to use a two layer molecular level approach for treating glioblastoma cells with ICA-1 plus an apoptosis agent, tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL), to induce apoptosis in such chemo-refractory cancer cells. Following ICA-1 plus TRAIL treatment, apoptosis was detected in glioblastoma cells via the TUNEL assay and via flow cytometric analysis using Annexin-V FITC/PI. This study offers the first evidence for ICA-1 alone to inhibit glioblastoma cell proliferation as well as the novel combination of ICA-1 with TRAIL to cause robust apoptosis in a caspase-3 mediated mechanism. Furthermore, ICA-1 plus TRAIL simultaneously modulates down-regulation of PKC-iota and c-Jun. 相似文献
16.
Rheumatoid arthritis fibroblast-like synoviocytes (RAFLS) proliferate abnormally and resist apoptosis. Geldanamycin (GA) and other HSP90 inhibitors have emerged as promising therapeutic agents that inhibited cancer cell growth. In this study, we explored the effects of HSP90 inhibitor, GA, on tumor necrosis factor (TNF)-α-induced proliferation and apoptosis of RAFLS, and the underlying mechanism. Human RAFLS was isolated from the knee joints of patients with RA and subjected to TNF-α treatment in combination of various concentration of GA. We found that GA dose-dependently inhibited TNF-α-induced RAFLS proliferation as measured, but promoted RAFLS apoptosis. Further mechanistic study identified that GA dose-dependently attenuated TNF-α-mediated activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) pathways, both of which are involved in TNF-α-mediated RAFLS proliferation. Moreover, GA-induced apoptosis and mitochondrial damage of RAFLS, as evidenced by increased Bax/Bcl-2 ratio and mitochondrial cytochrome c release, and enhanced cleavages of caspase-3, caspase-9, and poly-(ADP-ribose) polymerase. Collectively, our results revealed that chemical inhibition of HSP90 by GA suppressed TNF-α-induced proliferation of RAFLSs through the MAPK and NF-κB signaling pathways and induces RAFLS apoptosis via mitochondria-dependent pathway. These findings demonstrated for the first time that HSP90 inhibition in RAFLS could be therapeutic beneficial for RA. 相似文献
17.
《Cell cycle (Georgetown, Tex.)》2013,12(17):2821-2822
Comment on: Geering B, et al. Blood 2011; 117:5953-62. 相似文献
18.
Duan Xianlan Zhao Lian Jin Wancun Xiao Qinxin Peng Yani Huang Gan Li Xia DaSilva-Arnold Sonia Yu Haibo Zhou Zhiguang 《Molecular biology reports》2020,47(10):7557-7566
Molecular Biology Reports - The main pathogenesis of type 1 diabetes mellitus (T1DM) is autoimmune-mediated apoptosis of pancreatic islet β cells. We sought to characterize the function of... 相似文献
19.
Type 2 diabetes is often associated with high blood cholesterol. Here, we investigated the effect of cholesterol loading on
MIN6 cells derived from pancreatic β cells. Exposure of MIN6 cells to cholesterol-induced apoptosis in time- and dose-dependent
manner. Treatment with methyl-β-cyclodextrin that removes cholesterol from plasma membrane prevented the cells from cholesterol-induced
apoptosis. Western blot analysis revealed that the levels of phosphorylated-p38 mitogen-activated protein kinase (P-p38 MAPK)
and c-Jun N-terminal kinases (P-JNK) were significantly increased after the cholesterol loading, suggesting that the stress-activated
protein kinase signaling was stimulated. A specific p38 inhibitor rescued MIN6 cells from cholesterol-induced apoptosis, while
JNK inhibitor failed, suggesting the importance of activation of p38 MAPK signaling in response to cholesterol. The expression
of Bip and CHOP, the endoplasmic reticulum (ER) stress markers, remained unaffected, indicating that the ER stress may not
be involved in the cytotoxicity of cholesterol on the ΜΙΝ6 cells. The intracellular concentration of reactive oxygen species
measured by use of 2′,7′-dichlorofluorescin diacetate was significantly increased after cholesterol loading, demonstrating
the induced apoptosis was mediated through oxidative stress. Addition of reduced form of glutathione in the medium rescued
MIN6 cells from apoptosis induced by cholesterol loading. Taken together, these results demonstrate that the free cholesterol
loading can induce apoptosis of MIN6 cells mediated by oxidative stress and the activation of p38 MAPK signaling. 相似文献
20.
Lalitha Ramachandran Kanjoormana Aryan Manu Muthu K. Shanmugam Feng Li Kodappully Sivaraman Siveen Shireen Vali Shweta Kapoor Taher Abbasi Rohit Surana Duane T. Smoot Hassan Ashktorab Patrick Tan Kwang Seok Ahn Chun Wei Yap Alan Prem Kumar Gautam Sethi 《The Journal of biological chemistry》2013,288(26):18777