共查询到20条相似文献,搜索用时 15 毫秒
1.
Hirokazu Kuwahara Yoshihiro Takaki Shigeru Shimamura Takao Yoshida Taro Maeda Takekazu Kunieda Tadashi Maruyama 《BMC evolutionary biology》2011,11(1):1-13
Background
Two Calyptogena clam intracellular obligate symbionts, Ca. Vesicomyosocius okutanii (Vok; C. okutanii symbiont) and Ca. Ruthia magnifica (Rma; C. magnifica symbiont), have small genomes (1.02 and 1.16 Mb, respectively) with low G+C contents (31.6% and 34.0%, respectively) and are thought to be in an ongoing stage of reductive genome evolution (RGE). They lack recA and some genes for DNA repair, including mutY. The loss of recA and mutY is thought to contribute to the stabilization of their genome architectures and GC bias, respectively. To understand how these genes were lost from the symbiont genomes, we surveyed these genes in the genomes from 10 other Calyptogena clam symbionts using the polymerase chain reaction (PCR).Results
Phylogenetic trees reconstructed using concatenated 16S and 23S rRNA gene sequences showed that the symbionts formed two clades, clade I (symbionts of C. kawamurai, C. laubieri, C. kilmeri, C. okutanii and C. soyoae) and clade II (those of C. pacifica, C. fausta, C. nautilei, C. stearnsii, C. magnifica, C. fossajaponica and C. phaseoliformis). recA was detected by PCR with consensus primers for recA in the symbiont of C. phaseoliformis. A detailed homology search revealed a remnant recA in the Rma genome. Using PCR with a newly designed primer set, intact recA or its remnant was detected in clade II symbionts. In clade I symbionts, the recA coding region was found to be mostly deleted. In the Rma genome, a pseudogene of mutY was found. Using PCR with newly designed primer sets, mutY was not found in clade I symbionts but was found in clade II symbionts. The G+C content of 16S and 23S rRNA genes in symbionts lacking mutY was significantly lower than in those with mutY.Conclusions
The extant Calyptogena clam symbionts in clade II were shown to have recA and mutY or their remnants, while those in clade I did not. The present results indicate that the extant symbionts are losing these genes in RGE, and that the loss of mutY contributed to the GC bias of the genomes during their evolution. 相似文献2.
Reductive evolution in mitochondria and obligate intracellular microbes has led to a significant reduction in their genome size and guanine plus cytosine content (GC). We show that genome shrinkage during reductive evolution in prokaryotes follows an exponential decay pattern and provide a method to predict the extent of this decay on an evolutionary timescale. We validated predictions by comparison with estimated extents of genome reduction known to have occurred in mitochondria and Buchnera aphidicola, through comparative genomics and by drawing on available fossil evidences. The model shows how the mitochondrial ancestor would have quickly shed most of its genome, shortly after its incorporation into the protoeukaryotic cell and prior to codivergence subsequent to the split of eukaryotic lineages. It also predicts that the primary rickettsial parasitic event would have occurred between 180 and 425 million years ago (MYA), an event of relatively recent evolutionary origin considering the fact that Rickettsia and mitochondria evolved from a common alphaproteobacterial ancestor. This suggests that the symbiotic events of Rickettsia and mitochondria originated at different time points. Moreover, our model results predict that the ancestor of Wigglesworthia glossinidia brevipalpis, dated around the time of origin of its symbiotic association with the tsetse fly (50-100 MYA), was likely to have been an endosymbiont itself, thus supporting an earlier proposition that Wigglesworthia, which is currently a maternally inherited primary endosymbiont, evolved from a secondary endosymbiont. 相似文献
3.
Host-symbiont cospeciation and reductive genome evolution have been identified in obligate endocellular insect symbionts, but no such example has been identified from extracellular ones. Here we first report such a case in stinkbugs of the family Plataspidae, wherein a specific gut bacterium is vertically transmitted via “symbiont capsule.” In all of the plataspid species, females produced symbiont capsules upon oviposition and their gut exhibited specialized traits for capsule production. Phylogenetic analysis showed that the plataspid symbionts constituted a distinct group in the γ-Proteobacteria, whose sister group was the aphid obligate endocellular symbionts Buchnera. Removal of the symbionts resulted in retarded growth, mortality, and sterility of the insects. The host phylogeny perfectly agreed with the symbiont phylogeny, indicating strict host-symbiont cospeciation despite the extracellular association. The symbionts exhibited AT-biased nucleotide composition, accelerated molecular evolution, and reduced genome size, as has been observed in obligate endocellular insect symbionts. These findings suggest that not the endocellular conditions themselves but the population genetic attributes of the vertically transmitted symbionts are probably responsible for the peculiar genetic traits of these insect symbionts. We proposed the designation “Candidatus Ishikawaella capsulata” for the plataspid symbionts. The plataspid stinkbugs, wherein the host-symbiont associations can be easily manipulated, provide a novel system that enables experimental approaches to previously untouched aspects of the insect-microbe mutualism. Furthermore, comparative analyses of the sister groups, the endocellular Buchnera and the extracellular Ishikawaella, would lead to insights into how the different symbiotic lifestyles have affected their genomic evolution. 相似文献
4.
Yoshitomo Kikuchi Takahiro Hosokawa Naruo Nikoh Xian-Ying Meng Yoichi Kamagata Takema Fukatsu 《BMC biology》2009,7(1):2-22
Background
Host-symbiont co-speciation and reductive genome evolution have been commonly observed among obligate endocellular insect symbionts, while such examples have rarely been identified among extracellular ones, the only case reported being from gut symbiotic bacteria of stinkbugs of the family Plataspidae. Considering that gut symbiotic communities are vulnerable to invasion of foreign microbes, gut symbiotic associations have been thought to be evolutionarily not stable. Stinkbugs of the family Acanthosomatidae harbor a bacterial symbiont in the midgut crypts, the lumen of which is completely sealed off from the midgut main tract, thereby retaining the symbiont in the isolated cryptic cavities. We investigated histological, ecological, phylogenetic, and genomic aspects of the unique gut symbiosis of the acanthosomatid stinkbugs. 相似文献5.
Genetic redundancy means that two genes can perform the same function. Using a comprehensive phylogenetic analysis, we show here in both Saccharomyces cerevisiae and Caenorhabditis elegans that genetic redundancy is not just a transient consequence of gene duplication, but is often an evolutionary stable state. In multiple examples, genes have retained redundant functions since the divergence of the animal, plant and fungi kingdoms over a billion years ago. The stable conservation of genetic redundancy contrasts with the more rapid evolution of genetic interactions between unrelated genes and can be explained by theoretical models including a 'piggyback' mechanism in which overlapping redundant functions are co-selected with nonredundant ones. 相似文献
6.
7.
Background
Xanthomonas fragariae (Xf) is a bacterial strawberry pathogen and an A2 quarantine organism on strawberry planting stock in the EU. It is taxonomically and metabolically distinct within the genus Xanthomonas, and known for its host specificity. As part of a broader pathogenicity study, the genome of a Belgian, virulent Xf strain (LMG 25863) was assembled to draft status and examined for its pathogenicity related gene content.Results
The Xf draft genome (4.2 Mb) was considerably smaller than most known Xanthomonas genomes (~5 Mb). Only half of the genes coding for TonB-dependent transporters and cell-wall degrading enzymes that are typically present in other Xanthomonas genomes, were found in Xf. Other missing genes/regions with a possible impact on its plant-host interaction were: i) the three loci for xylan degradation and metabolism, ii) a locus coding for a ß-ketoadipate phenolics catabolism pathway, iii) xcs, one of two Type II Secretion System coding regions in Xanthomonas, and iv) the genes coding for the glyoxylate shunt pathway. Conversely, the Xf genome revealed a high content of externally derived DNA and several uncommon, possibly virulence-related features: a Type VI Secretion System, a second Type IV Secretion System and a distinct Type III Secretion System effector repertoire comprised of multiple rare effectors and several putative new ones.Conclusions
The draft genome sequence of LMG 25863 confirms the distinct phylogenetic position of Xf within the genus Xanthomonas and reveals a patchwork of both lost and newly acquired genomic features. These features may help explain the specific, mostly endophytic association of Xf with the strawberry plant.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-14-829) contains supplementary material, which is available to authorized users. 相似文献8.
Transposable elements (TEs) are ubiquitous components of all living organisms, and in the course of their coexistence with
their respective host geneomes, these parasitc DNAs have played important roles in the evolution of complex genetic networks.
The interaction between mobile DNAs and their host genomes are quite diverse, ranging from modifications of gene structure
and regulation to alterations in general genome architecture. Thus during evolutionary time these elements can be regarded
as natural molecular tools in shaping the organization, structure, and function of eukaryotic genes and genomes. Based on
their intrinsic properties and features, mobile DNAs are widely applied at present as a technical “toolbox”, essential for
studying a diverse spectrum of biological questions. In this review, we aim to summarize both the evolutionary impact of TEs
on geneome evolution and their valuable and diverse methodological applications as molecular tools. 相似文献
9.
Ruiz JC D'Afonseca V Silva A Ali A Pinto AC Santos AR Rocha AA Lopes DO Dorella FA Pacheco LG Costa MP Turk MZ Seyffert N Moraes PM Soares SC Almeida SS Castro TL Abreu VA Trost E Baumbach J Tauch A Schneider MP McCulloch J Cerdeira LT Ramos RT Zerlotini A Dominitini A Resende DM Coser EM Oliveira LM Pedrosa AL Vieira CU Guimarães CT Bartholomeu DC Oliveira DM Santos FR Rabelo ÉM Lobo FP Franco GR Costa AF Castro IM Dias SR Ferro JA Ortega JM Paiva LV Goulart LR Almeida JF Ferro MI Carneiro NP 《PloS one》2011,6(4):e18551
Background
Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity.Methodology and Findings
We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer.Conclusions
These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers and CP001809. CP001829相似文献10.
11.
12.
Sadovskiĭ MG 《Genetika》2002,38(5):695-701
A specific index of nucleotide sequence redundancy, the specific restriction length of a finite frequency dictionary, was determined for a complete set of genes in some viral genomes and a genome of a bacterium, Bacillus subtilis. The distribution of the gene number over the specific restriction length was shown to be bimodal for viral genomes and unimodal for the Bac. subtilis genome. These results agree with earlier data. 相似文献
13.
M.J. Dufton 《Journal of theoretical biology》1983,102(4):521-526
The genetic code has an inherent bias towards some amino acids because of the variable number of synonymous codons per amino acid. In proteins generally, this bias is expressed in the relative proportions of the twenty amino acids. It is suggested that even though neutral mutation may be responsible for the 'expression of this bias, the latter could be providing a positive advantage by directing mutation to introduce chemically simpler and more immutable amino acids where selective criteria have become relaxed. 相似文献
14.
An ever expanding database on the sequence organization and repetition of genic and non-genic components of nuclear and organelle genomes reveals that the vast majority of sequences are subject to one or other mechanism of DNA turnover (gene conversion, unequal crossing over, slippage, retrotransposition, transposition and others). Detailed studies, using novel methods of experimental detection and analytical procedures, show that such mechanisms can operate one on top of another and that wide variations in their unit lengths, biases, polarities and rates create bizarre and complex patterns of genetic redundancy. The ability of these mechanisms to operate both within and between chromosomes implies that realistic models of the evolutionary dynamics of redundancy, and of the potential interaction with natural selection in a sexual species, need to consider the diffusion of variant repeats across multiple chromosome lineages, in a population context. Recently, important advances in both experimental and analytical approaches have been made along these lines. There is increasing awareness that genetic redundancy and turnover induces a molecular co-evolution between functionally interacting genetic systems in order to maintain essential functions. 相似文献
15.
Fleischmann TT Scharff LB Alkatib S Hasdorf S Schöttler MA Bock R 《The Plant cell》2011,23(9):3137-3155
Plastid genomes of higher plants contain a conserved set of ribosomal protein genes. Although plastid translational activity is essential for cell survival in tobacco (Nicotiana tabacum), individual plastid ribosomal proteins can be nonessential. Candidates for nonessential plastid ribosomal proteins are ribosomal proteins identified as nonessential in bacteria and those whose genes were lost from the highly reduced plastid genomes of nonphotosynthetic plastid-bearing lineages (parasitic plants, apicomplexan protozoa). Here we report the reverse genetic analysis of seven plastid-encoded ribosomal proteins that meet these criteria. We have introduced knockout alleles for the corresponding genes into the tobacco plastid genome. Five of the targeted genes (ribosomal protein of the large subunit22 [rpl22], rpl23, rpl32, ribosomal protein of the small subunit3 [rps3], and rps16) were shown to be essential even under heterotrophic conditions, despite their loss in at least some parasitic plastid-bearing lineages. This suggests that nonphotosynthetic plastids show elevated rates of gene transfer to the nuclear genome. Knockout of two ribosomal protein genes, rps15 and rpl36, yielded homoplasmic transplastomic mutants, thus indicating nonessentiality. Whereas Δrps15 plants showed only a mild phenotype, Δrpl36 plants were severely impaired in photosynthesis and growth and, moreover, displayed greatly altered leaf morphology. This finding provides strong genetic evidence that chloroplast translational activity influences leaf development, presumably via a retrograde signaling pathway. 相似文献
16.
Goro Tanifuji Naoko T Onodera Matthew W Brown Bruce A Curtis Andrew J Roger Gane Ka-Shu Wong Michael Melkonian John M Archibald 《BMC genomics》2014,15(1)
Background
Nucleomorphs are residual nuclei derived from eukaryotic endosymbionts in chlorarachniophyte and cryptophyte algae. The endosymbionts that gave rise to nucleomorphs and plastids in these two algal groups were green and red algae, respectively. Despite their independent origin, the chlorarachniophyte and cryptophyte nucleomorph genomes share similar genomic features such as extreme size reduction and a three-chromosome architecture. This suggests that similar reductive evolutionary forces have acted to shape the nucleomorph genomes in the two groups. Thus far, however, only a single chlorarachniophyte nucleomorph and plastid genome has been sequenced, making broad evolutionary inferences within the chlorarachniophytes and between chlorarachniophytes and cryptophytes difficult. We have sequenced the nucleomorph and plastid genomes of the chlorarachniophyte Lotharella oceanica in order to gain insight into nucleomorph and plastid genome diversity and evolution.Results
The L. oceanica nucleomorph genome was found to consist of three linear chromosomes totaling ~610 kilobase pairs (kbp), much larger than the 373 kbp nucleomorph genome of the model chlorarachniophyte Bigelowiella natans. The L. oceanica plastid genome is 71 kbp in size, similar to that of B. natans. Unexpectedly long (~35 kbp) sub-telomeric repeat regions were identified in the L. oceanica nucleomorph genome; internal multi-copy regions were also detected. Gene content analyses revealed that nucleomorph house-keeping genes and spliceosomal intron positions are well conserved between the L. oceanica and B. natans nucleomorph genomes. More broadly, gene retention patterns were found to be similar between nucleomorph genomes in chlorarachniophytes and cryptophytes. Chlorarachniophyte plastid genomes showed near identical protein coding gene complements as well as a high level of synteny.Conclusions
We have provided insight into the process of nucleomorph genome evolution by elucidating the fine-scale dynamics of sub-telomeric repeat regions. Homologous recombination at the chromosome ends appears to be frequent, serving to expand and contract nucleomorph genome size. The main factor influencing nucleomorph genome size variation between different chlorarachniophyte species appears to be expansion-contraction of these telomere-associated repeats rather than changes in the number of unique protein coding genes. The dynamic nature of chlorarachniophyte nucleomorph genomes lies in stark contrast to their plastid genomes, which appear to be highly stable in terms of gene content and synteny.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-374) contains supplementary material, which is available to authorized users. 相似文献17.
18.
Most angiosperm flowers are tightly integrated, functionally bisexual shoots that have carpels with enclosed ovules. Flowering plants evolved from within the gymnosperms, which lack this combination of innovations. Paradoxically, phylogenetic reconstructions suggest that the flowering plant lineage substantially pre-dates the evolution of flowers themselves. We provide a model based on known gene regulatory networks whereby positive selection on a single, partially redundant gene duplicate 'trapped' the ancestors of flower-bearing plants into the condensed, bisexual state approximately 130 million years ago. The LEAFY (LFY) gene of Arabidopsis encodes a master regulator that functions as the main conduit of environmental signals to the reproductive developmental program. We directly link the elimination of one LFY paralog, pleiotropically maintained in gymnosperms, to the sudden appearance of flowers in the fossil record. 相似文献
19.
Bennetzen JL 《Current opinion in plant biology》2007,10(2):176-181
Increasingly comprehensive, species-rich, and large-scale comparisons of grass genome structure have uncovered an even higher level of genomic rearrangement than originally observed by recombinational mapping or orthologous clone sequence comparisons. Small rearrangements are exceedingly abundant, even in comparisons of closely related species. The mechanisms of these small rearrangements, mostly tiny deletions caused by illegitimate recombination, appear to be active in all of the plant species investigated, but their relative aggressiveness differs dramatically in different plant lineages. Transposable element amplification, including the acquisition and occasional fusion of gene fragments from multiple loci, is also common in all grasses studied, but has been a much more major contributor in some species than in others. The reasons for these quantitative differences are not known, but it is clear that they lead to species that have very different levels of genomic instability. Similarly, polyploidy and segmental duplication followed by gene loss are standard phenomena in the history of all flowering plants, including the grasses, but their frequency and final outcomes are very different in different lineages. Now that genomic instability has begun to be characterized in detail across an array of plant species, it is time for comprehensive studies to investigate the relationships between particular changes in genome structure and organismal function or fitness. 相似文献
20.
The frequent dispensability of duplicated genes in budding yeast is heralded as a hallmark of genetic robustness contributed by genetic redundancy. However, theoretical predictions suggest such backup by redundancy is evolutionarily unstable, and the extent of genetic robustness contributed from redundancy remains controversial. It is anticipated that, to achieve mutual buffering, the duplicated paralogs must at least share some functional overlap. However, counter-intuitively, several recent studies reported little functional redundancy between these buffering duplicates. The large yeast genetic interactions released recently allowed us to address these issues on a genome-wide scale. We herein characterized the synthetic genetic interactions for ~500 pairs of yeast duplicated genes originated from either whole-genome duplication (WGD) or small-scale duplication (SSD) events. We established that functional redundancy between duplicates is a pre-requisite and thus is highly predictive of their backup capacity. This observation was particularly pronounced with the use of a newly introduced metric in scoring functional overlap between paralogs on the basis of gene ontology annotations. Even though mutual buffering was observed to be prevalent among duplicated genes, we showed that the observed backup capacity is largely an evolutionarily transient state. The loss of backup capacity generally follows a neutral mode, with the buffering strength decreasing in proportion to divergence time, and the vast majority of the paralogs have already lost their backup capacity. These observations validated previous theoretic predictions about instability of genetic redundancy. However, departing from the general neutral mode, intriguingly, our analysis revealed the presence of natural selection in stabilizing functional overlap between SSD pairs. These selected pairs, both WGD and SSD, tend to have decelerated functional evolution, have higher propensities of co-clustering into the same protein complexes, and share common interacting partners. Our study revealed the general principles for the long-term retention of genetic redundancy. 相似文献