首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysosomal acid phosphatase (LAP) is synthesized as a transmembrane protein with a short carboxy-terminal cytoplasmic tail of 19 amino acids, and processed to a soluble protein after transport to lysosomes. Deletion of the membrane spanning domain and the cytoplasmic tail converts LAP to a secretory protein, while deletion of the cytoplasmic tail as well as substitution of tyrosine 413 within the cytoplasmic tail against phenylalanine causes accumulation at the cell surface. A chimeric polypeptide, in which the cytoplasmic tail of LAP was fused to the ectoplasmic and transmembrane domain of hemagglutinin is rapidly internalized and tyrosine 413 of the LAP tail is essential for internalization of the fusion protein. A chimeric polypeptide, in which the membrane spanning domain and cytoplasmic tail of LAP are fused to the ectoplasmic domain of the Mr 46 kd mannose 6-phosphate receptor, is rapidly transported to lysosomes, whereas wild type receptor is not transported to lysosomes. We conclude that a tyrosine containing endocytosis signal in the cytoplasmic tail of LAP is necessary and sufficient for targeting to lysosomes.  相似文献   

2.
Targeting of lysosomal acid phosphatase with altered carbohydrate   总被引:3,自引:0,他引:3  
Human lysosomal acid phosphatase is transported as a transmembrane protein to lysosomes, where it is converted into a soluble protein by a limited proteolysis (Waheed et al., 1988, EMBO J. 7, 2351-2358). Transport of human lysosomal acid phosphatase in heterologous BHK-21 cells was examined under conditions that impair mannose-6-phosphate receptor-dependent transport, N-glycosylation or processing of N-linked oligosaccharides. Targeting of lysosomal acid phosphatase to lysosomes was neither affected by antibodies blocking the mannose-6-phosphate/IGF II receptor, nor by NH4Cl, which inhibited the mannose-6-phosphate receptor-dependent targeting of soluble lysosomal enzymes. 1-Deoxynojirimycin, 1-deoxymannojirimycin and swainsonine inhibited processing of N-linked oligosaccharides in lysosomal acid phosphatase without significantly affecting its transport. Tunicamycin inhibited N-glycosylation of lysosomal acid phosphatase. The non-glycosylated lysosomal acid phosphatase polypeptides accumulated within light membranes and were not transported to dense lysosomes. These results indicate that transport of lysosomal acid phosphatase is independent of mannose-6-phosphate receptors, does not involve an acid pH-dependent step and does not require processing of N-linked oligosaccharides. N-glycosylation appears to be necessary to achieve a transport competent form of lysosomal acid phosphatase.  相似文献   

3.
M Braun  A Waheed    K von Figura 《The EMBO journal》1989,8(12):3633-3640
Lysosomal acid phosphatase (LAP) is transported as a transmembrane protein to dense lysosomes. The pathway of LAP to lysosomes includes the passage through the plasma membrane. LAP is transported from the trans-Golgi to the cell surface with a half-time of less than 10 min. Cell surface LAP is rapidly internalized. Most of the internalized LAP is transported back to the cell surface. On average, each LAP molecule cycles greater than 15 times between the cell surface and the endosomes before it is transferred to dense lysosomes. At equilibrium approximately 4 times more LAP precursor is present in endosomes than at the cell surface. Exposing cells to reduced temperature or weak bases such as NH4Cl, chloroquine and primaquine decreases the steady-state concentration of LAP at the cell surface. The recycling pathway is operative at greater than or equal to 20 degrees C and does not include passage of the Golgi/trans-Golgi network. LAP is transferred with a half-time of 5-6 h from the plasma membrane/endosome pool to dense lysosomes, from where it does not recycle to the endosome/plasma membrane pool at a measurable rate.  相似文献   

4.
BHK cells expressing human lysosomal acid phosphatase (LAP) transport LAP to lysosomes as an integral membrane protein. In lysosomes LAP is released from the membrane by proteolytic processing, which involves at least two cleavages at the C terminus of LAP. The first cleavage is catalysed by a thiol proteinase at the outside of the lysosomal membrane and removes the bulk of the cytoplasmic tail of LAP. The second cleavage is catalysed by an aspartyl proteinase inside the lysosomes and releases the luminal part of LAP from the membrane-spanning domain. The first cleavage at the cytoplasmic side of the lysosomal membrane depends on acidification of lysosomes and the second cleavage inside the lysosomes depends on prior processing of the cytoplasmic tail. These results suggest that the cytoplasmic tail controls the conformation of the luminal portion of LAP and vice versa.  相似文献   

5.
Lysosomal membrane proteins and soluble lysosomal material were isolated from pulse-chase labelled human skin fibroblasts and examined for incorporation of radioactivity and affinity to immobilized mannose-6-phosphate-specific receptors. Incorporation of radioactivity into lysosomal membrane proteins was delayed by about 2 h on average when compared to that of soluble lysosomal proteins. The lack of binding indicates that a mannose-6-phosphate-independent mechanism is responsible for targeting of lysosomal membrane proteins to lysosomes. In contrast to soluble lysosomal proteins, the membrane proteins did not bind to mannose-6-phosphate specific receptors. The delayed appearance of membrane proteins in lysosomes as compared to that of soluble lysosomal proteins suggested that different pathways are utilized by the two classes of lysosomal proteins.  相似文献   

6.
The mannose 6-phosphate (Man6P) residues that are necessary for the targeting of newly synthesized lysosomal proteins are dephosphorylated after delivery of lysosomal proteins to lysosomes. To examine the role of lysosomal acid phosphatase (LAP) for the dephosphorylation of Man6P residues in lysosomal proteins, the phosphorylation of endogenous lysosomal proteins and of internalized arylsulfatase A was analyzed in mouse L-cells that overexpress human LAP. Non-transfected L-cells dephosphorylate endogenous lysosomal proteins slowly (half time approximately 13 h) as well as internalized arylsulfatase A. A more than 100-fold overexpression of LAP in these cells did not affect the dephosphorylation rate. Control experiments showed that the internalized arylsulfatase A and overexpressed LAP partially colocalize and that under in vitro conditions purified LAP does not dephosphorylate arylsulfatase A. Taken together, these results indicate that LAP is not the mannose 6-phosphatase that dephosphorylates lysosomal proteins after their delivery to lysosomes.  相似文献   

7.
BHK cells transfected with human cathepsin D (CD) cDNA normally segregate the autologous hamster cathepsin D while secreting a large proportion of the human proenzyme. In the present work, we have utilized these transfectants to examine to what extent the mannose-6-phosphate-dependent pathway for lysosomal enzyme segregation contributes to the differential sorting of human and hamster CD. We report that, in recipient control BHK cells, the rate of mannose-6-phosphate-dependent endocytosis of human procathepsin D secreted by transfected BHK cells is lower than that of hamster procathepsin D and much lower than that of human arylsulphatase A. The missorted human enzyme bears phosphorylated oligosaccharides and most of its phosphate residues are “uncovered”, like the autologous enzyme. Thus, despite both the Golgi-associated modifications of oligosaccharides, i.e. the phosphorylation of mannose and the uncovering of mannose-6-phosphate residues, which proceed on human and hamster procathepsin D with comparable efficiency, only the latter is accurately packaged into lysosomes. Ammonium chloride partially affects the lysosomal targeting of cathepsin D in control BHK cells, whereas in transfected cells, this drug strongly inhibits the maturation of human procathepsin D and slightly enhances its secretion. These data indicate that: (1) over-expression of a lysosomal protein does not saturate the Golgi-associated reactions leading to the synthesis of mannose-6-phosphate; (2) a portion of cathepsin D is targeted independently of mannose-6-phosphate receptors in the transfected BHK cells; and (3) whichever mechanism for lysosomal delivery of autologous procathepsin D is involved, this is not saturated by the high rate of expression of human cathepsin D.  相似文献   

8.
Mannose 6-phosphate receptor dependent secretion of lysosomal enzymes.   总被引:13,自引:2,他引:11       下载免费PDF全文
BHK and mouse L cells transfected with the cDNA for the human 46 kd mannose 6-phosphate receptor (MPR 46) secrete excessive amounts of newly synthesized mannose 6-phosphate containing polypeptides. The secretion is dependent on the amount, the recycling and the affinity for ligands of MPR 46. Incubation of transfected cells with antibodies blocking the binding site of MPR 46 reduces the secretion, and cotransfection with the cDNA for the human 300 kd mannose 6-phosphate (MPR 300) restores it to normal values. These results indicate that the two mannose 6-phosphate receptors compete for binding of newly synthesized ligands. In contrast to ligands bound to MPR 300, those bound to the MPR 46 are transported to and released at a site, e.g. early endosomes or plasma membrane, from where they can exit into the medium. Since antibodies blocking the binding site of MPR 46 reduce secretion also in non-transfected BHK and mouse L cells, at least part of the basal secretion of M6P-containing polypeptides is mediated by the endogenous MPR 46.  相似文献   

9.
V Prill  L Lehmann  K von Figura    C Peters 《The EMBO journal》1993,12(5):2181-2193
Lysosomal acid phosphatase (LAP) is synthesized as a type I membrane glycoprotein and targeted to lysosomes via the plasma membrane. Its cytoplasmic tail harbours a tyrosine-containing signal for rapid internalization. Expression in Madine-Darby canine kidney cells results in direct sorting to the basolateral cell surface, rapid endocytosis and delivery to lysosomes. In contrast, a deletion mutant lacking the cytoplasmic tail is delivered to the apical plasma membrane where it accumulates before it is slowly internalized. A chimeric protein, in which the cytoplasmic tail of LAP is fused to the extracytoplasmic and transmembrane domain of the apically sorted haemagglutinin, is sorted to the basolateral plasma membrane. A series of truncation and substitution mutants in the cytoplasmic tail was constructed and comparison of their polarized sorting and internalization revealed that the determinants for basolateral sorting and rapid internalization reside in the same segment of the cytoplasmic tail. The cytoplasmic factors decoding these signals, however, tolerate distinct mutations indicating that different receptors are involved in sorting at the trans-Golgi network and at the plasma membrane.  相似文献   

10.
A 2.2-kilobase cDNA clone for human arylsulfatase B (ASB) and several genomic clones were isolated and sequenced. The deduced amino acid sequence of 533 amino acids contains a 41-amino acid N-terminal signal peptide and a mature polypeptide of 492 amino acid residues. Overexpression of ASB in transfected baby hamster kidney (BHK) cells resulted in up to 68-fold higher ASB activity than in untransfected BHK cells. Pulse-chase labeling showed that ASB was synthesized and secreted as a 64-kDa precursor and processed to a 47-kDa mature form in BHK cells. The 47-kDa ASB form was located in dense lysosomes. Transport of ASB to the lysosomes was accomplished in a mannose 6-phosphate receptor-dependent manner. The ASB cDNA clone hybridizes to 4.8-, 2.5-, and 1.8-kilobase species of RNA from human fibroblasts. The same pattern was observed in RNA from fibroblasts of three Maroteaux-Lamy patients who were deficient in ASB activity, as well as in RNA from fibroblasts of three patients with multiple sulfatase deficiency, in which all known sulfatases were markedly diminished. Deduced amino acid sequences of human arylsulfatase A, human ASB, human steroid sulfatase, human glucosamine-6-sulfatase, and an arylsulfatase from sea urchin showed a substantial degree of similarity suggesting that they arose from a common ancestral gene and are members of an arylsulfatase gene family.  相似文献   

11.
The synthesis, transport and processing of cathepsin C was studied in Morris hepatoma 7777 cells by metabolic labelling, immunoprecipitation and characterization of labelled polypeptides by gel electrophoresis and fluorography. The largest detectable precursor of cathepsin C was a polypeptide of Mr = 92 500. Even 3 min after synthesis this precursor was accompanied by four polypeptides with Mr values ranging from 63 000 to 54 000, indicating cleavage of the precursors within the endoplasmic reticulum. The early forms of cathepsin C were associated with low-buoyant-density organelles containing the markers of endoplasmic reticulum and Golgi complex. About 30% of these early forms were secreted within 3 h after synthesis. The remaining 70% were transferred into dense lysosomes and processed between 2 and 3 h after synthesis to a mixture of the least five major and nine minor polypeptides with Mr values ranging from 73 000 to 12 000. These forms remained stable for at least 3 days. In freshly isolated hepatocytes cathepsin C was processed to forms closely related to those found in the hepatoma cells. Cathepsin C was synthesized in Morris hepatoma 7777 cells as a glycoprotein with mannose-6-phosphate residues that mediated mannose-6-phosphate-specific receptor-dependent uptake in human skin fibroblasts. In contrast to hepatocytes, synthesis of mannose-6-phosphate receptors in Morris hepatoma 7777 cells was below the limit of detection. The hepatoma cells did not express at the cell surface these or other receptors mediating endocytosis of lysosomal enzymes. Further, processing and transport of newly synthesized cathepsin C was largely resistant to NH4Cl. Apparently, cathepsin C is transferred in Morris hepatoma 7777 cells by a mechanism independent of mannose-6-phosphate-specific receptors.  相似文献   

12.
《The Journal of cell biology》1993,123(5):1249-1254
Transforming growth factor-beta (TGF-beta) is secreted in a latent form and activated during co-culture of endothelial cells and smooth muscle cells. Plasmin located on the surface of endothelial cells is required for the activation of latent TGF-beta (LTGF-beta) during co-culture, and the targeting of LTGF-beta to the cellular surface is requisite for its activation. In the present study, the cellular targeting of LTGF- beta was examined. We detected the specific binding of 125I-large LTGF- beta 1 isolated from human platelets to smooth muscle cells but not to endothelial cells. A mAb against the latency-associated peptide (LAP) of large LTGF-beta 1 complex, which blocked the binding of 125I-large LTGF-beta 1 to smooth muscle cells, inhibited the activation of LTGF- beta during co-culture. The binding of 125I-large LTGF-beta 1 could not be competed either by mannose-6-phosphate (300 microM) or by the synthetic peptide Arg-Gly-Asp-Ser (300 micrograms/ml). These results indicate that the targeting of LTGF-beta to smooth muscle cells is required for the activation of LTGF-beta during co-culture of endothelial cells and smooth muscle cells. The targeting of LTGF-beta to smooth muscle cells is mediated by LAP, and the domain of LAP responsible for the targeting to smooth muscle cells may not be related to mannose-6-phosphate or an Arg-Gly-Asp sequence, both of which have been previously proposed as candidates for the cellular binding domains within LAP.  相似文献   

13.
In foregoing studies, we reported that LGP107, a major lysosomal membrane glycoprotein in the rat liver, distributes in and circulates continuously throughout the endocytic membrane system (endosomes, lysosomes and plasma membrane), in hepatocytes (1,2). In the present study we examined whether acid phosphatase (APase), an enzyme that is transported to lysosomes as a transmembrane protein, passes through the cell surface during intracellular transport, because transport of newly synthesized APase to lysosomes involves the passage of endosomes containing a ligand which is internalized via receptors on the cell surface and is finally dispatched to lysosomes for degradation (3). When localization of APase in rat hepatocytes was investigated by immunoelectron microscopy, APase was found to be localized in lysosomes and endosomes, but not in coated pits on the cell surface, which are positive for LGP107, and from which antibodies for LGP107 are internalized. Further, unlike LGP107, newly synthesized APase was not detected in plasma membranes isolated from livers of rats given [35S]methionine, and when cultured hepatocytes were exposed to 125I-labeled anti APase IgG at 37 degrees C, there was no transfer of the antibody to lysosomes even after 24 h incubation. Therefore, these results indicate that intracellular movement of APase does not involve cell surface passage in rat hepatocytes, and clearly differs from the recent report that human APase is transported to lysosomes via the cell surface in BHK cells transfected with its cDNA (4).  相似文献   

14.
Human lysosomal alpha-galactosidase A (alpha-Gal A) was stably overexpressed in CHO cells and its biosynthesis and targeting were investigated. Clone AGA5.3-1000Mx, which was the highest enzyme overexpressor, produced intracellular alpha-Gal A levels of 20,900 U/mg (approximately 100 micrograms of enzyme/10(7) cells) and secreted approximately 13,000 U (or 75 micrograms/10(7) cells) per day. Ultrastructural examination of these cells revealed numerous 0.25-1.5 microns crystalline structures in dilated trans-Golgi network (TGN) and in lysosomes which stained with immunogold particles using affinity-purified anti-human alpha-Gal A antibodies. Pulse-chase studies revealed that approximately 65% of the total enzyme synthesized was secreted, while endogenous CHO lysosomal enzymes were not, indicating that the alpha-Gal A secretion was specific. The recombinant intracellular and secreted enzyme forms were normally processed and phosphorylated; the secreted enzyme had mannose-6-phosphate moieties and bound the immobilized 215-kD mannose-6-phosphate receptor (M6PR). Thus, the overexpressed enzyme's selective secretion did not result from oversaturation of the M6PR-mediated pathway or abnormal binding to the M6PR. Of note, the secreted alpha-Gal A was sulfated and the percent of enzyme sulfation decreased with increasing amplification, presumably due to the inaccessibility of the enzyme's tyrosine residues for the sulfotransferase in the TGN. Overexpression of human lysosomal alpha-N-acetylgalactosaminidase and acid sphingomyelinase in CHO cell lines also resulted in their respective selective secretion. In vitro studies revealed that purified secreted alpha-Gal A was precipitated as a function of enzyme concentration and pH, with 30% of the soluble enzyme being precipitated when 10 mg/ml of enzyme was incubated at pH 5.0. Thus, it is hypothesized that these overexpressed lysosomal enzymes are normally modified until they reach the TGN where the more acidic environment of this compartment causes the formation of soluble and particulate enzyme aggregates. A significant proportion of these enzyme aggregates are unable to bind the M6PR and are selectively secreted via the constitutive secretory pathway, while endogenous lysosomal enzymes bind the M6PRs and are transported to lysosomes.  相似文献   

15.
Transforming growth factor-betas (TGF-betas) are produced by most cells in large latent complexes of TGF-beta and its propeptide (LAP) associated with a binding protein. The latent TGF-beta binding proteins (LTBPs-1, -2 and -3) mediate the secretion and, subsequently, the association of latent TGF-beta complexes with the extracellular matrix (ECM). The association of beta1-LAP with LTBP-1 was characterized at the molecular level with an expression system in mammalian cells, where TGF-beta1 and various fragments of LTBP-1 were co-expressed and secreted with the aid of a signal peptide synthesized to the LTBP-1 constructs. Immunoblotting of the fusion protein complexes indicated that the third 8-Cys repeat of LTBP-1 bound covalently to the LAP region of TGF-beta1. The cysteine required for the association between LTBP-1 and beta1-LAP was mapped to Cys33 of beta1-LAP. The N-terminal region of LTBP-1 consisting of the first 400 amino acids was found to associate covalently with the ECM. The data indicate that an 8-Cys repeat of LTBP is capable of covalent and specific protein-protein interactions. These interactions are mediated by exchanging cysteine disulfide bonds between the core 8-Cys repeat and an optionally associated protein during the secretion. This is, to our knowledge, the first demonstration of an extracellular protein module that is able to exchange cysteine disulfide bonds with heterologous ligand proteins.  相似文献   

16.
17.
This study was conducted to explore the mechanism of activation of transforming growth factor-β1 (TGF-β1) which is critical to its role in many physiological and pathological conditions. To date, almost all reports concerning TGF-β1 activation delineated that release of mature TGF-β1 from latency associated protein (LAP) is required for its activation. We report that latent TGF-β1 (LTGF-β1) released from TGF-β1 genetically modified keratinocytes grown in the top chamber of a co-culture system functions as a fibrogenic factor through interaction with insulin-like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptors of human dermal fibroblasts grown in the lower chamber of this system. Following successful transduction, the pLin-LTGF-β1 vector was amplified in PA317 packaging cells which possess viral structural proteins for vector in the presence of neomycin. Conditioned medium derived from packaging cells containing competent viral particles was then used to transduce either keratinocytes or fibroblasts grown in the upper chamber of a co-culture system, in which a 0.4 μm porous membrane separates the two chambers. In this way, LTGF-β1 produced by transduced cells in the upper chamber is released and diffuses into the lower chambers where dermal fibroblasts are grown. Conditioned medium from the lower chamber was removed 3 days later and used to evaluate the latency and bioactivity of TGF-β1 using enzyme-linked immunosorbent assay (ELISA) and mink lung (Mv1Lu) epithelial growth inhibition assay. Cells were also harvested and used for RNA extraction. The results of these experiments showed that 1) the TGF-β1-LAP complex, which was latent in traditionally used mink lung growth inhibition assay, directly modulated the expression of collagenase, type I, and type III collagen mRNA by dermal fibroblasts; 2) this stimulation was inhibited by M6P in a dose-dependent manner; 3) the TGF-β1-LAP inhibits Mv1Lu epithelial cells only when this complex was incubated with cell membranes isolated from dermal fibroblasts; and 4) LTGF-β1 activation seems to occur through a conformational alteration rather than by release of the mature TGF-β1 from LAP in our co-cultured system. This conformational alteration seems to occur through the interaction of the TGF-β1-LAP complex with the IGF-II/M6P receptors. Thus, the quantity of IGF-II/M6P receptors is important in cellular response to LTGF-β1 in any physiological and pathological conditions. J. Cell. Physiol. 180:61–70, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

18.
The presence of lysosomal acid phosphatase (LAP) in coated pits at the plasma membrane was investigated by immunocytochemistry in thymidine kinase negative mouse L-cells (Ltk-) and baby hamster kidney (BHK) cells overexpressing human LAP (Ltk-LAP and BHK-LAP cells). Double immunogold labeling showed that at various stages of invaginating coated pits LAP colocalized with clathrin and plasma membrane adaptors (HA-2 adaptors). Quantitation of the immunogold label showed similar density of wild-type LAP in coated over non-coated areas of the plasma membrane, whereas an internalization-deficient, truncated mutant of LAP which lacks the cytoplasmic tail was less efficiently included into coated pits. Internalization of anti-LAP antibodies into endosomal vesicles was accompanied by rapid dissociation of the coat proteins as shown by an immunofluorescence assay. The role of clathrin-coated vesicles in internalization of LAP was further corroborated by microinjecting monoclonal antibodies against clathrin or HA-2 adaptors into BHK-LAP cells. Internalization of LAP as detected by an immunofluorescence assay was transiently blocked by microinjected antibodies against clathrin or HA-2 adaptors, whereas unrelated antibodies did not affect internalization. These data suggest that LAP is included into clathrin-coated pits of the plasma membrane for rapid internalization.  相似文献   

19.
Analysis of a cDNA clone derived from retrovirus-transformed rat fibroblasts has recently suggested that the mature 50-amino-acid form of transforming growth factor alpha (TGF alpha) is derived from a 159-amino-acid transmembrane precursor by proteolytic cleavage. To understand the processing of the TGF alpha precursor molecule in more detail, we have expressed this protein in baby hamster kidney (BHK) fibroblasts under control of the metal-ion-inducible metallothionein promoter and characterized the expressed precursor with site-specific antipeptide antibodies. One of the BHK transfectants, termed 5:2, expressed the TGF alpha mRNA in a cadmium- and zinc-inducible manner. The TGF alpha precursor protein was detected by immunoprecipitation analysis of radiolabeled cell cultures. In the induced 5:2 cells, a polypeptide of Mr 13,000 to 17,000 was readily identified by peptide antisera made to three different regions of the TGF alpha precursor protein. No such protein species were observed in BHK cells treated with cadmium and zinc or in uninduced 5:2 cells. However, two cell lines known to produce TGF alpha naturally, Leydig testicular tumor cells and Snyder-Theilan feline sarcoma virus-transformed Fisher rat embryo fibroblasts, possessed detectable levels of immunologically related Mr 13,000 to 17,000 proteins. Cell fractionation studies indicate that the Mr 13,000 to 17,000 species expressed in induced 5:2 cells is membrane associated, consistent with predictions based on the cDNA sequence of the TGF alpha precursor. Media conditioned by induced 5:2 cells contained epidermal growth factor receptor-competing activity, which, upon size fractionation, was similar in size to the mature processed form of TGF alpha. These data show that these nontransformed BHK cells possess the ability to process the TGF alpha precursor molecule into its native form.  相似文献   

20.
We are investigating the molecular mechanisms involved in the localization of lysosomal enzymes in Dictyostelium discoideum, an organism that lacks any detectable mannose-6-phosphate receptors. The lysosomal enzymes alpha-mannosidase and beta-glucosidase are both initially synthesized as precursor polypeptides that are proteolytically processed to mature forms and deposited in lysosomes. Time course experiments revealed that 20 min into the chase period, the pulse-labeled alpha-mannosidase precursor (140 kD) begins to be processed, and 35 min into the chase 50% of the polypeptides are cleaved to mature 60 and 58-kD forms. In contrast, the pulse-labeled beta-glucosidase precursor (105 kD) begins to be processed 10 min into the chase period, and by 30 min of the chase all of the precursor has been converted into mature 100-kD subunits. Between 5 and 10% of both precursors escape processing and are rapidly secreted from cells. Endoglycosidase H treatment of immunopurified radioactively labeled alpha-mannosidase and beta-glucosidase precursor polypeptides demonstrated that the beta-glucosidase precursor becomes resistant to enzyme digestion 10 min sooner than the alpha-mannosidase precursor. Moreover, subcellular fractionation studies have revealed that 70-75% of the pulse-labeled beta-glucosidase molecules move from the rough endoplasmic reticulum (RER) to the Golgi complex less than 10 min into the chase. In contrast, 20 min of chase are required before 50% of the pulse-labeled alpha-mannosidase precursor exits the RER. The beta-glucosidase and alpha-mannosidase precursor polypeptides are both membrane associated along the entire transport pathway. After proteolytic cleavage, the mature forms of both enzymes are released into the lumen of lysosomes. These results suggest that beta-glucosidase is transported from the RER to the Golgi complex and ultimately lysosomes at a distinctly faster rate than the alpha-mannosidase precursor. Thus, our results are consistent with the presence of a receptor that recognizes the beta-glucosidase precursor more readily than the alpha-mannosidase precursor and therefore more quickly directs these polypeptides to the Golgi complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号