首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
MOTIVATION: Although natural products represent a reservoir of molecular diversity, the process of isolating and identifying active compounds is a bottleneck in drug discovery programs. The rapid isolation and identification of the bioactive component(s) of natural product mixtures during the bioassay-guided fractionation have become crucial factors in the competition with chemical compound libraries and combinatorial synthetic efforts. In this respect, the use of spectral databases in identification processes is indispensable. RESULTS: We have developed a database containing (13)C spectral information of over 6000 natural compounds, which allows for fast identifications of known compounds present in the crude extracts and provides insight into the structural elucidation of unknown compounds. AVAILABILITY: http://c13.usal.es  相似文献   

2.
Over the past decade, zebrafish (Danio rerio) have emerged as an attractive model for in vivo drug discovery. In this study, we explore the suitability of zebrafish larvae to rapidly evaluate the anti-inflammatory activity of natural products (NPs) and medicinal plants used in traditional medicine for the treatment of inflammatory disorders. First, we optimized a zebrafish assay for leukocyte migration. Inflammation was induced in four days post-fertilization (dpf) zebrafish larvae by tail transection and co-incubation with bacterial lipopolysaccharides (LPS), resulting in a robust recruitment of leukocytes to the zone of injury. Migrating zebrafish leukocytes were detected in situ by myeloperoxidase (MPO) staining, and anti-inflammatory activity was semi-quantitatively scored using a standardized scale of relative leukocyte migration (RLM). Pharmacological validation of this optimized assay was performed with a panel of anti-inflammatory drugs, demonstrating a concentration-responsive inhibition of leukocyte migration for both steroidal and non-steroidal anti-inflammatory drugs (SAIDs and NSAIDs). Subsequently, we evaluated the bioactivity of structurally diverse NPs with well-documented anti-inflammatory properties. Finally, we further used this zebrafish-based assay to quantify the anti-inflammatory activity in the aqueous and methanolic extracts of several medicinal plants. Our results indicate the suitability of this LPS-enhanced leukocyte migration assay in zebrafish larvae as a front-line screening platform in NP discovery, including for the bioassay-guided isolation of anti-inflammatory secondary metabolites from complex NP extracts.  相似文献   

3.
For over seven decades, bacteria served as a valuable source of bioactive natural products some of which were eventually developed into drugs to treat infections, cancer and immune system-related diseases. Traditionally, novel compounds produced by bacteria were discovered via conventional bioprospecting based on isolation of potential producers and screening their extracts in a variety of bioassays. Over time, most of the natural products identifiable by this approach were discovered, and the pipeline for new drugs based on bacterially produced metabolites started to run dry. This mini-review highlights recent developments in bacterial bioprospecting for novel compounds that are based on several out-of-the-box approaches, including the following: (i) targeting bacterial species previously unknown to produce any bioactive natural products, (ii) exploring non-traditional environmental niches and methods for isolation of bacteria and (iii) various types of ‘genome mining’ aimed at unravelling genetic potential of bacteria to produce secondary metabolites. All these approaches have already yielded a number of novel bioactive compounds and, if used wisely, will soon revitalize drug discovery pipeline based on bacterial natural products.  相似文献   

4.
Marine organisms often protect themselves against their predators by chemical defensive strategy. The second metabolites isolated from marine organisms and their symbiotic microbes have been proven to play a vital role in marine chemical ecology, such as ichthyotoxicity, allelopathy, and antifouling. It is well known that the microscale models for marine chemoecology assessment are urgently needed for trace quantity of marine natural products. Zebrafish model has been widely used as a microscale model in the fields of environment ecological evaluation and drug safety evaluation, but seldom reported for marine chemoecology assessment. In this work, zebrafish embryo toxicity microscale model was established for ichthyotoxicity evaluation of marine natural products by using 24-well microplate based on zebrafish embryo. Ichthyotoxicity was evaluated by observation of multiple toxicological endpoints, including coagulation egg, death, abnormal heartbeat, no spontaneous movement, delayed hatch, and malformation of the different organs during zebrafish embryogenesis periods at 24, 48, and 72 h post-fertilization (hpf). 3,4-Dichloroaniline was used as the positive control for method validation. Subsequently, the established model was applied to test the ichthyotoxic activity of the compounds isolated from corals and their symbiotic microbes and to isolate the bioactive secondary metabolites from the gorgonian Subergorgia mollis under bioassay guidance. It was suggested that zebrafish embryo toxicity microscale model is suitable for bioassay-guided isolation and preliminary bioactivity screening of marine natural products.  相似文献   

5.
Elucidating the mechanism of action of bioactive compounds, such as commonly used pharmaceutical drugs and biologically active natural products, in the cells and the living body is important in drug discovery research. To this end, isolation and identification of target protein(s) for the bioactive compound are essential in understanding its function fully. And, development of reliable tools and methodologies capable of addressing efficiently identification and characterization of the target proteins based on the bioactive compounds accelerates drug discovery research. Affinity-based isolation and identification of target molecules for the bioactive compounds is a classic, but still powerful approach. This paper introduces recent progress on affinity chromatography system, focusing on development of practical affinity matrices and useful affinity-based methodologies on target identification. Beneficial affinity chromatography systems with using practical tools and useful methodologies facilitate chemical biology and drug discovery research.  相似文献   

6.
Zebrafish have recently emerged as an attractive model for the in vivo bioassay-guided isolation and characterization of pharmacologically active small molecules of natural origin. We carried out a zebrafish-based phenotypic screen of over 3000 plant-derived secondary metabolite extracts with the goal of identifying novel small-molecule modulators of the BMP and Wnt signaling pathways. One of the bioactive plant extracts identified in this screen – Jasminum gilgianum, an Oleaceae species native to Papua New Guinea – induced ectopic tails during zebrafish embryonic development. As ectopic tail formation occurs when BMP or non-canonical Wnt signaling is inhibited during the tail protrusion process, we suspected a constituent of this extract to act as a modulator of these pathways. A bioassay-guided isolation was carried out on the basis of this zebrafish phenotype, identifying para-coumaric acid methyl ester (pCAME) as the active compound. We then performed an in-depth phenotypic analysis of pCAME-treated zebrafish embryos, including a tissue-specific marker analysis of the secondary tails. We found pCAME to synergize with the BMP-inhibitors dorsomorphin and LDN-193189 in inducing ectopic tails, and causing convergence-extension defects in compound-treated embryos. These results indicate that pCAME may interfere with non-canonical Wnt signaling. Inhibition of Jnk, a downstream target of Wnt/PCP signaling (via morpholino antisense knockdown and pharmacological inhibition with the kinase inhibitor SP600125) phenocopied pCAME-treated embryos. However, immunoblotting experiments revealed pCAME to not directly inhibit Jnk-mediated phosphorylation of c-Jun, suggesting additional targets of SP600125, and/or other pathways, as possibly being involved in the ectopic tail formation activity of pCAME. Further investigation of pCAME’s mechanism of action will help determine this compound’s pharmacological utility.  相似文献   

7.
Bio-assay guided fractionation of an acetone extract of leaf material from Plectranthus saccatus Benth. resulted in the isolation of a beyerane diterpenoid. This compound, characterised by spectroscopic methods as ent-3beta-(3-methyl-2-butenoyl)oxy-15-beyeren-19-oic acid, showed insect antifeedant activity against Spodoptera littoralis. Known quinonoid abietane diterpenoids obtained from new sources included a mixture of the (4R,19R) and (4R,19S) diastereoisomers of coleon A from P. aff. puberulentus J.K. Morton, coleon A lactone from P. puberulentus J.K. Morton, and coleon U and coleon U quinone from P. forsteri 'Marginatus' Benth. These compounds, and the crude acetone extracts from the leaf surfaces of 11 species of Plectranthus, were tested for antifeedant activity against S. littoralis, antibacterial activity against Bacillus subtilis and Pseudomonas syringae and antifungal activity against Cladosporium herbarum. The coleon A mixture showed potent antifeedant activity against S. littoralis, whereas coleon U showed the greatest antimicrobial activity.  相似文献   

8.
Natural products have immense therapeutic potential not only due to their structural variation and complexity but also due to their range of biological activities. Research based on natural products has led to the discovery of molecules with biomedical and pharmaceutical applications in different therapeutic areas like cancer, inflammation responses, diabetes, and infectious diseases. There are still several challenges to be overcome in natural product drug discovery research programs and the challenge of high throughput screening of natural substances is one of them. Bioactivity screening is an integral part of the drug discovery process and several in vitro and in vivo biological models are now available for this purpose. Among other well-reported biological models, the zebrafish (Danio rerio) is emerging as an important in vivo model for preclinical studies of synthetic molecules in different therapeutic areas. Zebrafish embryos have a short reproductive cycle, show ease of maintenance at high densities in the laboratory and administration of drugs is a straightforward procedure. The embryos are optically transparent, allowing for the visualization of drug effects on internal organs during the embryogenesis process. In this review, we illustrate the importance of using zebrafish as an important biological model in the discovery of bioactive drugs from natural sources.  相似文献   

9.
Miller KI  Qing C  Sze DM  Neilan BA 《PloS one》2012,7(5):e35953
Traditional Chinese medicine encompasses a rich empirical knowledge of the use of plants for the treatment of disease. In addition, the microorganisms associated with medicinal plants are also of interest as the producers of the compounds responsible for the observed plant bioactivity. The present study has pioneered the use of genetic screening to assess the potential of endophytes to synthesize bioactive compounds, as indicated by the presence of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes. The total DNA extracts of 30 traditional Chinese herbs, were screened for functional genes involved in the biosynthesis of bioactive compounds. The four PCR screens were successful in targeting four bacterial PKS, six bacterial NRPS, ten fungal PKS and three fungal NRPS gene fragments. Analysis of the detected endophyte gene fragments afforded consideration of the possible bioactivity of the natural products produced by endophytes in medicinal herbs. This investigation describes a rapid method for the initial screening of medicinal herbs and has highlighted a subset of those plants that host endophytes with biosynthetic potential. These selected plants can be the focus of more comprehensive endophyte isolation and natural product studies.  相似文献   

10.
Zebrafish are rapidly growing in popularity as an in vivo model system for chemical genetics, drug discovery, and toxicology, and more recently also for natural product discovery. Experiments involving the pharmacological evaluation of small molecules or natural product extracts in zebrafish bioassays require the effective delivery of these compounds to embryos and larvae. While most samples to be screened are first solubilized in dimethyl sulfoxide (DMSO), which is then diluted in the embryo medium, often this method is not sufficient to prevent the immediate or eventual precipitation of the sample. Certain compounds and extracts are also not highly soluble in DMSO. In such instances the use of carriers and/or other solvents might offer an alternative means to achieve the required sample concentration. Towards this end, we determined the maximum tolerated concentration (MTC) of several commonly used solvents and carriers in zebrafish embryos and larvae at various developmental stages. Solvents evaluated for this study included acetone, acetonitrile, butanone, dimethyl formamide, DMSO, ethanol, glycerol, isopropanol, methanol, polyethylene glycol (PEG-400), propylene glycol, and solketal, and carriers included albumin (BSA) and cyclodextrin (2-hydroxypropyl-beta-cyclodextrin, or HPBCD). This study resulted in the identification of polyethylene glycol (PEG400), propylene glycol, and methanol as solvents that were relatively well-tolerated over a range of developmental stages. In addition, our results showed that acetone was well-tolerated by embryos but not by larvae, and 1% cyclodextrin (HPBCD) was well-tolerated by both embryos and larvae, indicating the utility of this carrier for compound screening in zebrafish. However, given the relatively small differences (2–3 fold) between concentrations that are apparently safe and those that are clearly toxic, further studies – e.g. omics analyses –should be carried out to determine which cellular processes and signalling pathways are affected by any solvents and carriers that are used for small-molecule screens in zebrafish.  相似文献   

11.
In the past few decades, marine natural products bioprospecting has yielded a considerable number of drug candidates. Two marine natural products have recently been admitted as new drugs: Prialt (also known as ziconotide) as a potent analgesic for severe chronic pain and Yondelis (known also as trabectedin or E-743) as antitumor agent for the treatment of advanced soft tissue sarcoma. In this protocol, methods for bioactivity-guided isolation, purification and identification of secondary metabolites from marine invertebrates such as sponges, tunicates, soft corals and crinoids are discussed. To achieve this goal, solvent extraction of usually freeze-dried sample of marine organisms is performed. Next, the extract obtained is fractionated by liquid-liquid partitioning followed by various chromatographic separation techniques including thin layer chromatography, vacuum liquid chromatography, column chromatography (CC) and preparative high-performance reversed-phase liquid chromatography. Isolation of bioactive secondary metabolites is usually monitored by bioactivity assays, e.g., antioxidant (2,2-diphenyl-1-picryl hydrazyl) and cytotoxicity (microculture tetrazolium) activities that ultimately yield the active principles. Special care should be taken when performing isolation procedures adapted to the physical and chemical characteristics of the compounds isolated, particularly their lipo- or hydrophilic characters. Examples of isolation of compounds of different polarities from extracts of various marine invertebrates will be presented in this protocol. Structure elucidation is achieved using recent spectroscopic techniques, especially 2D NMR and mass spectrometry analysis.  相似文献   

12.
Natural products are valuable resources that provide a variety of bioactive compounds and natural pharmacophores in modern drug discovery. Discovery of biologically active natural products and unraveling their target proteins to understand their mode of action have always been critical hurdles for their development into clinical drugs. For effective discovery and development of bioactive natural products into novel therapeutic drugs, comprehensive screening and identification of target proteins are indispensable. In this review, a systematic approach to understanding the mode of action of natural products isolated using phenotypic screening involving chemical proteomics-based target identification is introduced. This review highlights three natural products recently discovered via phenotypic screening, namely glucopiericidin A, ecumicin, and terpestacin, as representative case studies to revisit the pivotal role of natural products as powerful tools in discovering the novel functions and druggability of targets in biological systems and pathological diseases of interest.  相似文献   

13.
侯路宽  李花月  李文利 《微生物学报》2017,57(11):1722-1734
传统的"活性-化合物"天然药物发现方法导致大量已知化合物被重复分离,大大加剧了新药发现的难度。规模化基因组测序揭示了微生物基因组中存在大量的隐性(cryptic)次级代谢产物生物合成基因簇,如何激活这些隐性基因簇成为当今世界天然产物研究领域的难点与热点。本文从途径特异性和多效性两个角度综述了隐性生物合成基因簇激活策略;同时,对基因组信息指导下结构导向(structure-guided)的化合物定向分离技术进行了归纳。隐性基因簇的激活为定向发掘具有优良活性的新型天然产物提供了新的契机。  相似文献   

14.
The rapid identification of known or undesirable compounds from natural products extracts — “dereplication” — is an important step in an efficiently run natural products discovery program. Dereplication strategies use analytical techniques and database searching to determine the identity of an active compound at the earliest possible stage in the discovery process. In the past few years, advances in technology have allowed the development of tandem analytical techniques such as liquid chromatography mass spectrometry (LC-MS), LC-MS-MS, liquid chromatography nuclear magnetic resonance (LC-NMR), and LC-NMR-MS. LC-NMR, despite its lower sensitivity as compared to LC-MS, provides a powerful tool for rapid identification of known compounds and identification of structure classes of novel compounds. LC-NMR is especially useful in instances where the data from LC-MS are incomplete or do not allow confident identification of the active component of a sample. LC-NMR has been used to identify the marine alkaloid aaptamine as the active component in an extract of the sponge Aaptos sp. This extract had been identified as an enzyme inhibitor by a high throughput screening (HTS) effort. Isolated aaptamine exhibited an IC50=120 μM against this enzyme. Strategies for the identification of aaptamine and for the use of LC-NMR in a natural products HTS program are discussed. Journal of Industrial Microbiology & Biotechnology (2000) 25, 342–345. Received 30 March 2000/ Accepted in revised form 03 July 2000  相似文献   

15.
Streptomyces, and related genera of Actinobacteria, are renowned for their ability to produce antibiotics and other bioactive natural products with a wide range of applications in medicine and agriculture. Streptomyces coelicolor A3(2) is a model organism that has been used for more than five decades to study the genetic and biochemical basis for the production of bioactive metabolites. In 2002, the complete genome sequence of S. coelicolor was published. This greatly accelerated progress in understanding the biosynthesis of metabolites known or suspected to be produced by S. coelicolor and revealed that streptomycetes have far greater potential to produce bioactive natural products than suggested by classical bioassay-guided isolation studies. In this article, efforts to exploit the S. coelicolor genome sequence for the discovery of novel natural products and biosynthetic pathways are summarized.  相似文献   

16.
The bioactive compounds of medicinal plants are products of the plant itself or of endophytes living inside the plant. Endophytes isolated from eight different anticancer plants collected in Yunnan, China, were characterized by diverse 16S and 18S rRNA gene phylogenies. A functional gene-based molecular screening strategy was used to target nonribosomal peptide synthetase (NRPS) and type I polyketide synthase (PKS) genes in endophytes. Bioinformatic analysis of these biosynthetic pathways facilitated inference of the potential bioactivity of endophyte natural products, suggesting that the isolated endophytes are capable of producing a plethora of secondary metabolites. All of the endophyte culture broth extracts demonstrated antiproliferative effects in at least one test assay, either cytotoxic, antibacterial or antifungal. From the perspective of natural product discovery, this study confirms the potential for endophytes from medicinal plants to produce anticancer, antibacterial and antifungal compounds. In addition, PKS and NRPS gene screening is a valuable method for screening isolates of biosynthetic potential.  相似文献   

17.
《朊病毒》2013,7(3-4):234-244
ABSTRACT

One of the major medical challenges of the twenty-first century is the treatment of incurable and fatal neurodegenerative disorders caused by misfolded prion proteins. Since the discovery of these diseases a number of studies have been conducted to identify small molecules for their treatment, however to date no curative treatment is available. These studies can be highly expensive and time consuming, but more recent experimental approaches indicate a significant application for yeast prions in these studies. We therefore used yeast prions to optimize previous high-throughput methods for the cheaper, easier and more rapid screening of natural extracts. Through this approach we aimed to identify natural yeast-prion inhibitors that could be useful in the development of novel treatment strategies for neurodegenerative disorders. We screened 500 marine invertebrate extracts from temperate waters in Australia allowing the identification of yeast-prion inhibiting extracts. Through the bioassay-driven chemical investigation of an active Suberites sponge extract, a group of bromotyrosine derivatives were identified as potent yeast-prion inhibitors. This study outlines the importance of natural products and yeast prions as a first-stage screen for the identification of new chemically diverse and bioactive compounds.  相似文献   

18.
Actinomycetes are prolific sources of bioactive molecules. Traditional workflows including bacterial isolation, fermentation, metabolite identification and structure elucidation have resulted in high rates of natural product rediscovery in recent years. Recent advancements in multi-omics techniques have uncovered cryptic gene clusters within the genomes of actinomycetes, potentially introducing vast resources for the investigation of bioactive molecules. While developments in culture techniques have allowed for the fermentation of difficult-to-culture actinomycetes, high-throughput metabolite screening has offered plenary tools to accelerate hits discovery. A variety of new bioactive molecules have been isolated from actinomycetes of unique environmental origins, such as endophytic and symbiotic actinomycetes. Synthetic biology and genome mining have also emerged as new frontiers for the discovery of bioactive molecules. This review covers the highlights of recent developments in actinomycete-derived natural product drug discovery.  相似文献   

19.
During the course of screening microbial broth extracts in various high through-put bioassays (eg receptor binding or enzyme inhibition), several actinomycete cultures were discovered to produce active metabolites. The natural products elaiophylin and/or geldanamycin are produced by severalStreptomyces violaceusniger strains, and the bioactivity of the extracts from these cultures was frequently associated with the fractions containing these metabolites. CPC coupled to a photodiode array detector and LC-MS techniques were applied to these broth extracts to ascertain rapidly when these natural products were present. These methodologies allowed us to identify the metabolites quickly in the crude extract, and the application demonstrated further the utility of CPC-photodiode array detection and LC-MS as powerful, initial analytical tools in analyses of the complex metabolite profiles produced by microorganisms.  相似文献   

20.
Tyrosinase (TYR) inhibitors are in great demand in the food, cosmetic and medical industrials due to their important roles. Therefore, the discovery of high-quality TYR inhibitors is always pursued. Natural products as one of the most important sources of bioactive compounds discovery have been increasingly used for TYR inhibitors screening. However, due to their complex compositions, it is still a great challenge to rapid screening and identification of biologically active components from them. In recent years, with the help of separation technologies and the affinity and intrinsic activity of target enzymes, two advanced approaches including affinity screening and inhibition profiling showed great promises for a successful screening of bioactive compounds from natural sources. This review summarises the recent progress of separation-based methods for TYR inhibitors screening, with an emphasis on the principle, application, advantage, and drawback of each method along with perspectives in the future development of these screening techniques and screened hit compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号