首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Cellular signalling》2014,26(10):2234-2239
CD44 is a hyaluronan binding cell surface signal transducing receptor that influences motility, cell survival and proliferation as well as the formation of tumor microenvironment. CD44 contains two variable regions encoded by variable exons. Alternative splicing, which is often deregulated in cancer, can produce various isoforms of CD44 with properties that may have different tissue specific effects and therefore even diverse effects on cancer progression. This review summarizes and puts together all major regulators of alternative splicing of CD44 in cancer that have been documented so far and that have an experimentally proved effect on CD44 isoform switching. It is important to better understand the mechanisms of alternative splicing of CD44, where all the variability of CD44 originates, to be able to explain the isoform switching and occurrence of variant isoforms of CD44 (CD44v) in cancer.  相似文献   

3.
Splicing factor SRSF10 is known to function as a sequence-specific splicing activator. Here, we used RNA-seq coupled with bioinformatics analysis to identify the extensive splicing network regulated by SRSF10 in chicken cells. We found that SRSF10 promoted both exon inclusion and exclusion. Motif analysis revealed that SRSF10 binding to cassette exons was associated with exon inclusion, whereas the binding of SRSF10 within downstream constitutive exons was associated with exon exclusion. This positional effect was further demonstrated by the mutagenesis of potential SRSF10 binding motifs in two minigene constructs. Functionally, many of SRSF10-verified alternative exons are linked to pathways of stress and apoptosis. Consistent with this observation, cells depleted of SRSF10 expression were far more susceptible to endoplasmic reticulum stress-induced apoptosis than control cells. Importantly, reconstituted SRSF10 in knockout cells recovered wild-type splicing patterns and considerably rescued the stress-related defects. Together, our results provide mechanistic insight into SRSF10-regulated alternative splicing events in vivo and demonstrate that SRSF10 plays a crucial role in cell survival under stress conditions.  相似文献   

4.
5.
Alternative splicing (AS) regulates a variety of biological activities in numerous tissues and organs, including the nervous system. However, the existence and specific roles of AS events during peripheral nerve repair and regeneration remain largely undetermined. In the current study, by mapping splice-crossing sequence reads, we identified AS events and relevant spliced genes in rat sciatic nerve stumps following sciatic nerve crush. AS-related genes at 1, 4, 7, and 14 days post nerve crush were compared with those at 0 day to discover alternatively spliced genes induced by sciatic nerve crush. These injury-induced alternatively spliced genes were then categorized to diseases and biological functions, genetic networks, and canonical signaling pathways. Bioinformatic analysis indicated that these alternatively spliced genes were mainly correlated to immune response, cellular growth, and cellular function maintenance. Our study elucidated AS events following peripheral nerve injury and might help deepen our understanding of the molecular mechanisms underlying peripheral nerve regeneration.  相似文献   

6.
Alternative splicing in the NF-kappaB signaling pathway   总被引:1,自引:0,他引:1  
Leeman JR  Gilmore TD 《Gene》2008,423(2):97-107
  相似文献   

7.
8.
CD94 forms heterodimers with NKG2A, -C, or –E to constitute lectin-like natural killer cell receptors for MHC-E. Its structure differs from other C-type lectins in that the second α-helix is replaced by a loop that forms the interacting interface with the NKG2 molecules. Although CD94 has remained highly conserved mammals, several alternative splicing variants have been detected in some species. To evaluate the prevalence and significance of this phenomenon, we have cloned and sequenced CD94 cDNAs in six species of New World primates from the Cebidae and Atelidae families. Full-length sequences had a mean similarity of 96 % amongst New World primates and of 90 % to the human orthologue, with little variation in the residues interacting with NKG2 or MHC-E molecules. Despite this high conservation, a total of 14 different splice variants were identified, half of which were shared by two or more primate species. Homology-based modeling of the C-type lectin domain showed that most isoforms folded stably, although they had modifications that prevented its interaction with NKG2 and MHC-E. Two isoforms were predicted to replace the typical CD94 loop by a second α-helix, evidencing a domain fold transition from a CD94 structure to a canonical C-type lectin. These two structures were more similar to members of the CLEC lectin family than to the native CD94. Thus, CD94 has remained conserved in primates to maintain functional interactions with NKG2 and MHC-E, while at the same time has diversified by alternative splicing potentially providing additional functional scenarios.  相似文献   

9.
MyD88 is an adaptor protein that is involved in interleukin-1 receptor (IL-1R)- and Toll-like receptor (TLR)-induced activation of NF-kappaB. It is composed of a C-terminal Toll/IL-1R homology (TIR) domain and an N-terminal death domain (DD), which mediate the interaction of MyD88 with the IL-1R/TLR and the IL-1R-associated kinase (IRAK), respectively. The interaction of MyD88 with IRAK triggers IRAK phosphorylation, which is essential for its activation and downstream signaling ability. Both domains of MyD88 are separated by a small intermediate domain (ID) of unknown function. Here, we report the identification of a splice variant of MyD88, termed MyD88(S), which encodes for a protein lacking the ID. MyD88(S) is mainly expressed in the spleen and can be induced in monocytes upon LPS treatment. Although MyD88(S) still binds the IL-1R and IRAK, it is defective in its ability to induce IRAK phosphorylation and NF-kappaB activation. In contrast, MyD88(S) behaves as a dominant-negative inhibitor of IL-1- and LPS-, but not TNF-induced, NF-kappaB activation. These results implicate the ID of MyD88 in the phosphorylation of IRAK. Moreover, the regulated expression and antagonistic activity of MyD88(S) suggest an important role for alternative splicing of MyD88 in the regulation of the cellular response to IL-1 and LPS.  相似文献   

10.
11.
12.
The induction of host antimicrobial molecules following binding of pathogen components to pattern recognition receptors such as CD14 and the Toll-like receptors (TLRs) is a key feature of innate immunity. The human airway epithelium is an important environmental interface, but LPS recognition pathways have not been determined. We hypothesized that LPS would trigger beta-defensin (hBD2) mRNA in human tracheobronchial epithelial (hTBE) cells through a CD14-dependent mechanism, ultimately activating NF-kappa B. An average 3-fold increase in hBD2 mRNA occurs 24 h after LPS challenge of hTBE cells. For the first time, we demonstrate the presence of CD14 mRNA and cell surface protein in hTBE cells and show that CD14 neutralization abolishes LPS induction of hBD2 mRNA. Furthermore, we demonstrate TLR mRNA in hTBE cells and NF-kappa B activation following LPS. Thus, LPS induction of hBD2 in hTBE cells requires CD14, which may complex with a TLR to ultimately activate NF-kappa B.  相似文献   

13.
CD45 encodes a trans-membrane protein-tyrosine phosphatase expressed in diverse cells of the immune system. By combinatorial use of three variable exons 4-6, isoforms are generated that differ in their extracellular domain, thereby modulating phosphatase activity and immune response. Alternative splicing of these CD45 exons involves two heterogeneous ribonucleoproteins, hnRNP L and its cell-type specific paralog hnRNP L-like (LL). To address the complex combinatorial splicing of exons 4-6, we investigated hnRNP L/LL protein expression in human B-cells in relation to CD45 splicing patterns, applying RNA-Seq. In addition, mutational and RNA-binding analyses were carried out in HeLa cells. We conclude that hnRNP LL functions as the major CD45 splicing repressor, with two CA elements in exon 6 as its primary target. In exon 4, one element is targeted by both hnRNP L and LL. In contrast, exon 5 was never repressed on its own and only co-regulated with exons 4 and 6. Stable L/LL interaction requires CD45 RNA, specifically exons 4 and 6. We propose a novel model of combinatorial alternative splicing: HnRNP L and LL cooperate on the CD45 pre-mRNA, bridging exons 4 and 6 and looping out exon 5, thereby achieving full repression of the three variable exons.  相似文献   

14.
Folkesson, Hans G., and Michael A. Matthay. Inhibitionof CD18 or CD11b attenuates acute lung injury after acid instillation in rabbits. J. Appl. Physiol. 82(6):1743-1750, 1997.Acid-induced lung injury is mediatedprimarily by activated neutrophils. Although a prior study demonstratedthat acid-induced neutrophil influx into the air spaces was not CD18dependent, we hypothesized that either a neutralizing anti-CD18monoclonal antibody (MHM23) or a neutrophil inhibitory factor (NIF),NIF (CD11b,18), might attenuate acid-induced lung injury in rabbits byinterfering with neutrophil activation. This hypothesis derived from invitro studies that reported that anti-CD18 therapy prevented tumornecrosis factor--induced neutrophil activation. Hydrochloric acid(pH = 1.5 in one-third normal saline) or one-third normal saline (4 ml/kg) was instilled into the lungs of ventilated, anesthetizedrabbits. The rabbits were studied for 6 h. In acid-instilled rabbitswithout the anti-CD18 monoclonal antibody or NIF (CD11b,18), severelung injury developed. In acid-instilled rabbits, pretreatment (5 minbefore acid) with the anti-CD18 monoclonal antibody (2 mg/kg iv) orpretreatment with the NIF (anti-CD11b,18, 10 mg/kg iv) prevented50-70% of acid-induced abnormalities in oxygenation, the increasein extravascular lung water, and extravascular protein accumulation.The anti-CD18 monoclonal antibody was associated with a significantincrease in air space neutrophils by bronchoalveolar lavage, suggesting that the neutrophils respond normally to chemotactic stimuli but thatthe neutrophils did not injure the lung even though they accumulated inthe air spaces. In summary, neutralization of CD18 attenuates the acutelung injury after acid instillation without reducing the number ofneutrophils in the air spaces, suggesting that anti-CD18 therapy may bebeneficial because of its capacity to reduce neutrophil activation.

  相似文献   

15.
Heyd F  Lynch KW 《Molecular cell》2010,40(1):126-137
Signal-induced alternative splicing of the CD45 gene in human T?cells is essential for proper immune function. Skipping of the CD45 variable exons is controlled, in large part, by the recruitment of PSF to the pre-mRNA substrate upon T?cell activation; however, the signaling cascade leading to exon exclusion has remained elusive. Here we demonstrate that in resting T?cells PSF is directly phosphorylated by GSK3, thus promoting interaction of PSF with TRAP150, which prevents PSF from binding CD45 pre-mRNA. Upon T?cell activation, reduced GSK3 activity leads to reduced PSF phosphorylation, releasing PSF from TRAP150 and allowing it to bind CD45 splicing regulatory elements and repress exon inclusion. Our data place two players, GSK3 and TRAP150, in the complex network that regulates CD45 alternative splicing and demonstrate a paradigm for signal transduction from the cell surface to the RNA processing machinery through the multifunctional protein PSF.  相似文献   

16.
17.
NAD+-dependent isocitrate dehydrogenase (IDH), a key regulatory enzyme in the Krebs cycle, is a multi-tetrameric enzyme. At least three of the subunits in the core tetramer of mammals are unique gene products. Subunits 1/beta and 2/gamma are considered to be regulatory, while subunits 3,4/alpha, comprising half the tetramer, are catalytic. The full sequence was obtained for the major subunit 1 cDNA in bovine heart, IDH 1-A. A second cDNA, rare in heart, was also identified (IDH 1-B). Differences in the two were confined to the 3'-region, suggesting alternative splicing. Screening of brain, kidney, and liver RNA showed the presence of IDH 1-A and 1-B and a third major species, IDH 1-C. Amplification of bovine genomic DNA by PCR across the regions of difference produced a single product. Comparison of the genomic and mRNA sequences showed that IDH 1-A resulted from splicing of exon W to exon Y, eliminating intron w, exon X, and intron x. IDH 1-B was formed by splice junctions between exon W, exon X, and exon Y. IDH 1-C resulted from splicing of exon W to exon X and subsequent retention of intron x. The 2 proteins predicted from these 3 mRNAs are identical over their first 357 residues. Protein IDH 1-A, resulting from a termination codon within exon Y, contains an additional 26 residues. Proteins IDH 1-B and 1-C derive from a common termination codon within exon X and contain an additional 28 residues. The two C-terminal regions differ notably in the number and nature of charged residues, resulting in proteins with a charge difference of 3.2 at pH 7.0. Subunit 1 sequences previously reported from other species grouped with one or the other of the bovine proteins. No evidence was found for alternative splicing in subunit 3,4/alpha. The results of the present study, together with recent work on the 2/gamma subunit [Brenner,V., Nyakatura, G., Rosenthal, A., and Platzer, M. (1998) Genomics 44, 8], indicate that the regulatory subunits of the enzyme, but not the catalytic, possess alternatively spliced forms varying in C-terminal properties with tissue-specific expression. The finding is suggestive of a mechanism for modulation of allosteric regulation tailored to the needs of different tissues.  相似文献   

18.
The human CD44 gene encodes multiple isoforms of a transmembrane protein that differ in their extracellular domains as a result of alternative splicing of its variable exons. Expression of CD44 is tightly regulated according to the type and physiological status of a cell, with expression of high molecular weight isoforms by inclusion of variable exons and low molecular weight isoforms containing few or no variable exons. Human CD44 variable exon 3 (v3) can follow a specific alternative splicing route different from that affecting other variable exons. Here we map and functionally describe the splicing enhancer element within CD44 exon v3 which regulates its inclusion in the final mRNA. The v3 splicing enhancer is a multisite bipartite element consisting of a tandem nonamer, the XX motif, and an heptamer, the Y motif, located centrally in the exon. Each of the three sites of this multisite enhancer partially retains its splicing enhancing capacity independently from each other in CD44 and shows full enhancing function in gene contexts different from CD44. We further demonstrate that these motifs act cooperatively as at least two motifs are needed to maintain exon inclusion. Their action is differential with respect to the splice-site target abutting v3. The first X motif acts on the 3' splice site, the second X motif acts on both splice sites (as a bidirectional exonic splicing enhancer), and the Y motif acts on the 5' splice site. We also show that the multisite v3 splicing enhancer is functional irrespective of flanking intron length and spatial organization within v3.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号