首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactobacillus reuteri is both a gut symbiont and a stable member of sourdough microbiota. This study employed multilocus sequence analysis and an analysis of host-specific physiological and genetic traits to assign five sourdough isolates to rodent- or human-specific lineages. Comparative genome hybridization revealed that the model sourdough isolate LTH2584 had a genome content very similar to that of the model rodent isolate 100-23. These results demonstrate that sourdough isolates of L. reuteri are of intestinal origin.  相似文献   

2.
Bacteria that engage in long‐standing associations with particular hosts are expected to evolve host‐specific adaptations that limit their capacity to thrive in other environments. Consistent with this, many gut symbionts seem to have a limited host range, based on community profiling and phylogenomics. However, few studies have experimentally investigated host specialization of gut symbionts and the underlying mechanisms have largely remained elusive. Here, we studied host specialization of a dominant gut symbiont of social bees, Lactobacillus Firm5. We show that Firm5 strains isolated from honey bees and bumble bees separate into deep‐branching host‐specific phylogenetic lineages. Despite their divergent evolution, colonization experiments show that bumble bee strains are capable of colonizing the honey bee gut. However, they were less successful than honey bee strains, and competition with honey bee strains completely abolished their colonization. In contrast, honey bee strains of divergent phylogenetic lineages were able to coexist within individual bees. This suggests that both host selection and interbacterial competition play important roles in host specialization. Using comparative genomics of 27 Firm5 isolates, we found that the genomes of honey bee strains harbour more carbohydrate‐related functions than bumble bee strains, possibly providing a competitive advantage in the honey bee gut. Remarkably, most of the genes encoding carbohydrate‐related functions were not conserved among the honey bee strains, which suggests that honey bees can support a metabolically more diverse community of Firm5 strains than bumble bees. These findings advance our understanding of the genomic changes underlying host specialization.  相似文献   

3.
4.
Gut microbial diversity is thought to reflect the co‐evolution of microbes and their hosts as well as current host‐specific attributes such as genetic background and environmental setting. To explore interactions among these parameters, we characterized variation in gut microbiome composition of California voles (Microtus californicus) across a contact zone between two recently diverged lineages of this species. Because this contact zone contains individuals with mismatched mitochondrial‐nuclear genomes (cybrids), it provides an important opportunity to explore how different components of the genotype contribute to gut microbial diversity. Analyses of bacterial 16S rRNA sequences and joint species distribution modelling revealed that host genotypes and genetic differentiation among host populations together explained more than 50% of microbial community variation across our sampling transect. The ranked importance (most to least) of factors contributing to gut microbial diversity in our study populations were: genome‐wide population differentiation, local environmental conditions, and host genotypes. However, differences in microbial communities among vole populations (β‐diversity) did not follow patterns of lineage divergence (i.e., phylosymbiosis). Instead, among‐population variation was best explained by the spatial distribution of hosts, as expected if the environment is a primary source of gut microbial diversity (i.e., dispersal limitation hypothesis). Across the contact zone, several bacterial taxa differed in relative abundance between the two parental lineages as well as among individuals with mismatched mitochondrial and nuclear genomes. Thus, genetic divergence among host lineages and mitonuclear genomic mismatches may also contribute to microbial diversity by altering interactions between host genomes and gut microbiota (i.e., hologenome speciation hypothesis).  相似文献   

5.
Insects are known to host a wide variety of beneficial microbes that are fundamental to many aspects of their biology and have substantially shaped their evolution. Notably, parasitoid wasps have repeatedly evolved beneficial associations with viruses that enable developing wasps to survive as parasites that feed from other insects. Ongoing genomic sequencing efforts have revealed that most of these virus-derived entities are fully integrated into the genomes of parasitoid wasp lineages, representing endogenous viral elements (EVEs) that retain the ability to produce virus or virus-like particles within wasp reproductive tissues. All documented parasitoid EVEs have undergone similar genomic rearrangements compared to their viral ancestors characterized by viral genes scattered across wasp genomes and specific viral gene losses. The recurrent presence of viral endogenization and genomic reorganization in beneficial virus systems identified to date suggest that these features are crucial to forming heritable alliances between parasitoid wasps and viruses. Here, our genomic characterization of a mutualistic poxvirus associated with the wasp Diachasmimorpha longicaudata, known as Diachasmimorpha longicaudata entomopoxvirus (DlEPV), has uncovered the first instance of beneficial virus evolution that does not conform to the genomic architecture shared by parasitoid EVEs with which it displays evolutionary convergence. Rather, DlEPV retains the exogenous viral genome of its poxvirus ancestor and the majority of conserved poxvirus core genes. Additional comparative analyses indicate that DlEPV is related to a fly pathogen and contains a novel gene expansion that may be adaptive to its symbiotic role. Finally, differential expression analysis during virus replication in wasps and fly hosts demonstrates a unique mechanism of functional partitioning that allows DlEPV to persist within and provide benefit to its parasitoid wasp host.  相似文献   

6.
The Polydnaviridae (PDV), including the Bracovirus (BV) and Ichnovirus genera, originated from the integration of unrelated viruses in the genomes of two parasitoid wasp lineages, in a remarkable example of convergent evolution. Functionally active PDVs represent the most compelling evolutionary success among endogenous viral elements (EVEs). BV evolved from the domestication by braconid wasps of a nudivirus 100 Ma. The nudivirus genome has become an EVE involved in BV particle production but is not encapsidated. Instead, BV genomes have co-opted virulence genes, used by the wasps to control the immunity and development of their hosts. Gene transfers and duplications have shaped BV genomes, now encoding hundreds of genes. Phylogenomic studies suggest that BVs contribute largely to wasp diversification and adaptation to their hosts. A genome evolution model explains how multidirectional wasp adaptation to different host species could have fostered PDV genome extension. Integrative studies linking ecological data on the wasp to genomic analyses should provide new insights into the adaptive role of particular BV genes. Forthcoming genomic advances should also indicate if the associations between endoparasitoid wasps and symbiotic viruses evolved because of their particularly intimate interactions with their hosts, or if similar domesticated EVEs could be uncovered in other parasites.  相似文献   

7.
Lactobacillus reuteri is a heterofermentative lactic acid bacterium that naturally inhabits the gut of humans and other animals. The probiotic effects of L. reuteri have been proposed to be largely associated with the production of the broad-spectrum antimicrobial compound reuterin during anaerobic metabolism of glycerol. We determined the complete genome sequences of the reuterin-producing L. reuteri JCM 1112(T) and its closely related species Lactobacillus fermentum IFO 3956. Both are in the same phylogenetic group within the genus Lactobacillus. Comparative genome analysis revealed that L. reuteri JCM 1112(T) has a unique cluster of 58 genes for the biosynthesis of reuterin and cobalamin (vitamin B(12)). The 58-gene cluster has a lower GC content and is apparently inserted into the conserved region, suggesting that the cluster represents a genomic island acquired from an anomalous source. Two-dimensional nuclear magnetic resonance (2D-NMR) with (13)C(3)-glycerol demonstrated that L. reuteri JCM 1112(T) could convert glycerol to reuterin in vivo, substantiating the potential of L. reuteri JCM 1112(T) to produce reuterin in the intestine. Given that glycerol is shown to be naturally present in feces, the acquired ability to produce reuterin and cobalamin is an adaptive evolutionary response that likely contributes to the probiotic properties of L. reuteri.  相似文献   

8.
Many genomic sequences have been recently published for bacteria that can replicate only within eukaryotic hosts. Comparisons of genomic features with those of closely related bacteria retaining free-living stages indicate that rapid evolutionary change often occurs immediately after host restriction. Typical changes include a large increase in the frequency of mobile elements in the genome, chromosomal rearrangements mediated by recombination among these elements, pseudogene formation, and deletions of varying size. In anciently host-restricted lineages, the frequency of insertion sequence elements decreases as genomes become extremely small and strictly clonal. These changes represent a general syndrome of genome evolution, which is observed repeatedly in host-restricted lineages from numerous phylogenetic groups. Considerable variation also exists, however, in part reflecting unstudied aspects of the population structure and ecology of host-restricted bacterial lineages.  相似文献   

9.
Malaria parasites (genus Plasmodium) infect all classes of terrestrial vertebrates and display host specificity in their infections. It is therefore assumed that malaria parasites coevolved intimately with their hosts. Here, we propose a novel scenario of malaria parasite-host coevolution. A phylogenetic tree constructed using the malaria parasite mitochondrial genome reveals that the extant primate, rodent, bird, and reptile parasite lineages rapidly diverged from a common ancestor during an evolutionary short time period. This rapid diversification occurred long after the establishment of the primate, rodent, bird, and reptile host lineages, which implies that host-switch events contributed to the rapid diversification of extant malaria parasite lineages. Interestingly, the rapid diversification coincides with the radiation of the mammalian genera, suggesting that adaptive radiation to new mammalian hosts triggered the rapid diversification of extant malaria parasite lineages.  相似文献   

10.
Cophylogenetic studies investigate the evolutionary trends within host-parasite associations. Examination of the different levels of fidelity between host and parasite phylogenies provides a powerful tool to inspect patterns and processes of parasite diversification over host evolution and geological times. Within the phylum Platyhelminthes, the monogeneans are mainly fish parasites. The Polystomatidae, however, are known from the sarcopterygian Australian lungfish and tetrapods such as amphibians, freshwater turtles, and the African hippopotamus. Cophylogenetic and biogeographic vicariance analyses, supplemented by molecular calibrations, showed that the Polystomatidae may track the evolutionary history of the first aquatic tetrapods in the Palaeozoic age. Evolutionary lines of the major polystome lineages would also be intimately related to the evolution of their hosts over hundreds of millions years. Since the Mesozoic, evolution of polystomes would have been shaped mainly by plate tectonics during the break-up of Gondwanaland and subsequent dispersal of ancestral neobatrachian host lineages. Therefore the Polystomatidae could serve as a novel model to improve cophylogenetic tools and to inspect a suite of questions about the evolution of vertebrate hosts. To cite this article: O. Verneau et al., C. R. Biologies 332 (2009).  相似文献   

11.
A rich body of theory on the evolution of virulence (disease severity) attempts to predict the conditions that cause parasites to harm their hosts, and a central assumption to many of these models is that the relative virulence of pathogen strains is stable across a range of host types. In contrast, a largely nonoverlapping body of theory on coevolution assumes that the fitness effects of parasites on hosts is not stable across host genotype, but instead depends on host genotype by parasite genotype interactions. If such genetic interactions largely determine virulence, it becomes difficult to predict the strength and direction of selection on virulence. In this study, we tested for host-by-parasite interactions in a medically relevant vertebrate disease model: the rodent malaria parasite Plasmodium chabaudi in laboratory mice. We found that parasite and particularly host main effects explained most of the variance in virulence (anaemia and weight loss), resistance (parasite burden) and transmission potential. Host-by-parasite interactions were of limited influence, but nevertheless had significant effects. This raises the possibility that host heterogeneity may affect the rate of any parasite response to selection on virulence. This study of rodent malaria is one of the first tests for host-by-parasite interactions in any vertebrate disease; host-by-parasite interactions typical of those assumed in coevolutionary models were present, but were by no means pervasive.  相似文献   

12.
Rawls JF  Mahowald MA  Ley RE  Gordon JI 《Cell》2006,127(2):423-433
The gut microbiotas of zebrafish and mice share six bacterial divisions, although the specific bacteria within these divisions differ. To test how factors specific to host gut habitat shape microbial community structure, we performed reciprocal transplantations of these microbiotas into germ-free zebrafish and mouse recipients. The results reveal that communities are assembled in predictable ways. The transplanted community resembles its community of origin in terms of the lineages present, but the relative abundance of the lineages changes to resemble the normal gut microbial community composition of the recipient host. Thus, differences in community structure between zebrafish and mice arise in part from distinct selective pressures imposed within the gut habitat of each host. Nonetheless, vertebrate responses to microbial colonization of the gut are ancient: Functional genomic studies disclosed shared host responses to their compositionally distinct microbial communities and distinct microbial species that elicit conserved responses.  相似文献   

13.
Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Furthermore, sequencing of multiple strains with the same host range reveals information concerning pathogen diversity and the molecular basis of virulence. Here we present a comparative analysis of draft genome sequences for four strains of Pseudomonas cannabina pathovar alisalensis (Pcal), which is pathogenic on a range of monocotyledonous and dicotyledonous plants. These draft genome sequences provide a foundation for understanding host range evolution across the monocot-dicot divide. Like other phytopathogenic pseudomonads, Pcal strains harboured a hrp/hrc gene cluster that codes for a type III secretion system. Phylogenetic analysis based on the hrp/hrc cluster genes/proteins, suggests localized recombination and functional divergence within the hrp/hrc cluster. Despite significant conservation of overall genetic content across Pcal genomes, comparison of type III effector repertoires reinforced previous molecular data suggesting the existence of two distinct lineages within this pathovar. Furthermore, all Pcal strains analyzed harbored two distinct genomic islands predicted to code for type VI secretion systems (T6SSs). While one of these systems was orthologous to known P. syringae T6SSs, the other more closely resembled a T6SS found within P. aeruginosa. In summary, our study provides a foundation to unravel Pcal adaptation to both monocot and dicot hosts and provides genetic insights into the mechanisms underlying pathogenicity.  相似文献   

14.
We report the genomic DNA sequence of a single chromosome (linkage group 22; LG22) of the small teleost fish medaka (Oryzias latipes) as a first whole chromosome sequence from a non-mammalian vertebrate. The order and orientation of 633 protein-coding genes were deduced from 18,803,338 bp of DNA sequence, providing the opportunity to analyze chromosome evolution of vertebrate genomes by direct comparison with the human genome. The average number of genes in the "conserved gene cluster" (CGC), a strict definition of "synteny" at the sequence basis, between medaka and human was 1.6. These and other data suggest that approximately 38.8% of pair-wise gene relationships would have been broken from their common ancestor in the human and medaka lineages and further imply that approx 20,000 (15,520-23,280) breaks would have occurred from the entire genome of the common ancestor. These breaks were generated mainly by intra-chromosomal shufflings at a specific era in the vertebrate lineage. These precise comparative genomics allowed us to identify the pieces of ancient chromosomes of the common vertebrate ancestor and estimate chromosomal evolution in the vertebrate lineage.  相似文献   

15.
The relationships between parasites and their hosts are intimate, dynamic and complex; the evolution of one is inevitably linked to the other. Despite multiple origins of parasitism in the Cnidaria, only parasites belonging to the Myxozoa are characterized by a complex life cycle, alternating between fish and invertebrate hosts, as well as by high species diversity. This inspired us to examine the history of adaptive radiations in myxozoans and their hosts by determining the degree of congruence between their phylogenies and by timing the emergence of myxozoan lineages in relation to their hosts. Recent genomic analyses suggested a common origin of Polypodium hydriforme, a cnidarian parasite of acipenseriform fishes, and the Myxozoa, and proposed fish as original hosts for both sister lineages. We demonstrate that the Myxozoa emerged long before fish populated Earth and that phylogenetic congruence with their invertebrate hosts is evident down to the most basal branches of the tree, indicating bryozoans and annelids as original hosts and challenging previous evolutionary hypotheses. We provide evidence that, following invertebrate invasion, fish hosts were acquired multiple times, leading to parallel cospeciation patterns in all major phylogenetic lineages. We identify the acquisition of vertebrate hosts that facilitate alternative transmission and dispersion strategies as reason for the distinct success of the Myxozoa, and identify massive host specification‐linked parasite diversification events. The results of this study transform our understanding of the origins and evolution of parasitism in the most basal metazoan parasites known.  相似文献   

16.
Apicoplast, a nonphotosynthetic plastid derived from secondary symbiotic origin, is essential for the survival of malaria parasites of the genus Plasmodium. Elucidation of the evolution of the apicoplast genome in Plasmodium species is important to better understand the functions of the organelle. However, the complete apicoplast genome is available for only the most virulent human malaria parasite, Plasmodium falciparum. Here, we obtained the near-complete apicoplast genome sequences from eight Plasmodium species that infect a wide variety of vertebrate hosts and performed structural and phylogenetic analyses. We found that gene repertoire, gene arrangement, and other structural attributes were highly conserved. Phylogenetic reconstruction using 30 protein-coding genes of the apicoplast genome inferred, for the first time, a close relationship between P. ovale and rodent parasites. This close relatedness was robustly supported using multiple evolutionary assumptions and models. The finding suggests that an ancestral host switch occurred between rodent and human Plasmodium parasites.  相似文献   

17.
Cattle comprise a main reservoir of Shiga toxin-producing Escherichia coli O157:H7 (STEC). The significant differences in host prevalence, transmissibility, and virulence phenotypes among strains from bovine and human sources are of major interest to the public health community and livestock industry. Genomic analysis revealed divergence into three lineages: lineage I and lineage I/II strains are commonly associated with human disease, while lineage II strains are overrepresented in the asymptomatic bovine host reservoir. Growing evidence suggests that genotypic differences between these lineages, such as polymorphisms in Shiga toxin subtypes and synergistically acting virulence factors, are correlated with phenotypic differences in virulence, host ecology, and epidemiology. To assess the genomic plasticity on a genome-wide scale, we have sequenced the whole genome of strain EC869, a bovine-associated E. coli O157:H7 isolate. Comparative phylogenomic analysis of this key isolate enabled us to place accurately bovine lineage II strains within the genetically homogenous E. coli O157:H7 clade. Identification of polymorphic loci that are anchored both in the chromosomal backbone and horizontally acquired regions allowed us to associate bovine genotypes with altered virulence phenotypes and host prevalence. This study catalogued numerous novel lineage II-specific genome signatures, some of which appear to be associated intimately with the altered pathogenic potential and niche adaptation within the bovine rumen. The presented extended list of polymorphic markers is valuable in the development of a robust typing system critical for forensic, diagnostic, and epidemiological studies of this emerging human pathogen.  相似文献   

18.
Forms of cutaneous leishmaniasis are caused by Leishmania major, L. tropica, L. mexicana, L. amazonensis and L. panamensis. Like all leishmanial species, these are obligate intracellular parasites of the mononuclear phagocyte system, with a restricted range of vertebrate hosts including humans, dogs, rodents and arboreal animals. The disease evolves chronically, usually with slow healing, but can sometimes become nonhealing, diffuse disseminating or relapsing. The parasite exists within the macrophages of the vertebrate host in the amastigote form. These transform into extracellular flagellated promastigotes in the gut of the sandfly vectors. The promastigotes can then be injected into new vertebrate hosts as the insects feed. Promastigotes, and to a lesser extent amastigotes, can now be grown in tissue culture. This, together with the use of inbred mouse strains that are susceptible to most of the Leishmania species which are pathogenic for man, has facilitated great advances in our understanding of the immunological control of leishmaniasis. However, as Eddy Liew points out, there are still many unanswered questions.  相似文献   

19.
Liu W  Fang L  Li M  Li S  Guo S  Luo R  Feng Z  Li B  Zhou Z  Shao G  Chen H  Xiao S 《PloS one》2012,7(4):e35698
Mycoplasma, the smallest self-replicating organism with a minimal metabolism and little genomic redundancy, is expected to be a close approximation to the minimal set of genes needed to sustain bacterial life. This study employs comparative evolutionary analysis of twenty Mycoplasma genomes to gain an improved understanding of essential genes. By analyzing the core genome of mycoplasmas, we finally revealed the conserved essential genes set for mycoplasma survival. Further analysis showed that the core genome set has many characteristics in common with experimentally identified essential genes. Several key genes, which are related to DNA replication and repair and can be disrupted in transposon mutagenesis studies, may be critical for bacteria survival especially over long period natural selection. Phylogenomic reconstructions based on 3,355 homologous groups allowed robust estimation of phylogenetic relatedness among mycoplasma strains. To obtain deeper insight into the relative roles of molecular evolution in pathogen adaptation to their hosts, we also analyzed the positive selection pressures on particular sites and lineages. There appears to be an approximate correlation between the divergence of species and the level of positive selection detected in corresponding lineages.  相似文献   

20.
It is well known that the dinucleotide CpG is under-represented in the genomic DNA of many vertebrates. This is commonly thought to be due to the methylation of cytosine residues in this dinucleotide and the corresponding high rate of deamination of 5-methycytosine, which lowers the frequency of this dinucleotide in DNA. Surprisingly, many single-stranded RNA viruses that replicate in these vertebrate hosts also have a very low presence of CpG dinucleotides in their genomes. Viruses are obligate intracellular parasites and the evolution of a virus is inexorably linked to the nature and fate of its host. One therefore expects that virus and host genomes should have common features. In this work, we compare evolutionary patterns in the genomes of ssRNA viruses and their hosts. In particular, we have analyzed dinucleotide patterns and found that the same patterns are pervasively over- or under-represented in many RNA viruses and their hosts suggesting that many RNA viruses evolve by mimicking some of the features of their host's genes (DNA) and likely also their corresponding mRNAs. When a virus crosses a species barrier into a different host, the pressure to replicate, survive and adapt, leaves a footprint in dinucleotide frequencies. For instance, since human genes seem to be under higher pressure to eliminate CpG dinucleotide motifs than avian genes, this pressure might be reflected in the genomes of human viruses (DNA and RNA viruses) when compared to those of the same viruses replicating in avian hosts. To test this idea we have analyzed the evolution of the influenza virus since 1918. We find that the influenza A virus, which originated from an avian reservoir and has been replicating in humans over many generations, evolves in a direction strongly selected to reduce the frequency of CpG dinucleotides in its genome. Consistent with this observation, we find that the influenza B virus, which has spent much more time in the human population, has adapted to its human host and exhibits an extremely low CpG dinucleotide content. We believe that these observations directly show that the evolution of RNA viral genomes can be shaped by pressures observed in the host genome. As a possible explanation, we suggest that the strong selection pressures acting on these RNA viruses are most likely related to the innate immune response and to nucleotide motifs in the host DNA and RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号