首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence homologs of the small MutS-related (Smr) domain, the C-terminal endonuclease domain of MutS2, also exist as stand-alone proteins. In this study, we report the crystal structure of a proteolyzed fragment of YdaL (YdaL??-???), a stand-alone Smr protein from Escherichia coli. In this structure, residues 86-170 assemble into a classical Smr core domain and are embraced by an N-terminal extension (residues 40-85) with an α/β/α fold. Sequence alignment indicates that the N-terminal extension is conserved among a number of stand-alone Smr proteins, suggesting structural diversity among Smr domains. We also discovered that the DNA binding affinity and endonuclease activity of the truncated YdaL??-??? protein were slightly lower than those of full-length YdaL?-???, suggesting that residues 1-38 may be involved in DNA binding.  相似文献   

2.
MutS homologues are highly conserved enzymes engaged in DNA mismatch repair (MMR), meiotic recombination and other DNA modifications. Genome sequencing projects have revealed that bacteria and plants possess a MutS homologue, MutS2. MutS2 lacks the mismatch-recognition domain of MutS, but contains an extra C-terminal region called the small MutS-related (Smr) domain. Sequences homologous to the Smr domain are annotated as ‘proteins of unknown function’ in various organisms ranging from bacteria to human. Although recent in vivo studies indicate that MutS2 plays an important role in recombinational events, there had been only limited characterization of the biochemical function of MutS2 and the Smr domain. We previously established that Thermus thermophilus MutS2 (ttMutS2) possesses endonuclease activity. In this study, we report that a Smr-deleted ttMutS2 mutant retains the dimerization, ATPase and DNA-binding activities, but has no endonuclease activity. Furthermore, the Smr domain alone was stable and functional in binding and incising DNA. It is noteworthy that an endonuclease activity is associated with a MutS homologue, which is generally thought to recognize specific DNA structures.  相似文献   

3.
The MutS1 protein recognizes unpaired bases and initiates mismatch repair, which are essential for high-fidelity DNA replication. The homologous MutS2 protein does not contribute to mismatch repair, but suppresses homologous recombination. MutS2 lacks the damage-recognition domain of MutS1, but contains an additional C-terminal extension: the small MutS-related (Smr) domain. This domain, which is present in both prokaryotes and eukaryotes, has previously been reported to bind to DNA and to possess nicking endonuclease activity. We determine here the solution structure of the functionally active Smr domain of the Bcl3-binding protein (also known as Nedd4-binding protein 2), a protein with unknown function that lacks other domains present in MutS proteins. The Smr domain adopts a two-layer α-β sandwich fold, which has a structural similarity to the C-terminal domain of IF3, the R3H domain, and the N-terminal domain of DNase I. The most conserved residues are located in three loops that form a contiguous, exposed, and positively charged surface with distinct sequence identity for prokaryotic and eukaryotic Smr domains. NMR titration experiments and DNA binding studies using Bcl3-binding protein-Smr domain mutants suggested that these most conserved loop regions participate in DNA binding to single-stranded/double-stranded DNA junctions. Based on the observed DNA-binding-induced multimerization, the structural similarity with both subdomains of DNase I, and the experimentally identified DNA-binding surface, we propose a model for DNA recognition by the Smr domain.  相似文献   

4.
5.
The Smr family of multidrug transporters consists of small membrane proteins that extrude various drugs in exchange with protons rendering cells resistant to these drugs. Smr proteins identified to date have been found only in Eubacteria. In this work we present the cloning and characterization of an Smr protein from the archaeon Halobacterium salinarum, the first Smr in the archaeal kingdom. The protein, named Hsmr, was identified through sequence similarity to the Smr family, and the DNA sequence was cloned into an Escherichia coli expression system. Hsmr is heterologously expressed in a functional form despite the difference in lipid composition of the membrane and the lower salt in the cell and its environment. Cells harboring the Hsmr plasmid transport ethidium bromide in an uncoupler-sensitive process and gain resistance to ethidium bromide and acriflavine. Hsmr binds tetraphenylphosphonium (TPP(+)) with a relatively low affinity (K(D) approximately 200 nm) at low salt concentration that increases (K(D) approximately 40 nm) upon the addition of 2 m of either NaCl or KCl. The Hsmr protein contains many of the signature sequence elements of the Smr family and also a high content of negative residues in the loops, characteristic of extreme halophiles. Strikingly, Hsmr is composed of over 40% valine and alanine residues. These residues are clustered at certain regions of the protein in domains that are not important for activity, as judged from lack of conservation and from previous studies with other Smr proteins. We suggest that this high content of alanine and valine residues is a reflection of a "natural" alanine and valine scanning necessitated by the high GC content of the gene. This phenomenon reveals significant sequence elements in small multidrug transporters.  相似文献   

6.
Helicobacter pylori, a human pathogen, is a naturally and constitutively competent bacteria, displaying a high rate of intergenomic recombination. While recombination events are essential for evolution and adaptation of H. pylori to dynamic gastric niches and new hosts, such events should be regulated tightly to maintain genomic integrity. Here, we analyze the role of the nuclease activity of MutS2, a protein that limits recombination during transformation in H. pylori. In previously studied MutS2 proteins, the C‐terminal Smr domain was mapped as the region responsible for its nuclease activity. We report here that deletion of Smr domain does not completely abolish the nuclease activity of HpMutS2. Using bioinformatics analysis and mutagenesis, we identified an additional and novel nuclease motif (LDLK) at the N‐terminus of HpMutS2 unique to Helicobacter and related ε‐proteobacterial species. A single point mutation (D30A) in the LDLK motif and the deletion of Smr domain resulted in ~ 5–10‐fold loss of DNA cleavage ability of HpMutS2. Interestingly, the mutant forms of HpMutS2 wherein the LDLK motif was mutated or the Smr domain was deleted were unable to complement the hyper‐recombination phenotype of a mutS2? strain, suggesting that both nuclease sites are indispensable for an efficient anti‐recombinase activity of HpMutS2.  相似文献   

7.
8.
9.
DNA mismatch repair (MMR) is responsible for correcting replication errors. MutLα, one of the main players in MMR, has been recently shown to harbor an endonuclease/metal-binding activity, which is important for its function in vivo. This endonuclease activity has been confined to the C-terminal domain of the hPMS2 subunit of the MutLα heterodimer. In this work, we identify a striking sequence-structure similarity of hPMS2 to the metal-binding/dimerization domain of the iron-dependent repressor protein family and present a structural model of the metal-binding domain of MutLα. According to our model, this domain of MutLα comprises at least three highly conserved sequence motifs, which are also present in most MutL homologs from bacteria that do not rely on the endonuclease activity of MutH for strand discrimination. Furthermore, based on our structural model, we predict that MutLα is a zinc ion binding protein and confirm this prediction by way of biochemical analysis of zinc ion binding using the full-length and C-terminal domain of MutLα. Finally, we demonstrate that the conserved residues of the metal ion binding domain are crucial for MMR activity of MutLα in vitro.  相似文献   

10.
A type II restriction endonuclease designated Sse8387I was partially purified from Streptomyces sp. 8387. This enzyme cleaved adenovirus 2 DNA at three sites, lambda phage DNA at five sites, and pUC18 and M13mp18 RF DNA at one site each, but did not cleave the DNAs from pBR322, SV40, or phi X174. Sse8387I recognized the octanucleotide sequence 5'-CCTGCA decreases GG-3', cleaving where shown by the arrow. Sse8387I is the first restriction endonuclease to be reported that recognizes an octanucleotide sequence consisting of all four nucleotides, G, A, T, and C. The frequency of occurrence of Sse8387I sites within sequenced regions of primate genomes was 2.4 times that of NotI sites.  相似文献   

11.
D Hu  M Crist  X Duan  F S Gimble 《Biochemistry》1999,38(39):12621-12628
The PI-SceI protein is a member of the LAGLIDADG family of homing endonucleases that is generated by a protein splicing reaction. PI-SceI has a bipartite domain structure, and the protein splicing and endonucleolytic reactions are catalyzed by residues in domains I and II, respectively. Structural and mutational evidence indicates that both domains mediate DNA binding. Treatment of the protein with trypsin breaks a peptide bond within a disordered region of the endonuclease domain situated between residues Val-270 and Leu-280 and interferes with the ability of this domain to bind DNA. To identify specific residues in this region that are involved in DNA binding and/or catalysis, alanine-scanning mutagenesis was used to create a set of PI-SceI mutant proteins that were assayed for activity. One of these mutants, N281A, was >300-fold less active than wild-type PI-SceI, and two other proteins, R277A and N284A, were completely inactive. These decreases in cleavage activity parallel similar decreases in substrate binding by the endonuclease domains of these mutant proteins. We mapped the approximate position of the disordered region to one of the ends of the 31 base pair PI-SceI recognition sequence using mutant proteins that were substituted with cysteine at residues Asn-274 and Glu-283 and tethered to the chemical nuclease FeBABE. These mutational and affinity cleavage data strongly support a model of PI-SceI docked to its DNA substrate that suggests that one or more residues identified here are responsible for contacting base pair A/T(-)(9), which is essential for substrate binding.  相似文献   

12.
Almost all pre-miRNAs in eukaryotic cytoplasm are recognized and processed into double-stranded microRNAs by the endonuclease Dicer protein comprising of multiple domains. As a key player in the small RNA induced gene silencing pathway, the major domains of Dicer are conserved among different species with the exception of the N-terminal components. Human Dicer’s N-terminal domain has been shown to play an autoinhibitory function of the protein’s dicing activity. Such an auto-inhibition can be released when the human Dicer protein dimerizes with its partner protein, such as TRBP, PACT through the N-terminal DExH/D (ATPase-helicase) domain. The typical feature of a pre-miRNA contains a terminal loop and a stem duplex, which bind to human Dicer’s DExH/D (ATPase-helicase) domain and PAZ domain respectively during the dicing reaction. Here, we show that pre-miRNA’s terminal loop can regulate human Dicer’s enzymatic activity by interacting with the DExH/D (ATPase-helicase) domain. We found that various editing products of pre-miR-151 by the ADAR1P110 protein, an A-to-I editing enzyme that modifies pre-miRNAs sequence, have different terminal loop structures and different activity regulatory effects on human Dicer. Single particle electron microscopy reconstruction revealed that pre-miRNAs with different terminal loop structures induce human Dicer’s DExH/D (ATPase-helicase) domain into different conformational states, in correlation with their activity regulatory effects.  相似文献   

13.
The intron-encoded proteins bI4 RNA maturase and aI4 DNA endonuclease can be faithfully expressed in yeast cytoplasm from engineered forms of their mitochondrial coding sequences. In this work we studied the relationships between these two activities associated with two homologous intron-encoded proteins: the bI4 RNA maturase encoded in the fourth intron of the cytochrome b gene and the aI4 DNA endonuclease (I-SceII) encoded in the fourth intron of the gene coding for the subunit I of cytochrome oxidase. Taking advantage of both the high recombinogenic properties of yeast and the similarities between the two genes, we constructed in vivo a family of hybrid genes carrying parts of both RNA maturase and DNA endonuclease coding sequences. The presence of a sequence coding for a mitochondrial targeting peptide upstream from these hybrid genes allowed us to study the properties of their translation products within the mitochondria in vivo. We thus could analyze the ability of the recombinant proteins to complement RNA maturase deficiencies in different strains. Many combinations of the two parental intronic sequences were found in the recombinants. Their structural and functional analysis revealed the following features. (i) The N-terminal half of the bI4 RNA maturase could be replaced in total by its equivalent from the aI4 DNA endonuclease without affecting the RNA maturase activity. In contrast, replacing the C-terminal half of the bI4 RNA maturase with its equivalent from the aI4 DNA endonuclease led to a very weak RNA maturase activity, indicating that this region is more differentiated and linked to the maturase activity. (ii) None of the hybrid proteins carrying an RNA maturase activity kept the DNA endonuclease activity, suggesting that the latter requires the integrity of the aI4 protein. These observations are interesting because the aI4 DNA endonuclease is known to promote the propagation, at the DNA level, of the aI4 intron, whereas the bI4 RNA maturase, which is required for the splicing of its coding intron, also controls the splicing process of the aI4 intron. We propose a scenario for the evolution of these intronic proteins that relies on a switch from DNA endonuclease to RNA maturase activity.  相似文献   

14.
A nuclease with novel activities has been isolated and purifiedto apparent homogeneity from pea chloroplasts. The enzyme preferssingle-stranded (ss) circular DNA; its activity being 1500-foldhigher with the ss circular DNA than with the linear double-strandedDNA substrates. The single-stranded DNase activity is stableat moderately high temperature (50 C) and inhibited in thepresence of 75 mM NaCl. It binds negatively supercoiled DNAin the stoichiometric fashion, but behaves catalytically onthe single-stranded circular DNA. Although the DNase activitydoes not recognize any specific nucleotide sequence, the co-operativemode of activity seems to be a novel one. The protein is a monomerof 35 kDa and binds with DNA predominantly through electrostaticinteractions. The drug distamycin blocks the endonuclease activitysuggesting that the protein binds at the minor groove of DNA.A RNase activity has also been found associated with the ss-DNAendonuclease. Key words: Pea, chloroplast, endonuclease  相似文献   

15.
A new type II restriction endonuclease designated FspAI has been partially purified from a Flexibacter species Tv-m21K. FspAI recognizes the octanucleotide sequence 5′-RTGC↓GCAY-3′ and cleaves it in the center generating blunt-ended DNA fragments.  相似文献   

16.
A method is described for the determination of nucleotide sequences in DNA by using specific oligonucleotides as primers for copying specific regions by DNA polymerase. The method was applied to bacteriophage f1 DNA using the synthetic octanucleotide A-C-C-A-T-C-C-A as primer and a sequence (sequence A) of 81 nueleotides was determined. Synthesis was carried out in the presence of manganese and with one of the deoxyribotriphosphates (dCTP or dGTP) replaced by the corresponding ribotriphosphate so that mixed oligonucleotides were found which could be specifically split at the ribonucleotide residues by the appropriate ribonuclease or by alkali. The relative order of the digestion products was determined by fractionating the undigested oligonucleotides according to size on a two-dimensional system and digesting the isolated products. In the presence of rGTP the octanucleotide appeared to prime at a second site giving rise to a second sequence (B) besides sequence A. The complementary sequence to sequence A, which corresponds to the plus strand of f1 DNA and to the messenger RNA, contains five nonsense codons, four of which are in the same phase, and two possible initiation codons. It also contains a repetitive sequence which suggests its evolutionary origin by duplication.  相似文献   

17.
Inteins possess two different enzymatic activities, self-catalyzed protein splicing and site-specific DNA cleavage. These endonucleases, which are classified as part of the homing endonuclease family, initiate the mobility of their genetic elements into homologous alleles. They recognize long asymmetric nucleotide sequences and cleave both DNA strands in a monomer form. We present here the 2.1 A crystal structure of the archaeal PI-PfuI intein from Pyroccocus furiosus. The structure reveals a unique domain, designated here as the Stirrup domain, which is inserted between the Hint domain and an endonuclease domain. The horseshoe-shaped Hint domain contains a catalytic center for protein splicing, which involves both N and C-terminal residues. The endonuclease domain, which is inserted into the Hint domain, consists of two copies of substructure related by an internal pseudo 2-fold axis. In contrast with the I-CreI homing endonuclease, PI-PfuI possibly has two asymmetric catalytic sites at the center of a putative DNA-binding cleft formed by a pair of four-stranded beta-sheets. DNase I footprinting experiments showed that PI-PfuI covers more than 30 bp of the substrate asymmetrically across the cleavage site. A docking model of the DNA-enzyme complex suggests that the endonuclease domain covers the 20 bp DNA duplex encompassing the cleavage site, whereas the Stirrup domain could make an additional contact with another upstream 10 bp region. For the double-strand break, the two strands in the DNA duplex were cleaved by PI-PfuI with different efficiencies. We suggest that the cleavage of each strand is catalyzed by each of the two non-equivalent active sites.  相似文献   

18.
19.
20.
The restriction endonuclease EcoRII requires the cooperative interaction with two copies of the sequence 5'CCWGG for DNA cleavage. We found by limited proteolysis that EcoRII has a two-domain structure that enables this particular mode of protein-DNA interaction. The C-terminal domain is a new restriction endonuclease, EcoRII-C. In contrast to the wild-type enzyme, EcoRII-C cleaves DNA specifically at single 5'CCWGG sites. Moreover, substrates containing two or more cooperative 5'CCWGG sites are cleaved much more efficiently by EcoRII-C than by EcoRII. The N-terminal domain binds DNA specifically and attenuates the activity of EcoRII by making the enzyme dependent on a second 5'CCWGG site. Therefore, we suggest that a precursor EcoRII endonuclease acquired an additional DNA-binding domain to enable the interaction with two 5'CCWGG sites. The current EcoRII molecule could be an evolutionary intermediate between a site-specific endonuclease and a protein that functions specifically with two DNA sites such as recombinases and transposases. The combination of these functions may enable EcoRII to accomplish its own propagation similarly to transposons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号