首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prolyl-hydroxylation of HIF-1α is a prerequisite for pVHL binding to HIF-1α, which results in degradation of HIF-1α by the ubiquitin-proteasome pathway. Hydroxylation of HIF-1α is mediated by the family of prolyl-hydroxylase proteins (PHD). In hypoxia, HIF-1α is stabilized as a result of inhibition of HIF-1α hydroxylation, which in part is achieved by decreased activity of PHD enzymes at very low oxygen concentrations. We recently demonstrated that in hypoxia the stability of 2 of 3 PHDs (1 and 3) is regulated by the E3 ligases Siah1/2. Consequently, in hypoxia Siah determines the availability of PHD1/3, which otherwise modify HIF-1α to enable its association-dependent degradation by pVHL. These findings define a newly discovered layer in the regulation of HIF-1α in hypoxia. The roles of Siah activities in hypoxia responses are discussed.  相似文献   

2.
3.
4.
5.
6.
HIF hydroxylation and cellular oxygen sensing   总被引:7,自引:0,他引:7  
  相似文献   

7.
HIF-1α plays a central role in cellular adaptation to hypoxia, and is closely related to the pathogeneses of life-threatening disorders. HIF-1α induces the expressions of numerous hypoxia-induced genes through two transactivation domains; N-terminal TAD (NAD) and C-terminal TAD (CAD). Furthermore, p300 is known to boost CAD-dependent transactivation, and CBP/p300-interacting transactivator with an ED-rich tail 2 (CITED2) inhibits HIF-1α-driven gene expression by interfering with the interaction between CAD and p300. However, few researches have focused on the role of CITED2 in the regulation of NAD activity, and thus, we addressed this point. CITED2 was found to attenuate the hypoxic activations of NAD-dependent and CAD-dependent genes, suggesting that CITED2 negatively regulates both CAD and NAD. Immunoprecipitation analyses showed that NAD interacts with the Cystein/Histidine region (CH) 1 and CH3 domains of p300. Moreover, CH1 and CH3 both were required for NAD-dependent transactivation. Furthermore, CITED2 was found to inactivate NAD by interfering with NAD binding to CH1, but not to CH3. These results indicate that CITED2 inactivates HIF-1α by blocking p300 recruitment by both NAD and CAD. We also found that pVHL inhibits NAD activity regardless of NAD degradation by blocking the interaction between p300 and NAD. Summarizing, NAD was activated by binding to p300, and this was blocked by either CITED2 or pVHL. We propose that pVHL controls NAD during normoxia and that CITED2 controls NAD during hypoxia. Our results provide a new strategy for controlling HIF-1α.  相似文献   

8.
为研究鲸类低氧适应的分子机制,文章克隆了不同低氧耐受能力的3个鲸类物种,抹香鲸(Physeter macrocephalus)、白鲸(Delphinapterus leucas)和长江江豚(Neophocaena phocaenoids asiaeorientalis)的脯氨酸羟化酶2(PHD2)。通过对其序列进行分析,发现3个物种PHD2的氨基酸序列非常保守。通过对这3个物种的PHD2的功能进行探究发现:3个物种的PHD2在常氧情况下均可以降解3个物种的HIF-α(包括HIF-1α和HIF-2α)蛋白,而在低氧(O2浓度小于2%)情况下,PHD2则无法明显降解HIF-α蛋白。在常氧下,鲸类的PHD2降解HIF-α是依赖于识别鲸类的HIF-1α上LTLLAP和LEMLAP,HIF-2α的LAQLAP和LETLAP氨基酸片段,推测PHD2是通过对HIF-α序列中的脯氨酸位点进行羟基化修饰后,被VHL-E3泛素连接酶复合体所识别,发生泛素化降解。而在低氧条件下,PHD2的活性受到抑制HIF-α不能被VHL-E3泛素连接酶复合体识别,发生降解。研究对3种不同低氧耐受能力...  相似文献   

9.
2019年诺贝尔生理学或医学奖授予威廉·凯林(William Kaelin Jr)、彼得·拉特克里夫爵士(Sir Peter Ratcliffe)和格雷格·赛门扎(Gregg Semenza),以表彰他们在细胞感知和适应缺氧机制上做出的重要贡献.低氧诱导因子-1 (hypoxiainducible factor-1,HIF-1)在细胞适应氧供应改变中起关键作用,可作为转录因子改变基因表达,通过提高机体携氧能力、增加血液供应、改变代谢方式等途径来适应缺氧环境.而HIF-1的功能也受到各种机制调控:泛素化-蛋白酶体途径降解和转录因子活性抑制. HIF-1与抑癌蛋白(protein von Hippel-Lindau,pVHL)、脯氨酸羟化酶(proline hydroxylase,PHD)、HIF抑制因子(factor inhibiting HIF,FIH)等构成了严密有序的调节网络.本文总结了3位诺贝尔奖获得者的研究成果,并结合最新的研究进展,系统阐述了HIF-1表达量调节机制和HIF-1介导的细胞适应缺氧环境机制.  相似文献   

10.
11.
12.
The constant failure of single-target drug therapies for ischemic stroke necessitates the development of novel pleiotropic pharmacological treatment approaches, to effectively combat the aftermath of this devastating disorder. The major objective of our study involves a multi-target drug repurposing strategy to stabilize hypoxia-inducible factor-1 α (HIF-1α) via a structure-based screening approach to simultaneously inhibit its regulatory proteins, PHD2, FIH, and pVHL. Out of 1424 Food and Drug Administration (FDA)-approved drugs that were screened, folic acid (FA) emerged as the top hit and its binding potential to PHD2, FIH, and pVHL was further verified by re-docking, molecular dynamics (MD) simulation and by Drug Affinity Responsive Target Stability (DARTS) assay. HIF-1α stabilization by FA was demonstrated by the nuclear translocation and increased green fluorescence emission of HIF-1α using HIF1α-GFPSpark tag vector. Further, FA treatment enhanced the cell survival following oxygen glucose deprivation and its neuroprotective mechanism was elucidated by measuring the expression of BAX, NFE2L2, VEGF, and EPO genes in a time-dependent manner (5 and 11 h following FA treatment). VEGF and EPO expressions were significantly increased by 5.41- and 1.35-folds, respectively, whereas BAX expression reduced by 4-fold at 11 h post-FA treatment. NFE2L2 expression was elevated (1.65-fold) at 5 h with no major difference at 11 h post-FA treatment. The chicken chorioallantoic membrane (CAM) assay demonstrated the pro-angiogenic potential of FA as evidenced by an increased blood vessel density and branching. The present study elucidates for the first time that the post-ischemic neuroprotection exerted by FA may be attributed to its HIF-1α stabilization and pro-angiogenic properties.  相似文献   

13.
Hypoxia inducible factors (HIF) coordinate cellular responses towards hypoxia. HIFs are mainly regulated by a group of prolyl-hydroxylases (PHDs) that in the presence of oxygen, target the HIFα subunit for degradation. Herein, we studied the role of nitric oxide (NO) in regulating PHD activities under normoxic conditions. In the present study we show that different NO-donors initially inhibited endogenous PHD2 activity which led to accumulation of HIF-1α subsequently to enhance HIF-1 dependent increased PHD2 promoter activity. Consequently PHD2 abundance and activity were strongly induced which caused downregulation of HIF-1α. Interestingly, upregulation of endogenous PHD2 activity by NO was not found in cells that lack an intact pVHL dependent degradation pathway. Recovery of PHD activity required intact cells and was not observed in cell extracts or recombinant PHD2. In conclusion induction of endogenous PHD2 activity by NO is dependent on a feedback loop initiated despite normoxic conditions.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号