首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 511 毫秒
1.
Glycation is a nonenzymatic condensation reaction between reducing sugars and amino groups of proteins that undergo rearrangements to stable ketoamines, leading to the formation of advanced glycation end products (AGEs) including fluorescent (argpyrimidine) and nonfluorescent (Nε-carboxymethyllysine; CML) protein adducts and protein cross-links. AGEs are formed via protein glycation and correlate with processes resulting in aging and diabetes complications. Reactive carbonyl species such as glyoxal and methylglyoxal are ubiquitous by-products of cell metabolism that potently induce the formation of AGEs by nonenzymatic protein glycation and may achieve plasma concentrations of 0.3–1.5 μmol/L. In this in vitro study histone H1 glycation by glyoxal, methylglyoxal, or ADP-ribose was used to model nonoxidative protein glycation, permitting us to distinguish specific AGE inhibition from general antioxidant action. Rutin derivatives were tested as AGE inhibitors because rutin, a common dietary flavonoid that is consumed in fruits, vegetables, and plant-derived beverages, is metabolized by gut microflora to a range of phenolic compounds that are devoid of significant antioxidant activity and achieve blood concentrations in the μmol/L range. Our data show that in a 1:1 stoichiometry with glyoxal or methylglyoxal, 3,4-dihydroxyphenylacetic acid (DHPAA) and 3,4-dihydroxytoluene (DHT) are powerful inhibitors of CML and argpyrimidine histone H1 adduct formation, respectively. Furthermore, when DHPAA and DHT were tested as inhibitors of histone H1 glycation by the powerful glycating agent ADP-ribose, they inhibited glycation as effectively as aminoguanidine. These results suggest that dietary flavonoids may serve as effective AGE inhibitors and suggest mechanisms whereby fruit- and vegetable-rich diets contribute to the prevention of processes resulting in aging and diabetes complications.  相似文献   

2.
Several lines of evidence suggest that rutin, flavonoid in fruits and vegetables, or one of its metabolites may effectively modulate advanced glycation end product (AGE) formation. Following ingestion, rutin forms metabolites that include 3,4-dihydroxyphenylacetic acid (3,4-DHPAA), 3,4-dihydroxytoluene (3,4-DHT), m-hydroxyphenylacetic acid (m-HPAA), 3-methoxy-4-hydroxyphenylacetic acid (homovanillic acid, HVA) and 3,5,7,3',5'-pentahydroxyflavonol (quercetin). We studied the effects of rutin and its metabolites on the formation of AGE biomarkers such as pentosidine, collagen-linked fluorescence, N(epsilon)-carboxymethyllysine (CML) adducts, glucose autoxidation and collagen glycation, using an in vitro model where collagen I was incubated with glucose. Rutin metabolites containing vicinyl dihydroxyl groups, i.e., 3,4-DHT, 3,4-DHPAA and quercetin, inhibited the formation of pentosidine and fluorescent adducts, glucose autoxidation and glycation of collagen I in a dose-dependent manner, whereas non-vicinyl dihydroxyl group-containing metabolites, i.e., HVA and m-HPAA, were much less effective. All five metabolites of rutin effectively inhibited CML formation. In contrast, during the initial stages of glycation and fluorescent AGE product accumulation, only vicinyl hydroxyl group-containing rutin metabolites were effective. These studies demonstrate that rutin and circulating metabolites of rutin can inhibit early glycation product formation, including both fluorescent and nonfluorescent AGEs induced by glucose glycation of collagen I in vitro. These effects likely contribute to the beneficial health effects associated with rutin consumption.  相似文献   

3.
Nuclear DNA damage has been studied in detail, but much less is known concerning the occurrence and fate of nuclear protein damage. Glycoxidation, protein damage that results from a combination of protein glycation and oxidation, leads to the formation of protein-advanced glycation end products (AGE) of which N(epsilon)-carboxymethyllysine (CML) is a major AGE. We have used glyoxal, a product of environmental exposures that readily leads to the formation of CML, to study nuclear protein glycoxidation in HaCaT human keratinocytes. Glyoxal treatment that did not affect cell viability but inhibited cell proliferation in a dose-dependent manner that led to accumulation of CML-modified histones. Modified histones were slowly degraded but persisted for more than 3 days following treatment. Preincubation of cells with a proteasome inhibitor following glyoxal treatment led to an increase in CML-modified histones. While glyoxal treatment resulted in a slight decrease in total cellular proteasome activity, a dose dependent increase of up to 4-fold in nuclear proteasome activity was observed. The increase in nuclear proteasome activity was due to both increased nuclear proteasome protein content and increased activity, neither of which were affected by cyclohexamide. The increase also was unaffected by inhibitors of poly(ADP-ribose) polymerases, which have been previously implicated in nuclear proteasome activation by oxidizing agents. Accumulation of CML-modified histones over time may lead to epigenetic changes that contribute to various pathologies including aging and cancer, and upregulation of nuclear proteasome activity under conditions of glyoxidative stress may function to limit such damage.  相似文献   

4.
The chemistry of Maillard or browning reactions of glycated proteins was studied using the model compound, N alpha-formyl-N epsilon-fructoselysine (fFL), an analog of glycated lysine residues in protein. Incubation of fFL (15 mM) at physiological pH and temperature in 0.2 M phosphate buffer resulted in formation of N epsilon-carboxymethyllysine (CML) in about 40% yield after 15 days. CML was formed by oxidative cleavage of fFL between C-2 and C-3 of the carbohydrate chain and erythronic acid (EA) was identified as the split product formed in the reaction. Neither CML nor EA was formed from fFL under a nitrogen atmosphere. The rate of formation of CML was dependent on phosphate concentration in the incubation mixture and the reaction was shown to occur by a free radical mechanism. CML was also identified by amino acid analysis in hydrolysates of both poly-L-lysine and bovine pancreatic ribonuclease glycated in phosphate buffer under air. CML was also detected in human lens proteins and tissue collagens by HPLC and the identification was confirmed by gas chromatography/mass spectroscopy. The presence of both CML and EA in human urine suggests that they are formed by degradation of glycated proteins in vivo. The browning of fFL incubation mixtures proceeded to a greater extent under a nitrogen versus an air atmosphere, suggesting that oxidative degradation of Amadori adducts to form CML may limit the browning reactions of glycated proteins. Since the reaction products, CML and EA, are relatively inert, both chemically and metabolically, oxidative cleavage of Amadori adducts may have a role in limiting the consequences of protein glycation in the body.  相似文献   

5.
Steady state protein modification by carbonyl compounds is related to the rate of carbonyl adduct formation and the half-life of the protein. Thyroid hormones are physiologic modulators of both tissue oxidative stress and protein degradation. The levels of the glycation product N(epsilon)-fructoselysine (FL) and those of the oxidation products, N(epsilon)-(carboxymethyl)lysine (CML) and malondialdehyde-lysine (MDA-lys), identified by GC/MS in liver proteins, decreased significantly in hyperthyroid rats, as well as (less acutely) in hypothyroid animals. Immunoblotting of liver proteins for advanced glycation end-products (AGE) is in agreement with the results obtained by GC/MS. Cytosolic proteolytic activity against carboxymethylated foreign proteins measured in vitro was significantly increased in hypo- and hyperthyroidism. Oxidative damage to DNA, estimated as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxodG), did not show significant differences between groups. The results suggests that the steady state levels of these markers depend on the levels of thyroid hormones, presumably through their combined effects on the rates of protein degradation and oxidative stress, whereas DNA is more protected from oxidative damage.  相似文献   

6.
Advanced glycation end products (AGEs) culminate from the non-enzymatic reaction between a free carbonyl group of a reducing sugar and free amino group of proteins. 3-deoxyglucosone (3-DG) is one of the dicarbonyl species that rapidly forms several protein-AGE complexes that are believed to be involved in the pathogenesis of several diseases, particularly diabetic complications. In this study, the generation of AGEs (Nε-carboxymethyl lysine and pentosidine) by 3-DG in H1 histone protein was characterized by evaluating extent of side chain modification (lysine and arginine) and formation of Amadori products as well as carbonyl contents using several physicochemical techniques. Results strongly suggested that 3-DG is a potent glycating agent that forms various intermediates and AGEs during glycation reactions and affects the secondary structure of the H1 protein. Structural changes and AGE formation may influence the function of H1 histone and compromise chromatin structures in cases of secondary diabetic complications.  相似文献   

7.
The glycation and oxidation of proteins/lipids leads to the generation of a new class of biologically active moieties, the advanced glycation endproducts (AGEs). Recent studies have elucidated that carboxymethyllysine (CML) adducts of proteins/lipids are a highly prevalent AGE in vivo. CML-modified adducts are signal transduction ligands of the receptor for AGE (RAGE), a member of the immunoglobulin superfamily. Importantly, CML-modified adducts accumulate in diverse settings. In addition to enhanced formation in settings of high glucose, these adducts form in inflammatory milieu. Studies performed both in vitro and in vivo have suggested that the proinflammatory/tissue destructive consequences of RAGE activation in the diabetic/inflamed environment may be markedly attenuated by blockade of the ligand-RAGE axis. Here, we will summarize the known consequences of RAGE activation in the tissues and highlight novel areas for therapeutic intervention in these disease states.  相似文献   

8.
Chronic high glucose levels lead to the formation of advanced glycation end-products (AGEs) as well as AGE precursors, such as methylglyoxal (MG) and glyoxal, via non-enzymatic glycation reactions in patients with diabetic mellitus. Glyoxalase 1 (GLO-1) detoxifies reactive dicarbonyls that form AGEs. To investigate the interaction between AGEs and GLO-1 in mesangial cells (MCs) under diabetic conditions, AGE levels and markers of oxidative stress were measured in GLO-1-overexpressing MCs (GLO-1-MCs) cultured in high glucose. Furthermore, we also examined levels of high glucose-induced apoptosis in GLO-1-MCs. In glomerular MCs, high glucose levels increased the formation of both MG and argpyrimidine (an MG-derived adduct) as well as GLO-1 expression. GLO-1-MCs had lower intracellular levels of MG accumulation, 8-hydroxy-deoxyguanosine (an oxidative DNA damage marker), 4-hydroxyl-2-nonenal (a lipid peroxidation product), and nitrosylated protein (a marker of oxidative-nitrosative stress) compared to control cells. Expression of mitochondrial oxidative phosphorylation complexes I, II, and III was also decreased in GLO-1-MCs. Furthermore, fewer GLO-1-MCs showed evidence of apoptosis as determined by terminal deoxynucleotidyl transferase-mediated dUTP nick labeling assay, and activation of both poly (ADP-ribose) polymerase 1 cleavage and caspase-3 was lower in GLO-1-MCs than in control cells cultured in high glucose. These results suggest that GLO-1 plays a role in high glucose-mediated signaling by reducing MG accumulation and oxidative stress in diabetes mellitus.  相似文献   

9.
Proteomic analysis using electrospray liquid chromatography-mass spectrometry (ESI-LC-MS) has been used to compare the sites of glycation (Amadori adduct formation) and carboxymethylation of RNase and to assess the role of the Amadori adduct in the formation of the advanced glycation end-product (AGE), N(epsilon)-(carboxymethyl)lysine (CML). RNase (13.7 mg/mL, 1 mM) was incubated with glucose (0.4 M) at 37 degrees C for 14 days in phosphate buffer (0.2 M, pH 7.4) under air. On the basis of ESI-LC-MS of tryptic peptides, the major sites of glycation of RNase were, in order, K41, K7, K1, and K37. Three of these, in order, K41, K7, and K37 were also the major sites of CML formation. In other experiments, RNase was incubated under anaerobic conditions (1 mM DTPA, N2 purged) to form Amadori-modified protein, which was then incubated under aerobic conditions to allow AGE formation. Again, the major sites of glycation were, in order, K41, K7, K1, and K37 and the major sites of carboxymethylation were K41, K7, and K37. RNase was also incubated with 1-5 mM glyoxal, substantially more than is formed by autoxidation of glucose under experimental conditions, but there was only trace modification of lysine residues, primarily at K41. We conclude the following: (1) that the primary route to formation of CML is by autoxidation of Amadori adducts on protein, rather than by glyoxal generated on autoxidation of glucose; and (2) that carboxymethylation, like glycation, is a site-specific modification of protein affected by neighboring amino acids and bound ligands, such as phosphate or phosphorylated compounds. Even when the overall extent of protein modification is low, localization of a high proportion of the modifications at a few reactive sites might have important implications for understanding losses in protein functionality in aging and diabetes and also for the design of AGE inhibitors.  相似文献   

10.
Advanced glycation end products (AGEs) play an important role in the development of angiopathy in diabetes mellitus and atherosclerosis. Here, we show that adducts of N(epsilon)-(carboxymethyl)lysine (CML), a major AGE, and bovine serum albumin (CML-BSA) stimulated gamma-glutamylcysteine synthetase (gamma-GCS), which is a key enzyme of glutathione (GSH) synthesis, in RAW264.7 mouse macrophage-like cells. CML-BSA stimulated the expression of gamma-GCS heavy subunit (h) time- and dose-dependently and concomitantly increased GSH levels. CML-BSA also stimulated DNA-binding activity of activator protein-1 (AP-1) within 3h, but the stimulatory effect decreased in 5h, and nuclear factor-kappaB (NF-kappaB) with a peak activity at 1h and the stimulatory effect diminished in 3h. Studies of luciferase activity of the gamma-GCSh promoter showed that deletion and mutagenesis of the AP-1-site abolished CML-BSA-induced up-regulation, while that of NF-kappaB-site did not affect CML-BSA-induced activity. CML-BSA also stimulated the activity of protein kinase C, Ras/Raf-1, and MEK/ERK1/2. Inhibition of ERK1/2 abolished CML-BSA-stimulated AP-1 DNA-binding activity and gamma-GCSh mRNA expression. Our results suggest that induction of gamma-GCS by CML adducts seems to increase the defense potential of cells against oxidative stress produced during glycation processes.  相似文献   

11.
The inhibition of post-Amadori advanced glycation end product (AGE) formation by three different classes of AGE inhibitors, carbonyl group traps, chelators, and radical-trapping antioxidants, challenge the current paradigms that: 1) AGE inhibitors will not increase the formation of any AGE product, 2) transition metal ions are required for oxidative formation of AGE, and 3) screening AGE inhibitors only in systems containing transition metal ions represents a valid estimate of potential in vivo mechanisms. This work also introduces a novel multifunctional AGE inhibitor, 6-dimethylaminopyridoxamine (dmaPM), designed to function as a combined carbonyl trap, metal ion chelator, and radical-trapping antioxidant. Other AGE inhibitors including pyridoxamine, aminoguanidine, o-phenylenediamine, dipyridoxylamine, and diethylenetriaminepentaacetic acid were also examined. The results during uninterrupted and interrupted ribose glycations show: 1) an unexpected increase in the yield of pentosidine in the presence of radical-trapping phenolic antioxidants such as Trolox and dmaPM, 2) significant formation of Nepsilon-carboxymethyllysine (CML) in the presence of strong chelators and phenolic antioxidants, which implies that there must be nonradical routes to CML, 3) prevention of intermolecular cross-links with radical-trapping inhibitors, and 4) that dmaPM shows excellent inhibition of AGE. Glucose glycations reveal the expected inhibition of pentosidine and CML with all compounds tested, but in a buffer free of trace metal ions the yield of CML in the presence of radical-trapping antioxidants was between the metal ion-free and metal ion-containing controls. Protein molecular weight analyses support the conclusion that Amadori decomposition pathways are constrained in the presence of metal ion chelators and radical traps.  相似文献   

12.
BACKGROUND: The advanced stage of the Maillard reaction, which leads to the formation of advanced glycation end products (AGE), plays an important role in the pathogenesis of angiopathy in diabetic patients and in the aging process. N(epsilon)-(carboxymethyl)lysine (CML) is thought to be an important epitope for many of currently available AGE antibodies. However, recent findings have indicated that a major source of CML may be by pathways other than glycation. A distinction between CML and non-CML AGE may increase our understanding of AGE formation in vivo. In the present study, we prepared antibodies directed against CML and non-CML AGE. MATERIALS AND METHODS: AGE-rabbit serum albumin prepared by 4, 8, and 12 weeks of incubation with glucose was used to immunize rabbits, and a high-titer AGE-specific antiserum was obtained without affinity for the carrier protein. To separate CML and non-CML AGE antibodies, the anti-AGE antiserum was subjected to affinity chromatography on a column coupled with AGE-BSA and CML-BSA. Two different antibodies were obtained, one reacting specifically with CML and the other reacting with non-CML AGE. Circulating levels of CML and non-CML AGE were measured in 66 type 2 diabetic patients without uremia by means of the competitive ELISA. Size distribution and clearance by hemodialysis detected by non-CML AGE and CML were assessed in serum from diabetic patients on hemodialysis. RESULTS: The serum non-CML AGE level in type 2 diabetic patients was significantly correlated with the mean fasting blood glucose level over the previous 2 months (r = 0.498, p < 0.0001) or the previous 1 month (r = 0.446, p = 0. 0002) and with HbA(1c) (r = 0.375, p = 0.0019), but the CML AGE level was not correlated with these clinical parameters. The CML and non-CML AGE were detected as four peaks with apparent molecular weights of 200, 65, 1.15, and 0.85 kD. The hemodialysis treatment did not affect the high-molecular-weight protein fractions. Although the low-molecular-weight peptide fractions (absorbance at 280 nm and fluorescence) were decreased by hemodialysis, there was no difference before and after dialysis in the non-CML AGE- and CML-peptide fractions (1.15 and 0.85 kD fractions). CONCLUSIONS: We propose that both CML and non-CML AGE are present in the blood and that non-CML AGE rather than CML AGE should be more closely evaluated when investigating the pathophysiology of AGE-related diseases.  相似文献   

13.
Inhibition of advanced glycation end-product (AGE) formation is a potential strategy for the prevention of clinical diabetes complications. Screening for new AGE inhibitors revealed several natural compounds that inhibited the formation of N(ε)-(carboxymethyl)lysine (CML), a major antigenic AGE structure, whereas natural compounds containing a catechol group, such as gallic acid and epicatechin, significantly enhanced CML formation. A similar enhancing effect was also observed by culturing THP-1 macrophages in the presence of catechol compounds. Although 4-methylcatechol significantly enhanced CML formation from glycated HSA (gHSA), a model for Amadori proteins, analogues of catechol such as 5-methylresorcinol and methylhydroquinone showed no enhancing effect. Even though 1mM 4-methylcatechol, epicatechin, and gallic acid significantly enhanced CML formation from gHSA, it was significantly inhibited by decreasing their concentration. The enhancing effect of 1mM catechol compounds was inhibited in the presence of the glutathione peroxidase system, thus demonstrating that hydrogen peroxide generated from catechol compounds plays an important role in the enhancement of CML formation. Furthermore, administration of 500mg/kg/day epicatechin to STZ-induced diabetic mice for 45days enhanced CML accumulation at the surface area of gastric epithelial cells in the stomach. This study provides the first evidence that high amounts of catechol-containing structures enhance oxidative stress, thus leading to enhanced CML formation, and this phenomenon may explain the paradoxical effect that some flavonoids have on redox status.  相似文献   

14.
Chronic inflammation, superimposed by amyloid fibril deposition, is believed to trigger the cascade of oxidative stress response in the affected organs and tissues. We examined immunohistochemically the distribution of 4-hydroxy-2-nonenal (HNE) and N(epsilon)-(carboxymethyl)lysine (CML), markers of lipid peroxidation and advance glycation end products (AGE), respectively, in spleen sections and peritoneal macrophages (MPhi) from mice before and during AA amyloidosis. With time, both HNE and CML immunoreactivities increased significantly in MPhi and splenic reticuloendothelial cells, known to be associated with the clearance of serum amyloid A, the precursor of AA fibrils. HNE and CML were localized to the plasma membrane and the cytoplasmic compartment of MPhi and HNE only at the nuclear membrane. These markers were also colocalized bound to AA fibrils infiltrating the splenic sinus walls. Our results reinforce the notion that oxidative stress is an integral component of amyloidotic tissues. Both lipid peroxidation and AGE have been implicated in protein modification and amyloid fibril formation. The significance of HNE and CML associated with the monocytoid cells and implicated in SAA clearance and AA fibril formation, is discussed with the pathogenesis of AA fibrils.  相似文献   

15.
A number of antitumor drugs act via the oxidation of nuclear material in the tumor cell. It is therefore important to know if tumor cells can effectively and precisely cope not only with oxidatively induced DNA damage, but also with nuclear protein oxidation. In this study, we investigated the endogenous degradation of oxidatively damaged histones in K562 human leukemic cells after oxidative challenge and demonstrated a link to the overall cellular stress response pathways by poly-ADP-ribose-polymerase (PARP). After an oxidative challenge, endogenous nuclear protein degradation, as well as histone degradation, was enhanced. Among the histone fractions, histone H1 revealed the highest degradation rate, and more than 85% of the total degraded H1 disappeared in the first 30 min after oxidative challenge. Short-term degradation of histones up to 30 min, as well as long-term degradation up to 48 h after oxidative challenge, was significantly reduced in the presence of the PARP inhibitor 3-aminobenzamide, and nearly completely abrogated by the selective proteasome inhibitor lactacystin. Immunoprecipitation experiments indicated that the proteasome specifically degraded oxidized histones. Thus, we show that the nuclear proteosome system in tumor cells is capable of preventing the accumulation of oxidized proteins in this compartment and may suggest further treatment strategies to effectively interfere with the protein "repair" and replacement strategies of tumor cells.  相似文献   

16.
Advanced glycation end-products (AGEs) are heterogeneous group of compounds, known to be implicated in diabetic complications. One of the consequences of the Maillard reaction is attributed to the production of reactive intermediate products such as α-oxoaldehydes. 3-deoxyglucosone (3-DG), an α-oxoaldehyde has been found to be involved in accelerating vascular damage during diabetes. In the present study, calf thymus histone H3 was treated with 3-deoxyglucosone to investigate the generation of AGEs (Nε-carboxymethyllysine, pentosidine), by examining the degree of side chain modifications and formation of different intermediates and employing various physicochemical techniques. The results clearly indicate the formation of AGEs and structural changes upon glycation of H3 by 3-deoxyglucosone, which may hamper the normal functioning of H3 histone, that may compromise the veracity of chromatin structures and function in secondary complications of diabetes.  相似文献   

17.
Glycation, the nonenzymatic reaction between protein amino groups and reducing sugars, induces protein damage that has been linked to several pathological conditions, especially diabetes, and general aging. Here we describe the direct identification of a protein-bound free radical formed during early glycation of histone H1 in vitro. Earlier EPR analysis of thermal browning reactions between free amino acids and reducing sugars has implicated the sugar fragmentation product glycolaldehyde in the generation of a 1,4-disubstituted pyrazinium free radical cation. In order to evaluate the potential formation of this radical in vivo, the early glycation of BSA, lysozyme, and histone H1 by several sugars (D-glucose, D-ribose, ADP-ribose, glycolaldehyde) under conditions of physiological pH and temperature was examined by EPR. The pyrazinium free radical cation was identified on histone H1 glycated by glycolaldehyde (g = 2.00539, aN = 8.01 [2N], aH = 5.26 [4H], aH = 2.72 [4H]), or ADP-ribose. Reaction of glycoaldehyde with poly-L-lysine produced an identical signal, whereas reaction with BSA or lysozyme produced only a minor unresolved singlet signal. In the absence of oxygen the signal was stable over several days. Our results raise the possibility that pyrazinium radicals may form during glycation of histone H1 in vivo.  相似文献   

18.
The pathogenesis of diabetic retinopathy is complex, reflecting the array of systemic and tissue-specific metabolic abnormalities. A range of pathogenic pathways are directly linked to hyperglycaemia and dyslipidaemia, and the retina appears to be exquisitely sensitive to damage. Establishing the biochemical and molecular basis for this pathology remains an important research focus. This review concentrates on the formation of a range of protein adducts that form after exposure to modifying intermediates known to be elevated during diabetes. These so-called advanced glycation end products (AGEs) and advanced lipoxidation end products (ALEs) are thought to play an important role in the initiation and progression of diabetic retinopathy, and mechanisms leading to dysfunction and death of various retinal cells are becoming understood. Perspective is provided on AGE/ALE formation in the retina and the impact that such adducts have on retinal cell function. There will be emphasis placed on the role of the receptor for AGEs and how this may modulate retinal pathology, especially in relation to oxidative stress and inflammation. The review will conclude by discussion of strategies to inhibit AGE/ALE formation or harmful receptor interactions in order to prevent disease progression from the point of diabetes diagnosis to sight-threatening proliferative diabetic retinopathy and diabetic macular oedema.  相似文献   

19.
Hyperglycemic conditions of diabetes accelerate protein modifications by glucose leading to the accumulation of advanced glycation end-products (AGEs). We have investigated the conversion of protein-Amadori intermediate to protein-AGE and the mechanism of its inhibition by pyridoxamine (PM), a potent AGE inhibitor that has been shown to prevent diabetic complications in animal models. During incubation of proteins with physiological diabetic concentrations of glucose, PM prevented the degradation of the protein glycation intermediate identified as fructosyllysine (Amadori) by 13C NMR using [2-13C]-enriched glucose. Subsequent removal of glucose and PM led to conversion of protein-Amadori to AGE Nepsilon-carboxymethyllysine (CML). We utilized this inhibition of post-Amadori reactions by PM to isolate protein-Amadori intermediate and to study the inhibitory effect of PM on its degradation to protein-CML. We first tested the hypothesis that PM blocks Amadori-to-CML conversion by interfering with the catalytic role of redox metal ions that are required for this glycoxidative reaction. Support for this hypothesis was obtained by examining structural analogs of PM in which its known bidentate metal ion binding sites were modified and by determining the effect of endogenous metal ions on PM inhibition. We also tested the alternative hypothesis that the inhibitory mechanism involves formation of covalent adducts between PM and protein-Amadori. However, our 13C NMR studies demonstrated that PM does not react with the Amadori. Because the mechanism of interference with redox metal catalysis is operative under the conditions closely mimicking the diabetic state, it may contribute significantly to PM efficacy in preventing diabetic complications in vivo. Inhibition of protein-Amadori degradation by PM also provides a simple procedure for the isolation of protein-Amadori intermediate, prepared at physiological levels of glucose for relevancy, to study both the biological effects and the chemistry of post-Amadori pathways of AGE formation.  相似文献   

20.
Higher plants are continually exposed to reactive oxygen and nitrogen species during their lives. Together with glucose and reactive dicarbonyls, these can modify proteins spontaneously, leading to protein oxidation, nitration and glycation. These reactions have the potential to damage proteins and have an impact on physiological processes. The levels of protein oxidation, nitration and glycation adducts were assayed, using liquid chromatography coupled with tandem mass spectrometry, in total leaf extracts over a diurnal cycle and when exposed to conditions that promote oxidative stress. Changes in the levels of oxidation, glycation and nitration adducts were found between the light and dark phases under non-stress conditions. A comparison between wild-type plants and a mutant lacking peptide methionine sulfoxide reductase ( pmsr2-1 ) showed increased protein oxidation, nitration and glycation of specific amino acid residues during darkness in pmsr2-1 . Short-term excess light exposure, which promoted oxidative stress, led to increased protein glycation, specifically by glyoxal. This suggested that any increased oxidative damage to proteins was within the repair capacity of the plant. The methods developed here provide the means to simultaneously detect a range of protein oxidation, nitration and glycation adducts within a single sample. Thus, these methods identify a range of biomarkers to monitor a number of distinct biochemical processes that have an impact on the proteome and therefore the physiological state of the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号