首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photoeffect of new proflavine derivatives with DNA-binding and antitumour activities, 3,6-bis((1-alkyl-5-oxo-imidazolidin-2-yliden)imino)acridine hydrochlorides (AcrDIMs), was studied to evaluate them as potential photosensitizers for photodynamic antitumor therapy. EPR measurements showed that superoxide radical anion and singlet oxygen were produced upon irradiation of AcrDIMs with UV-A light (>300 nm) in the presence of molecular oxygen. This indicates that AcrDIMs may act as photosensitizers. The most active pentyl-AcrDIM and hexyl-AcrDIM displayed photocytotoxic effect toward the mouse lymphocytic leukemia cell line L1210 and human ovarian cancer cells A2780. Antitumor activity of pentyl-AcrDIM increased as high as about 12 times (72 h incubation) after irradiation of A2780 cells (365 nm, 1.05 J/cm2). The photocytotoxicity seems to be associated with oxidative stress. Concerning the cell cycle, flow cytometry showed an arrest in the S-phase already 4 h after irradiation. In a comet assay, no genotoxicity of AcrDIMs was found. Typical morphologic changes and formation of DNA-ladders indicated induction of apoptotic cell death, though no activation of caspase-3 was observed. Investigation of intracellular localization of pentyl-AcrDIM confirmed its partial accumulation in mitochondria and lysosomes. After irradiation of the A2780 cells, colocalization of pentyl-AcrDIM with monodansylcadaverine, a lysosomal dye, was proven, suggesting that lysosomes in the irradiated cells may be involved in the cell death.  相似文献   

2.
The synthesis of novel 1',1'-(acridin-3,6-diyl)-3',3'-dialkyldiureas was reported. Their biological activity to inhibit cell proliferation was assessed by a MTT assay on two cell lines, HeLa and HCT-116, at micromolar concentration. 1',1'-(Acridin-3,6-diyl)-3',3'-dihexyldiurea hydrochloride was active on a HCT-116 cell line with an IC(50) value of 3.1 microM. The interaction of these compounds with calf thymus DNA was investigated by a variety of spectroscopic techniques including UV-vis, fluorescence and CD spectroscopy. From spectrofluorimetric titrations, binding constants for the DNA-drug complexes were determined (K=0.9-4.2x10(5) M(-1)). Antiproliferative activity of synthesized derivatives might be related to their intercalation into DNA.  相似文献   

3.
The identification of a novel hit compound as integrase binding inhibitor has been accomplished by means of virtual screening techniques. A small family of structurally related molecules has been synthesized and biologically evaluated with one of the compounds showing an IC(50)=12 microM.  相似文献   

4.
DNA cleavage activity of quercetin zinc(II) complex has been studied, but little attention has been devoted to the relationship between antitumor activity of this complex and DNA-binding properties. DNA-binding properties of quercetin zinc(II) complex were studied using UV–vis spectra, fluorescence measurements, and viscosity measurements. The results obtained indicate that quercetin zinc(II) complex can intercalate into the stacked base pairs of DNA, and compete with the strong intercalator ethidium bromide for the intercalative binding sites with Stern–Volmer quenching constant, Ksq = 1.24. The complex was subjected to biological tests in vitro using three tumor cell lines (HepG2, SMMC7721, and A549), which showed significant cytotoxicity against three tumor cell lines. Moreover, Hoechst33258 staining showed HepG2 cells underwent the typical morphologic changes of apoptosis characterized by nuclear shrinkage, chromatin condensation, or fragmentation after exposure to the complex. In addition, Molecular modeling was performed to learn the complex could be preferentially bound to DNA in GC region. Our results suggest that antitumor activity of quercetin zinc(II) complex might be related to its intercalation into DNA.  相似文献   

5.
Homocamptothecins (hCPTs) represent a class of new emerging antitumor agents, which contains a seven-membered beta-hydroxylactone in place of the conventional six-membered alpha-hydroxylactone ring (E ring) of camptothecins. Some novel 7-substituted hCPTs were designed and synthesized based on a newly developed synthetic route which couples ring A with ring C, E and D. Most of the synthesized compounds exhibit very high cytotoxic activity on tumor cell line A549. Some compounds, such as 9b, 9l, and 9y, show broad in vitro antitumor spectrum and are more potent than topotecan. Three-dimensional quantitative structure-activity relationship (3D-QSAR) methods, CoMFA and CoMSIA, were applied to explain the structure-activity relationship (SAR) of the synthesized compounds. Furthermore, molecular docking was used to clarify the binding mode of the synthesized compounds to human DNA topoisomerase I. The important hydrophobic, base-pair stacking, and hydrogen-bonding interactions were observed between the hCPT derivatives and their receptor. The results from molecular modeling will guide the design of novel hCPTs with higher antitumor activity.  相似文献   

6.
Both trans- and cis-[PtCl2(NH3)(L)] compounds have been synthesized, L representing either the imino ether HN=C(OMe)Me having a Z or E configuration at the C=N double bond, or the cyclic ligands and (compounds 14 for trans geometry and 58 for cis geometry, respectively). The cyclic ligands mimic the imino ether ligands but, differently from imino ethers, cannot undergo change of configuration. In a panel of human tumor cells, trans compounds inhibit growth much more than transplatin. Moreover, compound 1 in most cases is less active than 2, and 1 and 2 are less active than 3 and 4, respectively. For cis compounds with imino ethers, the activity is reduced (5) or unaffected (6) with respect to cisplatin. Moreover, unlike trans compounds, substitution of cyclic ligands (7, 8) for imino ethers (5, 6) generally decreases the activity. This determines, for compounds with cyclic ligands, an unusual inversion of the cis geometry requirement for activity of platinum(II) species. Importantly, 14 and 58 partially circumvent the multifocal cisplatin resistance of A2780cisR cells, and 14 also overcome resistance from reduced uptake of 41McisR cells. DNA interaction regioselectivity of 14 and 58 is not substantially modified with respect to transplatin and cisplatin. However, both imino ethers and cyclic ligands slow down the DNA interstrand cross-link reaction, (E)-HN=C(OMe)Me and decreasing also its extent. Therefore, DNA interaction of 14 and 58 appears to be characterized by persistent monoadducts (14), and by monoadducts and/or intrastrand cross-links structurally different from those of cisplatin (58). This study demonstrates that ligand configuration modulates the activity of both trans and cis compounds, and supports the development of platinum drugs based on their coordination chemistry to combat cisplatin resistance.F.P. Intini and A. Boccarelli contributed equally to this work  相似文献   

7.
In continuing our research efforts for developing new oligodeoxynucleotide (ODN)-like drugs and diagnostics, we designed diaminobutyric peptide nucleic acids (dabPNAs), nucleopeptides characterized by a diaminobutyric-based building block that is an isomer of the aminoethylglycyl PNA (aegPNA) unit and the acyclic modification of the aminoprolyl PNA (ampPNA) monomer. In this work we present the solid phase synthesis of a dabPNA oligomer and of two aegPNAs containing a single dabPNA unit. A study relative to their binding ability towards DNA is also reported even in comparison with the well known aegPNAs.  相似文献   

8.
In our ongoing program aimed at the design, synthesis, and biological evaluation of novel cannabinoid receptor ligands derived from olivetol and hexyl-resorcinol, we have designed a structural model for new derivatives on the basis of a previous study. Here we report the synthesis, binding, and molecular modeling studies of new potent compounds with high affinity toward CB(1) and CB(2) receptors. Compounds with amidic 'heads' with alkyloxy chains varying in length from 8 to 12 carbon atoms showed nanomolar affinity for both receptors, depending on the type of aromatic backbone. Two of the new compounds, although not very potent, exhibit selectivity for CB(1) receptors (CB(1)/CB(2)=0.07 and 0.08, respectively). Molecular modeling studies fitted this new class of cannabinoid ligands into a CB(1) receptor model, and the qualitative analysis of the results was in general agreement with the CB(1) affinity constants observed experimentally for these derivatives.  相似文献   

9.
A new series of pyrazole derivatives was prepared in this work, including pyrazolopyrimidines, pyrazolotriazines, pyrazolylthienopyridines, and 2-(pyrazolylamino)thiazol-4-ones, utilizing 3-amino-5-methyl-1H-pyrazole as a synthetic precursor. Their in vitro anticancer activity was tested on hepatocellular carcinoma cell line, HepG2. The results revealed that the pyrazolylhydrazonoyl cyanide 8, the pyrazolopyrimidine 3, and the pyrazolylaminothiazolone 17 were the most active with IC50 values of 2, 7, and 7 µM respectively in comparison with 5.5 µM for cisplatin as a reference drug. Interestingly, all the synthesized compounds showed higher selectivity index than cisplatin. DNA binding assay was also carried out for the synthesized compounds to rationalize their mechanism of action. Molecular modeling studies, including docking into DNA minor groove, flexible alignment, and surface mapping, were conducted. Results obtained proved the superior DNA-binding affinity of the most active anticancer compounds.  相似文献   

10.
Disaccharide mimetics of a heparin sequence that binds to fibroblast growth factors were prepared by coupling a D-galactose donor with a methyl beta-D-gluco- or xylopyranoside acceptor. When fully sulfated, the glucose or xylose moieties exist in solution in equilibrium between the (4)C1 and (1)C4 conformers, as confirmed by 1H NMR spectroscopy, thus mimicking the conformationally flexible L-iduronic acid found in heparin. Docking calculations showed that the predicted locations of disaccharide sulfo groups in the binding site of FGF-1 are consistent with the positions observed for co-crystallized heparin-derived oligosaccharides. Predicted binding affinities are in accord with experimental Kd values obtained from binding assays and are similar to the predicted values for a model heparin disaccharide.  相似文献   

11.
Two series of 1,4-bis(2-amino-ethylamino)anthraquinone-amino acid conjugates (BACs), ametantrone (AT)-amino acid conjugates (AACs) and mitoxantrone (MX)-amino acid conjugates (MACs), were designed and synthesized. The DNA binding of BACs was evaluated by DNA thermal denaturation experiment. In the series, the methionine-substituted BACs had the weakest DNA binding, while the lysine-substituted BACs had the highest T(m) values. The abilities of BACs to inhibit the growth of MCF-7, NCI-H460, SF-268, and PC-3 cell lines were determined. l-Met-MAC 16 and l-Lys-MAC 20 were the most potent growth inhibitors. MAC 16 was more cytotoxic than MX, whereas the T(m) of MAC 16 was much lower than that of MX. In contrast to MAC 16, l-Lys-MAC 20 demonstrated higher T(m) than MX. These data suggested that Met-BACs possessed a different pharmacological profile, in which the ability to stabilize DNA is not parallel to the ability to kill cancer cells, from that of AT and MX. The primary mechanism of cytotoxicity for MAC 16 was most likely through TOP2 poisoning. Therefore, MAC 16 may provide a lead for the development of novel generations of anthraquinone-type antitumor agents.  相似文献   

12.
AM1 semi-empirical and ab initio calculations were performed on certain synthetic polyamide conjugates of the aglycone of the minor groove binding antibiotic calicheamicin. Geometry optimized conformations and heats of formation were obtained. The binding of the optimized conformations of the drug to both alternating and non-alternating (AT)n and to (G)n x (C)n sequences were studied and the energies of binding were compared to each other. The results can be utilized in the design of novel enediyne-based drugs.  相似文献   

13.
Proudfoot EM  Mackay JP  Karuso P 《Biochemistry》2001,40(15):4867-4878
The molecular recognition of oligonucleotides by chiral ruthenium complexes has been probed by NMR spectroscopy using the template Delta-cis-alpha- and Delta-cis-beta-[Ru(RR-picchxnMe(2)) (bidentate)](2+), where the bidentate ligand is one of phen (1,10-phenanthroline), dpq (dipyrido[3,2-f:2',3'-h]quinoxaline), or phi (9,10-phenanthrenequinone diimine) and picchxnMe(2)() is N,N'-dimethyl-N,N'-di(2-picolyl)-1,2-diaminocyclohexane. By varying only the bidentate ligand in a series of complexes, it was shown that the bidentate alone can alter binding modes. DNA binding studies of the Delta-cis-alpha-[Ru(RR-picchxnMe(2))(phen)](2+) complex indicate fast exchange kinetics on the chemical shift time scale and a "partial intercalation" mode of binding. This complex binds to [d(CGCGATCGCG)](2) and [d(ATATCGATAT)](2) at AT, TA, and GA sites from the minor groove, as well as to the ends of the oligonucleotide at low temperature. Studies of the Delta-cis-beta-[Ru(RR-picchxnMe(2))(phen)](2+) complex with [d(CGCGATCGCG)](2) showed that the complex binds only weakly to the ends of the oligonucleotide. The interaction of Delta-cis-alpha-[Ru(RR-picchxnMe(2))(dpq)](2+) with [d(CGCGATCGCG)](2) showed intermediate exchange kinetics and evidence of minor groove intercalation at the GA base step. In contrast to the phen and dpq complexes, Delta-cis-alpha- and Delta-cis-beta-[Ru(RR-picchxnMe(2))(phi)](2+) showed evidence of major groove binding independent of the metal ion configuration. DNA stabilization induced by complex binding to [d(CGCGATCGCG)](2) (measured as DeltaT(m)) increases in the order phen < dpq and DNA affinity in the order phen < dpq < phi. The groove binding preferences exhibited by the different bidentate ligands is explained with the aid of molecular modeling experiments.  相似文献   

14.
Four new platinum(II) complexes: PtII L1·H2O (C1, H2 L1 = C20H16N2O2), PtII L2Cl2 (C2, L2 = C22H16N2O2), PtII L3Cl2·H2O (C3, L3 = C20H16N2), PtII L4Cl2·0.4H2O (C4, L4 = C18H14N4) have been synthesized and characterized by using various physico-chemical techniques. The binding interaction of the four platinum(II) complexes C1C4 with calf thymus (CT)-DNA has been investigated by UV–Vis and fluorescence emission spectrometry. The apparent binding constant (K app) values follow the order: C3 > C1 > C2 > C4. In addition, fluorescence spectrometry of bovine serum albumin (BSA) with the four platinum(II) complexes C1C4 showed that the quenching mechanism might be a static quenching procedure. For C1C4, the number of binding sites was about one for BSA and the binding constants follow the order: C3 (7.08 × 105M?1) > C1 (2.82 × 105M?1) > C2 (0.85 × 105M?1) > C4 (0.15 × 105M?1). With the single condition change such as absence of an external agent, the DNA cleavage abilities of C3 exhibit remarkable changes. In addition, the cytotoxicity of C3 in vitro on tumor cells lines (MCF-7, HepG2 and HT29) were examined by MTT and showed better antitumor effects on the tested cells.  相似文献   

15.
Abstract

The present paper deals with the synthesis of novel macrocyclic complexes of the type [MLX]X, where [(M?=?Co(II) (1), and Ni(II) (2) X?=?(Cl2)]. The complexes are synthesized by the reaction of ligand(L)diquinolineno[1,3,7,9]tetraazacyclododecine-7,15-ethane(14H,16H)-benzene with the corresponding metal salts. The synthesized complexes are thoroughly characterized by elemental analysis, FT-IR, 1H-NMR, Mass and electronic spectra. The complexes (1) and (2) were evaluated for in vitro cytotoxicity against human breast adenocarcinoma cell (MCF-7). MTT cytotoxicity studies shows both the complexes are most effective. The binding properties of these complexes with calf thymus-DNA were studied by absorption, emission spectra, viscosity measurements, and thermal denaturation studies. On binding to CT-DNA, the absorption spectrum undergoes bathochromic and hypochromic shifts. The absorption spectral results indicate that the intrinsic binding constant (Kb) are 4.8?×?105?M?1 for (1) and 3.9?×?105?M?1 for (2) respectively, suggesting that complex (1) binds more strongly to CT-DNA than complex (2). The viscosity measurement results revealed the viscosity of sonicated rod like DNA fragments increased when the complex was added to the solution of CT-DNA. The synthesized ligand and its metal complexes are screened for antibacterial and antifungal activities.  相似文献   

16.
A series of novel 2-hydroxyphenyl substituted aminoacetamides was designed by molecular hybridization of the aminoacetamide scaffold and 2-hydroxyphenyl motif. The target compounds were synthesized and their fungicidal activities were evaluated. Some of the target compounds showed excellent antifungal activities against S. sclerotiorum and P. capsici. Significantly, compounds 5e displayed the most potent activity against S. sclerotiorum with EC50 = 2.89 µg/mL, which was lower than that of commercial chlorothalonil. The systematic studies provided strong confidence that the hydroxyl group and the carbonyl group are crucial for the fungicidal activity. Molecular docking studies suggest that SDH enzyme could be one of the potential action targets of our compounds.  相似文献   

17.
A small family of S-DABO cytosine analogs (S-DABOCs) has been synthesized and biologically evaluated as HIV-1 inhibitor both on wild type (wt) and drug-resistant mutants leading to the identification of an interesting compound (5d). Molecular modeling studies have been finally performed in order to rationalize the results.  相似文献   

18.
Abstract

Two nickel(II) complexes with substituted bipyridine ligand of the type [Ni(NN)3](ClO4)2, where NN is 4,4′-dimethyl-2,2′-bipyridine (dimethylbpy) (1) and 4,4′-dimethoxy-2,2′-bipyridine (dimethoxybpy) (2), have been synthesized, characterized, and their interaction with DNA and bovine serum albumin (BSA) studied by different physical methods. X-ray crystal structure of 1 shows a six-coordinate complex in a distorted octahedral geometry. DNA-binding studies of 1 and 2 reveal that both complexes sit in DNA groove and then interact with neighboring nucleotides differently; 2 undergoes a partial intercalation. This is supported by molecular-docking studies, where hydrophobic interactions are apparent between 1 and DNA as compared to hydrogen bonding, hydrophobic, and π–π interactions between 2 and DNA minor groove. Moreover, the two complexes exhibit oxidative cleavage of supercoiled plasmid DNA in the presence of hydrogen peroxide as an activator in the order of 1?>?2. In terms of interaction with BSA, the results of spectroscopic methods and molecular docking show that 1 binds with BSA only via hydrophobic contacts while 2 interacts through hydrophobic and hydrogen bonding. It has been extensively demonstrated that the nature of the methyl- and methoxy-groups in ligands is a strong determinant of the bioactivity of nickel(II) complexes. This may justify the above differences in biomolecular interactions. In addition, the in vitro cytotoxicity of the complexes on human carcinoma cells lines (MCF-7, HT-29, and U-87) has been examined by MTT assay. According to our observations, 1 and 2 display cytotoxicity activity against selected cell lines.

Communicated by Ramaswamy H. Sarma  相似文献   

19.
A novel series of nitrogenous heterocycles starting from chalcones including thiazolo[3,2-a]pyrimidines (2067), were synthesized. Structure elucidation of the synthesized compounds was attained by the use of 1H NMR, 13CC NMR, and Mass spectrometry. The obtained compounds were evaluated for their in vitro anticancer activity at the National Cancer Institute (NCI) 60 cell lines panel assay. Three cell lines, non-small cell lung cancer Hop-92, ovarian cancer IGROV1, and melanoma SK-MEL-2, exhibited some sensitivity against most of the tested compounds. Six compounds have passed the 5-log dose level NCI assay. Compounds 34 and 24 proved to be the most active derivatives with GI50, TGI, LC50 of 5.89, 20.0, 66.1% and 5.0, 19.5, 52.5% respectively. Compounds 36, 39, 63 showed lesser activity with GI50, TGI, LC50 3.2, 11.8, 38.9%, 3.4, 16.6, 60.3%, 3.5, 17.8, 66.1% respectively. DNA binding assay of synthesized compound were performed. Molecular docking showed that compounds 34, 42, and 60 could effectively fit into the minor groove and selectively bind with AT base pairs. The results could confer the anticancer activity of compounds 24, 34, 36, and 39 in vitro to their abilities to bind at DNA minor groove.  相似文献   

20.
A series of pyrazolone-fused combretastatins and precursors were synthesized and their cytotoxicity as well as antitubulin potential was evaluated. The hydrazide 9f and the pyrazolone-fused combretastatins 12a, 12b and 12c were highly cytotoxic against various tumor cell lines including cisplatin resistant cells. The same compounds were also the best inhibitors of tubulin polymerization. Molecular modeling results showed that they bind the colchicine binding site at the tubulin heterodimer. The hydrazide 9f arrested HeLa cells in the G2/M phase of the cell cycle and strongly affected cell shape and microtubule network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号