首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Phosphatidylinositol 3-kinase (PI3K) has numerous cellular functions, including cell survival and proliferation. In this study, we demonstrated that the expression of the active form of PI3K induced dorsal differentiation and axis duplication and strongly induced the expression of neural markers. In contrast, the inhibition of PI3K activity by its dominant negative mutant induced the phenotype of losing posterior structures and the expression of ventral markers. Akt is an essential target of PI3K for neurogenesis. The expression of the active form of Akt induced axis duplication and increased the expression of neural markers. Inhibition of the Akt activity abolished the PI3K-induced double heads and axes. This signal transmits through its target, glycogen synthase kinase 3beta, which is known to mediate Wnt signaling for Xenopus development. These results identify a new function of PI3K/Akt signaling in axis formation and neurogenesis during Xenopus embryonic development and provide a direct link between growth factor-mediated PI3K/Akt signaling and Wnt signaling during embryonic development.  相似文献   

2.
3.
Trypanosomatid flagellum biogenesis: ARL-3A is involved in several species   总被引:3,自引:0,他引:3  
Overexpression in Leishmania amazonensis promastigotes of the GTPase-deficient small G protein LdARL-3A-Q70L specifically provokes the loss of the flagella without affecting cell viability and body size. However, motility is lost and, remarkably, cells do not survive in the insect vector Lutzomyia longipalpis gut, leading to interruption of parasite transmission. We report here that overexpression of the same protein in Leishmania major, Leishmania donovani, and Crithidia fasciculata also led to significant alterations of the flagella. Surprisingly, ablation of TbARL-3A expression by RNAi in Trypanosoma brucei brucei also provoked flagella shortening, revealing that overexpression of the GTPase-deficient protein seems functionally equivalent to a drastic reduction in its native counterpart abundance. This renders possible complementary studies of an essential pathway in related organisms. Potential significance for the protein function is discussed as well as future strategies for stopping the transmission of several neglected parasitic diseases.  相似文献   

4.
Prohibitin, which consists of two subunits PHB1 and PHB2, plays a role in cell-cycle progression, senescence, apoptosis, and maintenance of mitochondrial function in mammals and yeast. In this study, we examined the role of prohibitins in plants by using virus-induced gene silencing (VIGS) of two prohibitin subunit genes of Nicotiana benthamiana, designated NbPHB1 and NbPHB2. NbPHB1 and NbPHB2 were targeted to the mitochondria, and their gene expression was suppressed during senescence. VIGS of NbPHB2 caused severe growth inhibition, leaf yellowing and symptoms of cell death, whereas VIGS of NbPHB1 resulted in a milder phenotype. At the cellular level, depletion of these subunits affected mitochondria by severely reducing their number and/or mass, and by causing morphological and physiological abnormalities. Suppression of prohibitin function resulted in a 10- to 20-fold higher production of reactive oxygen species and induced premature leaf senescence. Finally, disruption of prohibitin function rendered the plants more susceptible to various oxidative stress-inducing reagents, including H(2)O(2), paraquat, antimycin A and salicylic acid. These results suggest that prohibitins play a crucial role in mitochondrial biogenesis and protection against stress and senescence in plant cells.  相似文献   

5.
6.
Prostaglandin E(2) (PGE(2)) plays an important role in the regulation of duodenal bicarbonate (HCO(3)(-)) secretion, but its signaling pathway(s) are not fully understood. In the present study, we investigated the signaling pathways involved in PGE(2)-mediated duodenal HCO(3)(-) secretion. Murine duodenal mucosal HCO(3)(-) secretion was examined in vitro in Ussing chambers by pH-stat titration in the presence of a variety of signal transduction modulators. Phosphatidylinositol 3-kinase (PI3K) activity was measured by immunoprecipitation of PI3K and ELISA, and Akt phosphorylation was measured by Western analysis with anti-phospho-Akt and anti-Akt antibodies. PGE(2)-stimulated duodenal HCO(3)(-) secretion was reduced by the cAMP-dependent signaling pathway inhibitors MDL-12330A and KT-5720 by 23% and 20%, respectively; the Ca(2+)-influx inhibitor verapamil by 26%; and the calmodulin antagonist W-13 by 24%; whereas the PI3K inhibitors wortmannin and LY-294002 reduced PGE(2)-stimulated HCO(3)(-) secretion by 51% and 47%, respectively. Neither the MAPK inhibitor PD-98059 nor the tyrosine kinase inhibitor genistein altered PGE(2)-stimulated HCO(3)(-) secretion. PGE(2) application caused a rapid and concentration-dependent increase in duodenal mucosal PI3K activity and Akt phosphorylation. These results demonstrated that PGE(2) activates PI3K in duodenal mucosa and stimulates duodenal HCO(3)(-) secretion via cAMP-, Ca(2+)-, and PI3K-dependent signaling pathways.  相似文献   

7.
8.
Proton pumps participate in several aspects of endocytic protein trafficking. However, their involvement specifically in the GLUT4 pathway has been a matter of great controversy. Here, we report that incubation of 3T3-L1 adipocytes with specific inhibitors of V-type ATPase, concanamycin A and bafilomycin A1, inhibits insulin-regulated glucose transport and results in accumulation of GLUT4 in heavy, rapidly sedimenting intracellular membranes. Correspondingly, the amount of small responsive GLUT4 vesicles in concanamycin A- and bafilomycin A1-treated cells is decreased. We conclude that these drugs block translocation of GLUT4 in adipose cells by inhibiting formation of small insulin-responsive vesicles on donor intracellular membranes. At the same time, proton pump inhibitors do not affect insulin-dependent translocation of preexisting vesicles or GLUT4 sorting in recycling endosomes. On the contrary, wortmannin acutely inhibits insulin-dependent translocation of the preexisting vesicles but has no effect on vesicle formation.  相似文献   

9.
A SecY homologue is involved in chloroplast-encoded D1 protein biogenesis   总被引:12,自引:0,他引:12  
We have used the photosystem II reaction center D1 protein as a model to study the mechanisms of targeting and insertion of chloroplast-encoded thylakoid membrane proteins. The unusually high turnover rate and distinct pausing intermediates during translation make the D1 protein biogenesis particularly suitable for these purposes. Here we show that cpSecY, a chloroplast homologue of bacterial essential translocon component SecY, interacts tightly with thylakoid membrane-bound ribosomes, suggesting its involvement in protein translocation and insertion. Co-immunoprecipitation and cross-linking experiments indicated that cpSecY resides in the vicinity of D1 elongation intermediates and provided evidence for a transient interaction of cpSecY with D1 elongation intermediates during the biogenesis of D1. After termination of translation, such interactions no longer existed. Our results indicate that, in addition to a well characterized role of cpSecY in posttranslational translocation of nuclear-encoded proteins, it seems to be also involved in cotranslational membrane protein translocation and insertion in chloroplasts.  相似文献   

10.
Gastric vesicles purified from acid-secreting rabbit stomach display K(+) permeability manifested by the valinomycin-independent proton pumping of H(+)-K(+)-ATPase as monitored by acridine orange quenching. This apparent K(+) permeability is attenuated by the treatment of the membrane with 5 mM Mg(2+), and this phenomenon has been attributed to membrane-bound phosphoprotein phosphatase. However, with the exception of the nonspecific inhibitor pyrophosphate, protein phosphatase inhibitors failed to inhibit the loss of K(+) permeability. Preincubation of the membrane with neomycin, a phospholipase C inhibitor, surrogated the effect of Mg(2+), whereas another inhibitor, U-73122, did not. Phosphatidylinositol 4,5-bisphosphate (PIP(2)) restored the attenuated K(+) permeability by treatment with either Mg(2+) or neomycin. Furthermore, either phosphatidylinositol bound to phosphatidylinositol transfer protein or phosphatidylinositol 4,5,6-trisphosphate (PIP(3)) surrogated the effect of PIP(2). Mg(2+) and neomycin reduced K(+) permeability in the membrane as determined by Rb(+) influx and K(+)-dependent H(+) diffusion. Treatment with Mg(2+) reduced the contents of PIP(2) and PIP(3) in the membrane. These results suggest that PIP(2) and/or PIP(3) maintain K(+) permeability, which is essential for proton pumping in the apical membrane of the secreting parietal cell.  相似文献   

11.
TGF-beta is implicated in the pathogenesis of fibrotic disorders. It has been shown that Smad3 promotes the human alpha2(I) collagen (COL1A2) gene expression by TGF-beta1 in human dermal fibroblasts. Here, we investigated the role of phosphatidylinositol 3-kinase (PI3K) in the COL1A2 gene expression in normal and scleroderma fibroblasts. In normal fibroblasts, the PI3K inhibitor, LY294002, significantly decreased the basal and the TGF-beta1-induced increased stability of COL1A2 mRNA. The TGF-beta1-induced COL1A2 promoter activity, but not the basal activity, was significantly attenuated by LY294002 or the dominant negative mutant of p85 subunit of PI3K, while the constitutive active mutant of p110 subunit of PI3K did not affect the basal or the TGF-beta1-induced COL1A2 promoter activity. LY294002 significantly decreased the phosphorylation of Smad3 induced by TGF-beta1. Furthermore, the transient overexpression of 2xFYVE, which induces the mislocalization of FYVE domain proteins, decreased the TGF-beta1-induced Smad3 phosphorylation to a similar extent to LY294002. In scleroderma fibroblasts, the blockade of PI3K significantly decreased the mRNA stability and the promoter activity of the COL1A2 gene. Furthermore, LY294002 and the transient overexpression of 2xFYVE completely diminished the constitutive phosphorylation of Smad3. These results indicate that 1) the basal activity of PI3K is necessary for the COL1A2 mRNA stabilization in normal and scleroderma fibroblasts, 2) there is an unidentified FYVE domain protein specifically interacting with Smad3, and 3) the basal activity of PI3K and the FYVE domain protein are indispensable for the efficient TGF-beta/Smad3 signaling in normal fibroblasts and for the establishment of the constitutive activation of TGF-beta/Smad3 signaling in scleroderma fibroblasts.  相似文献   

12.
1. We analyzed the mode of attachment of 16 S tailed acetylcholinesterase (AChE; EC 3.1.1.7) to rat superior cervical ganglion (SCG) neuronal membranes. Using extractions by high-salt (HS) and nonionic detergent (Triton X-100), we found two pools of 16 S AChE. 2. The detergent-extracted (DE) 16 S AChE was tightly bound to membranes through detergent-sensitive, high-salt insensitive interactions and was distinct from high-salt-soluble 16 S AChE. The detergent-extracted (DE) 16 S AChE constituted a significant proportion of about one-third of the total 16 S AChE. 3. Treatment of the neuronal membranes by a phosphatidylinositol-specific phospholipase C (PIPLC) resulted in the release of some, but not all DE 16 S AChE, indicating that a significant amount of the neuronal DE 16 S AChE, about one-third, is anchored to membranes through a phosphatidylinositol containing residue. Thus, a covalent association of a glycolipid and catalytic or structural AChE polypeptidic chains occurs not only for dimeric AChE but also for the asymmetric species of AChE. 4. The complex polymorphism of AChE is due not only to different globular or asymmetric associations of catalytic and structural subunits but also to the alternative existence of a transmembrane domain or a glycolipid membrane anchor.  相似文献   

13.
Phagocytic cells such as neutrophils and macrophages engulf and destroy invading microorganisms. After internalization, material captured within the phagosomal membrane is destroyed by a complex process of coordinated delivery of digestive enzymes and reactive oxygen species. Several endosomal, lysosomal, and oxidase components expected to participate in these events have recently been shown to bind PtdIns3P, suggesting that this lipid may play a role in this process. We used live, digital fluorescence imaging of RAW 264.7 cells stably expressing either a PtdIns3P binding GFP-PX domain or a GFP-FYVE domain to visualize changes in the levels and subcellular localization of PtdIns3P during phagocytic uptake of IgG-opsonized zymosan particles. Very similar results were obtained using both PtdIns3P probes. The basal distribution of each PtdIns3P probe was partially cytosolic and partially localized to EEA-1-positive endosomal structures. Within about 2-3 min of zymosan attachment and concomitant with the closure of the phagosomal membrane, GFP-positive vesicles moved toward and attached to a localized area of the phagosome. A dramatic, transient accumulation of GFP probe around the entire phagosome rapidly ensued, accompanied by a transient drop in cytosolic GFP fluorescence. The magnitude and timing of this rise in PtdIns3P clearly suggest that it is an ideal candidate for controlling the early stages of phagosomal maturation.  相似文献   

14.
Autotransporters (ATs) constitute an important family of virulence factors secreted by Gram-negative bacteria. Following their translocation across the inner membrane (IM), ATs temporarily reside in the periplasmic space after which they are secreted into the extracellular environment. Previous studies have shown that the AT hemoglobin protease (Hbp) of Escherichia coli requires a functional signal recognition particle pathway and Sec translocon for optimal targeting to and translocation across the IM. Here, we analyzed the mode of IM translocation of Hbp in more detail. Using site-directed photocross-linking, we found that the Hbp signal peptide is adjacent to YidC early during biogenesis. Notably, YidC is in part associated with the Sec translocon but has until now primarily been implicated in the biogenesis of IM proteins. In vivo, YidC appeared critical for the biogenesis of the ATs Hbp and EspC. For Hbp, depletion of YidC resulted in the formation of secretion-incompetent intermediates that were sensitive to degradation by the periplasmic protease DegP, indicating that YidC activity affects Hbp biogenesis at a late stage, after translocation across the IM. This is the first demonstration of a role for YidC in the biogenesis of an extracellular protein. We propose that YidC is required for maintenance of the translocation-competent state of certain ATs in the periplasm. The large periplasmic domain of YidC is not critical for this novel functionality as it can be deleted without affecting Hbp biogenesis.  相似文献   

15.
16.
Ribosomal subunit protein 9 (rps9) is a nuclearly encoded protein that resides in the apicoplast organelle of Toxoplasma gondii. Two cis-acting regions within the rps9 transit domain (amino acids 38-49 and 79-86), when combined with the rps9 signal sequence, were necessary and sufficient for apicoplast targeting. To investigate proteins interacting with the rps9 leader sequence, parasites expressing rps9 leader constructs fused to a glutathione S-transferase (GST) reporter were prepared, and proteins associated with the leader constructs were purified from extracts by affinity chromatography. In addition to GST-containing peptides, proteins with apparent masses of 92, 90, 86, and 160 kDa were purified. Mass spectrometry data suggested that the 92- and 90-kDa polypeptides appear to be subtilisin-like proteins, whereas the 86-kDa polypeptide was identified as the molecular chaperone BiP of T. gondii.  相似文献   

17.
18.
Phosphatidylinositol 3-phosphate [PI(3)P] is a phosphatidylinositol 3-kinase product whose localisation is restricted to the limiting membranes of early endosomes and to the internal vesicles of multivesicular bodies. In this study the intracellular distribution of PI(3)P was compared with those of another phosphoinositide and a number of endosomal proteins. Using a 2xFYVE probe specific for PI(3)P we found that PI(3)P is present in microdomains within the endosome membrane, whereas a phosphoinositide required for clathrin-mediated endocytosis, PI(4,5)P2, was only detected at the plasma membrane. The small GTPase Rab5 as well as the PI(3)P-binding proteins EEA1, SARA and CISK were found to be abundant within PI(3)P-containing endosomal microdomains. In contrast, another PI(3)P-binding protein, Hrs, was found concentrated in clathrin-coated endosomal microdomains with low levels of PI(3)P. While PI(3)P-containing microdomains could be readily distinguished on enlarged endosomes in cells transfected with a constitutively active Rab5 mutant, such domains could also be detected in endosomes of non-transfected cells. We conclude that the membranes of early endosomes consist of microdomains in which PI(3)P and specific proteins are concentrated. These microdomains may be necessary for the assembly of distinct multimolecular complexes that specify organelle identity, membrane trafficking and receptor signalling.David J. Gillooly and Camilla Raiborg contributed equally  相似文献   

19.
The cellular functions, regulation and enzymology of phosphatidylinositol (PtdIns) 5-P, the newest addition to the family of phosphoinositides (PI), are still elusive. Whereas a kinase that uses PtdIns-5-P as an intracellular substrate has been assigned, a kinase that produces it remained to be identified. Here we report that PIKfyve, the enzyme found to synthesize PtdIns-5-P in vitro and PtdIns-3,5-P(2) in vitro and in vivo, is responsible for PtdIns-5-P production in a cellular context. Evidence is based on examination of two groups of cell types by two independent approaches. First, [(32)P]orthophosphate-labeled cells (Sf9, 3T3-L1 fibroblasts, and 3T3-L1 adipocytes) that show a high pressure liquid chromatography (HPLC)-detectable peak of the PtdIns-5-P head group at basal conditions demonstrated a 20-50% increase in radioactive PtdIns-5-P amounts upon expression of PIKfyve(WT). Second, cell types (HEK293), in which the basal levels of radioactive PtdIns-5-P were undetectable by HPLC head group analysis, demonstrated higher in vitro type II PIP kinase-directed conversion of the endogenous PtdIns-5-P pool into PtdIns-4,5-P(2), when induced to express PIKfyve(WT). Conversely, a decrease by 60% in the conversion of PtdIns-5-P to PtdIns-4,5-P(2) was associated with induced expression of the dominant-negative kinase-deficient PIKfyve(K1831E) mutant in HEK293 cells. When 3T3-L1 fibroblasts and 3T3-L1 adipocytes were subjected to osmotic shock, levels of PtdIns-5-P measured by both approaches were found to decrease profoundly upon a hypo-osmotic stimulus. Together, these results identify PIKfyve as an enzyme responsible for PtdIns-5-P biosynthesis and indicate a role for PtdIns-5-P in osmotic response pathways in mammalian cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号