首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Summary Ultrastructural parameters of muscle fibre types of the carp (Cyprinus carpio L.) were measured and compared with their contractile properties. In red fibres, which are slower than pink fibres, the relative length of the junction between the T system and the sarcoplasmic reticulum (T-SR junction) is smaller and the Z lines are thicker than in pink fibres. Pink fibres have a smaller relative length of T-SR junction than white fibres from the axial muscles. The two types of red fibres present in carp muscle also differ in their relative lengths of T-SR junction. Significant differences in the relative areas of the SR were not found.The relative volume of myofibrils in red fibres is two-thirds that in pink fibres, a difference that is not reflected in the maximal isometric tetanic tensions of these types. Red fibres, which are less easily fatigued than pink fibres, have larger relative volumes of subsarcolemmal and intermyofibrillar mitochondria. Small pink fibres have a larger relative volume of subsarcolemmal mitochondria than large pink fibres, but have a similar relative volume of intermyofibrillar mitochondria. Small and large pink fibres differ in the relative volumes of their membrane systems, but have similar relative lengths of T-SR junction.  相似文献   

2.
Nebulin, a family of giant proteins with size-variants from 600 to 900 kD in various skeletal muscles, have been proposed to constitute a set of inextensible filaments anchored at the Z line (Wang, K., and J. Wright. 1988. J. Cell Biol. 107:2199-2212). This newly discovered filament of the skeletal muscle sarcomere is an attractive candidate for a length-regulating template of thin filaments. To evaluate this hypothesis, we address the question of coextensiveness of nebulin and the thin filament by searching for a correlation between the size of nebulin variants and the length distribution of the thin filaments in several skeletal muscles. A positive linear correlation indeed exists for a group of six skeletal muscles that display narrow thin filament length distributions. To examine the molecular and architectural differences of nebulin size-variants, we carried out immunoelectron microscopic studies to map out epitope profiles of nebulin variants in these muscles. For this purpose, a panel of mAbs to distinct nebulin epitopes was produced against rabbit nebulin purified by an improved protocol. Epitope profiles of nebulin variants in three skeletal muscles revealed that (a) nebulin is inextensible since nebulin epitopes maintain a fixed distance to the Z line irrespective of the degree of sarcomere stretch; (b) a single nebulin polypeptide spans a minimal distance of 0.9 microns from the Z line; (c) nebulin contains repeating epitopes that are spaced at 40 nm or its multiples; (d) nebulin repeats coincide with thin filament periodicity; (e) nebulin variants differ mainly at either or both ends; and (f) nebulin remains in the sarcomere in actin-free sarcomeres produced by gelsolin treatment. Together, these data suggest that nebulin is an inextensible full-length molecular filament that is coextensive with thin filaments in skeletal muscles. We propose that nebulin acts as a length-regulating template that determines thin filament length by matching its large number of 40-nm repeating domains with an equal number of helical repeats of the actin filaments.  相似文献   

3.
Summary Quantitative ultrastructural and physiological parameters were investigated in three types of muscle fibres ofPerca fluviatilis: white fibres from the m. levator operculi anterior, pink (intermediate) fibres of the m. hyohyoideus and deep red fibres of the m. levator operculi anterior. Times to peak tension and half relaxation times of isometric twitches increased in the mentioned order. The extent of contact between the T system and the sarcoplasmic reticulum and the relative volume and surface area of the terminal cisternae showed an inverse relation with the time to peak tension of the twitch. The maximal isometric tetanic force per unit cross section area was similar for all three investigated types. The inverse relation between the time to peak tension of the twitch and the relative length of contact between T system and SR is in agreement with data obtained for fast- and slow twitch muscle fibres of the carp,Cyprinus carpio L.Abbreviations LOPA musculus levator operculi anterior - HH musculus hyohyoideus - SR Sarcoplasmic reticulum  相似文献   

4.
In leg muscle sarcomeres of a beetle, approximately 6 mum sarcomere length at rest, projectin ( approximately 1200 kDa) was located on the myosin filament up to 2 mum from the both ends of the filament, using immunofluorescence and immunoelectron microscopy. On the other hand, projectin linked the Z line to the myosin filament and bound on the myosin filament in beetle flight muscle, approximately 3-4 mum sarcomere length at rest. Connectin-like protein ( approximately 3000 kDa) was detected by immunoblot tests in beetle, bumblebee and waterbug leg muscles. Immunofluorescence and immunoelectron microscopic observations revealed that the connectin-like protein linked the myosin filament to the Z line in beetle leg muscle.  相似文献   

5.
The fibres of superficial and deep abductor muscles of the pectoral fins of the stripped weakfish, Cynoscion guatucupa have been studied using histochemical techniques: succinic dehydrogenase (SDH) for mitochondria, periodic acid–Schiff (PAS) for glycogen, myosin‐adenosintriphosphatase (mATPase) to identify different fibre types based on the contraction speed and modified ATPase to identify capillaries. The fibre diameters were measured, and the capillaries of the main fibre types – red, pink and white— were counted. The two muscles showed both macroscopically and microscopically two well‐differentiated zones with predominant white fibres. The area of insertion of muscles into the fin rays had red, pink and white fibres. The origin zone of the muscle into the bone was composed by white fibres only. Both zones of white muscle evidenced a mosaic of small, medium and large polygonal white fibres. Red, pink and white muscles showed a wide histochemical diversity of fibre subtypes. The area per peripheral capillary increased from the red to the white muscles. Due to the predominance of white fibres, the pectoral fins of C. guatucupa were mainly involved in rapid movements to stop/discontinue and stabilize the body during swimming.  相似文献   

6.
Summary The fine structure of the red and white myotomal muscles of a marine teleost, the coalfish Gadus virens, has been examined and ultrastructural measurements and analyses carried out. The sarcomere lengths of the red and white fibres were found to be 1.60 minimum, 1.82 maximum and 1.70 minimum, 1.85 maximum, respectively. No significant difference was found between the red and white fibres in their percentage of sarcoplasmic reticulum and T system. Both were found to have regularly occurring triads at the Z disk level, to have distinctive M lines and to be multiply innervated. Ultrastructurally the two fibres can be distinguished by the thicker Z line and more abundant mitochondria of the red fibre, and by the ribbon-shaped peripheral myofibrils of the white fibres. The structure of the fibres in these two types of muscle is discussed in relation to their possible role in swimming.This work was supported by a research grant from the National Environmental Research Council.  相似文献   

7.
The mechanisms of myofibril growth proliferation were investigated in the red and white muscles of fish. In both types of muscle the ratio of lattice filament spacings between the Z disk and M line was found to be greater than that required for perfect transformation of a square into a hexagonal lattice. This mismatch was considered to result in the thin filaments being pulled obliquely instead of at right angles to the Z disk. The angle of pull of the thin filaments was measured in longitudinal sections. The splitting process was found to decrease the degree of pull. Splitting was also observed in transverse sections of the peripheral myofibrils. In both red and white fibres these myofibrils were found to commence splitting when they reached a size of approximately 1-2 mum diameter. Evidence from ultrastructural and autoradiographical studies suggested that growth of the myofibrils within the fibres is centrifugal. The outermost myofibrils appear to be the ones which are being built up and which split. The data indicated that in fish muscle a considerable number of filaments may be added to the daughter regions whilst splitting of the myofibril is still continuing.  相似文献   

8.
Summary The ultrastructure and vascular supply of the different fibre types in the lateral muscles of the sturgeon Acipenser stellatus were studied by light- and electron microscopy and morphometry. Three fibre types form separate layers without intermingling. The red fibres are superficial, the white fibres deep and the intermediate fibres between them. From morphometric analyses, the mitochondrial volume fraction in red fibres is 30%, in intermediate fibres 3.7% and in white fibres 0.7%. Z lines are most fuzzy in the red fibres. Triads of the sarcotubular system are always situated at the level of the Z discs. In red fibres the three elements are arranged in a series along the myofibrils, whereas in white fibres they are arranged transversely and in the intermediate fibres they are aligned obliquely. The number of capillaries surrounding each fibre is 2.3, 0.9 and 0.2 for the red, intermediate and white fibres, respectively. In red fibres 16% of the surface is directly covered by capillaries. The corresponding percentages for intermediate and white fibres are 5 and 1, respectively. Per unit volume of the fibre, the directly vascularised fibre surface in red fibres is about ten times larger than that of white fibres.The degree of vascularisation of the fibre types is directly related to the volume fraction of mitochondria, and thus to their aerobic capacities.  相似文献   

9.
Titin (also known as connectin) is a striated-muscle-specific protein that spans the distance between the Z- and M-lines of the sarcomere. The elastic segment of the titin molecule in the I-band is thought to be responsible for developing passive tension and for maintaining the central position of thick filaments in contracting sarcomeres. Different muscle types express isoforms of titin that differ in their molecular mass. To help to elucidate the relation between the occurrence of titin isoforms and the functional properties of different fibre types, we investigated the presence of different titin isoforms in red and white fibres of the axial muscles of carp. Gel electrophoresis of single fibres revealed that the molecular mass of titin was larger in red than in white fibres. Fibres from anterior and posterior axial muscles were also compared. For both white and red fibres the molecular mass of titin in posterior muscle fibres was larger than in anterior muscle fibres. Thus, the same fibre type can express different titin isoforms depending on its location along the body axis. The contribution of titin to passive tension and stiffness of red anterior and posterior fibres was also determined. Single fibres were skinned and the sarcomere length dependencies of passive tension and passive stiffness were determined. Measurements were made before and after extracting thin and thick filaments using relaxing solutions with 0.6 mol · l−1 KCl and 1 mol · l−1 KI. Tension and stiffness measured before extraction were assumed to result from both titin and intermediate filaments, and tension after extraction from only intermediate filaments. Compared to mammalian skeletal muscle, intermediate filaments developed high levels of tension and stiffness in both posterior and anterior fibres. The passive tension-sarcomere length curve of titin increased more steeply in red anterior fibres than in red posterior fibres and the curve reached a plateau at a shorter sarcomere length. Thus, the smaller titin isoform of anterior fibres results in more passive tension and stiffness for a given sarcomere strain. During continuous swimming, red fibres are exposed to larger changes in sarcomere strain than white fibres, and posterior fibres to larger changes in strain than anterior fibres. We propose that sarcomere strain is one of the functional parameters that modulates the expression of different titin isoforms in axial muscle fibres of carp. Accepted: 7 May 1997  相似文献   

10.
Carp show a partial compensation in metabolic rate and activity following temperature acclimation. In the present study crucian carp, Carassius carassius , were acclimated for eight weeks to either 2deg; C or 28deg; C. The effects of temperature acclimation on muscle fibre ultrastructure has been investigated. The fractional volume (%) of each fibre type occupied by mitochondria and myofibrils was determined using a point counting morphometric method. Mitochondrial density was found to be higher in the muscles of cold (red fibres 25%; pink fibres 20% and white fibres 4%) than in those of warm acclimated fish (red fibres 14%, pink fibres 11%, white fibres 1%). The proportion of subsarcolemmal to intra-myofibrillar mitochondria was significantly lower in the red fibres of cold acclimated fish. Metabolic compensation to low temperatures are therefore associated with an increase in the number of mitochondria per cell. In contrast, the fractional volume occupied by myofibrils actually decreased following cold acclimation. Evidence is reviewed that temperature compensation of contractile activity results from qualitative rather than quantitative changes in myofibrillar proteins.  相似文献   

11.
At muscle-tendon junctions of red and of white axial muscle fibres of carp, new sarcomeres are found adjacent to existing sarcomeres along the bundles of actin filaments that connect the myofibrils with the junctional sarcolemma. As the filament bundles that transmit force to the junction originate proximal to new sarcomeres, they probably relieve these new sarcomeres from premature loading. In red fibres, these filament bundles are long (up to 20 m) and dense, permitting light-microscopical immunohistochemistry (double reactions: anti-titin or anti--actinin and phalloidin). New sarcomeres have clear I bands; their A band lengths are similar to those of older sarcomeres and the thick filaments lie in register. T tubules are found at the distal side of new sarcomeres but terminal Z lines are absent. The late addition of -actinin suggests that -actinin mainly has a stabilizing role in sarcomere formation. The presence of titin in the terminal fibre protrusions is in agreement with its supposed role in sarcomere formation, viz. the integration of thin and thick filaments. The absence of a terminal Z line from sarcomeres with well-registered A bands suggests that this structure is not essential for the anchorage of connective (titin) filaments.  相似文献   

12.
Diversity of Striated Muscle   总被引:5,自引:0,他引:5  
A broad comparative survey has been made correlating ultrastructureof cross-striated fibers with contractile properties in bothinvertebrates and vertebrates. Most of the muscles were foundto be heterogeneous in fiber-composition as indicated by: lengthof sarcomere, extent of SR, number of invaginating tubules,numbers of mitochondria, etc. Z discs and M bands have markedlydifferent structures in different fibers. The general conceptof the "fibrillar" nature of striated muscle is challenged.It is suggested that following excitation the responses of individualsarcomeres, or parts of sarcomeres, are relatively independent.The possibility that all striated muscles contain a very thinelastic filament in parallel with actin and myosin, which mayalso be contractile, is raised.  相似文献   

13.
Slow type I fibers in soleus and fast white (IIa/IIx, IIx), fast red (IIa), and slow red (I) fibers in gastrocnemius were examined electron microscopically and physiologically from pre- and postflight biopsies of four astronauts from the 17-day, Life and Microgravity Sciences Spacelab Shuttle Transport System-78 mission. At 2.5-microm sarcomere length, thick filament density is approximately 1,012 filaments/microm(2) in all fiber types and unchanged by spaceflight. In preflight aldehyde-fixed biopsies, gastrocnemius fibers possess higher percentages (approximately 23%) of short thin filaments than soleus (9%). In type I fibers, spaceflight increases short, thin filament content from 9 to 24% in soleus and from 26 to 31% in gastrocnemius. Thick and thin filament spacing is wider at short sarcomere lengths. The Z-band lattice is also expanded, except for soleus type I fibers with presumably stiffer Z bands. Thin filament packing density correlates directly with specific tension for gastrocnemius fibers but not soleus. Thin filament density is inversely related to shortening velocity in all fibers. Thin filament structural variation contributes to the functional diversity of normal and spaceflight-unloaded muscles.  相似文献   

14.
Step changes in length (between -3 and +5 nm per half-sarcomere) were imposed on isolated muscle fibers at the plateau of an isometric tetanus (tension T0) and on the same fibers in rigor after permeabilization of the sarcolemma, to determine stiffness of the half-sarcomere in the two conditions. To identify the contribution of actin filaments to the total half-sarcomere compliance (C), measurements were made at sarcomere lengths between 2.00 and 2.15 microm, where the number of myosin cross-bridges in the region of overlap between the myosin filament and the actin filament remains constant, and only the length of the nonoverlapped region of the actin filament changes with sarcomere length. At 2.1 microm sarcomere length, C was 3.9 nm T0(-1) in active isometric contraction and 2.6 nm T0(-1) in rigor. The actin filament compliance, estimated from the slope of the relation between C and sarcomere length, was 2.3 nm microm(-1) T0(-1). Recent x-ray diffraction experiments suggest that the myosin filament compliance is 1.3 nm microm(-1) T0(-1). With these values for filament compliance, the difference in half-sarcomere compliance between isometric contraction and rigor indicates that the fraction of myosin cross-bridges attached to actin in isometric contraction is not larger than 0.43, assuming that cross-bridge elasticity is the same in isometric contraction and rigor.  相似文献   

15.
Summary The pink muscle of several Teleosts was examined immunohistochemically using antisera specific for the myosins of red and white muscle, and histochemically using various methods for demonstrating myosin ATPase (in ATPase) activity.In the catfish the pink muscle consists of 2 different layers of fibres. The superficial layer has a low mATPase activity after both acid and alkali pre-incubation, whereas the deeper layer has a high mATPase activity after acid and alkali pre-incubation, being more resistent to these conditions even than is the white muscle.In the trout the pink muscle is composed of fibres with the same mATPase activity as in the superficial pink muscle of the catfish, whereas in the rock goby, goldfish, mullet and guppy the pink muscle is like the deep pink layer of the catfish.Immunohistochemically the fibres of the pink muscle behave like the white muscle fibres except in the guppy and rock goby in which at the level of the lateral line there occurs a transition zone between red and pink fibres. The fibres of this region react with both anti-fast and (to a lesser extent) anti-slow myosin antisera, and have a mATPase activity which, going from the superficial to the deeper fibres, gradually loses the red muscle characteristics to acquire those of the main pink muscle layer.  相似文献   

16.
The density distribution associated with two characteristic equatorial reflections of the X-ray diagram indicates a movement of myosin cross-bridge towards the lattice position occupied by the actin. The extent of this mass transfer depends on the concentrations of ATP and Ca++ in the medium. As cross-bridges are still moving away from the myosin filament backbone in fibres stretched to a sarcomere length where the two sets of filaments no longer overlap, simply on adding low levels of Ca++ ions, this suggests a Ca++-sensitive regulatory system on the myosin.  相似文献   

17.
The pink muscle of several Teleosts was examined immunohistochemically using antisera specific for the myosins of red and white muscle, and histochemically using various methods for demonstrating myosin ATPase (mATPase) activity. In the catfish the pink muscle consists of 2 different layers of fibres. The superficial layer has a low mATPase activity after both acid and alkali pre-incubation, whereas the deeper layer has a high mATPase activity after acid and alkali pre-incubation, being more resistent to these conditions even than is the white muscle. In the trout the pink muscle is composed of fibres with the same mATPase activity as in the superficial pink muscle of the catfish, whereas in the rock goby, goldfish, mullet and guppy the pink muscle is like the deep pink layer of the catfish. Immunohistochemically the fibres of the pink muscle behave like the white muscle fibres except in the guppy and rock goby in which at the level of the lateral line there occurs a transition zone between red and pink fibres. The fibres of this region react with both anti-fast and (to a lesser extent) anti-slow myosin antisera, and have a mATPase activity which, going from the superficial to the deeper fibres, gradually loses the red muscle characteristics to acquire those of the main pink muscle layer.  相似文献   

18.
《The Journal of cell biology》1988,107(6):2199-2212
Nebulin, a giant myofibrillar protein (600-800 kD) that is abundant (3%) in the sarcomere of a wide range of skeletal muscles, has been proposed as a component of a cytoskeletal matrix that coexists with actin and myosin filaments within the sarcomere. Immunoblot analysis indicates that although polypeptides of similar size are present in cardiac and smooth muscles at low abundance, those proteins show no immunological cross-reactivity with skeletal muscle nebulin. Gel analysis reveals that nebulins in various skeletal muscles of rabbit belong to at least two classes of size variants. A monospecific antibody has been used to localize nebulin by immunoelectron microscopy in a mechanically split rabbit psoas muscle fiber preparation. Labeled split fibers exhibit six pairs of stripes of antibody-imparted transverse densities spaced at 0.1-1.0 micron from the Z line within each sarcomere. These epitopes maintain a fixed distance to the Z line irrespective of sarcomere length and do not exhibit the characteristic elastic stretch-response of titin epitopes within the I band domain. It is proposed that nebulin constitutes a set of inextensible filaments attached at one end to the Z line and that nebulin filaments are in parallel, and not in series, with titin filaments. Thus the skeletal muscle sarcomere may have two sets of nonactomyosin filaments: a set of I segment-linked nebulin filaments and a set of A segment-linked titin filaments. This four-filament sarcomere model raises the possibility that nebulin and titin might act as organizing templates and length- determining factors for actin and myosin respectively.  相似文献   

19.
The fine structure of the cardiac muscle of the horseshoe crab, Limulus polyphemus, has been studied with respect to the organization of its contractile material, and the structure of its organelles and the cell junctions. Longitudinal sections show long sarcomeres (5.37 µ at Lmax), wide A bands (2.7 µ), irregular Z lines, no M line, and no apparent H zone. Transverse sections through the S zone of the A band show that each thick filament is ca. 180 A in diameter, is circular in profile with a center of low density, and is surrounded by an orbit of 9–12 thin filaments, each 60 A in diameter. Thick filaments are confined to the A band: thin filaments originate at the Z band, extend through the I band, and pass into the A band between the thick filaments. The sarcolemmal surface area is increased significantly by intercellular clefts. Extending into the fiber from these clefts and from the sarcolemma, T tubules pass into the fiber at the A-I level. Each fibril is enveloped by a profuse membranous covering of sarcoplasmic reticulum (SR). Sacculations of the SR occur at the A-I boundary where they make diadic contact with longitudinal branches of the T system. These branches also extend toward the Z, enlarge at the Z line, and pass into the next sarcomere. Infrequently noted were intercalated discs possessing terminal insertion and desmosome modifications, but lacking close junctions (fasciae occludentes). These structural details are compared with those of mammalian cardiac and invertebrate muscles.  相似文献   

20.
Trunk and limb muscles from fetal and newborn rabbits were investigated by means of light and electron microscopes. At 14 days gestation, the presumptive myoblasts migrate away from the myotome to form the anlage of the muscle of the trunk and limb. Among the population of undifferentiated cells, the myoblasts were recognized due to the presence of actin and myosin filaments. The aggregates of thin and thick filaments appear at the periphery of the cells. There is a great variety of filament assembly. The presence of Z band material appears to be essential for sarcomere formation. At 14 days of gestation the myotubes are more numerous in the limb than in the trunk. The presence of unmaturated fibrils with absence of the M line in the sarcomeres was observed. By day 18 of gestation the myotubes are wider and aggregate to form small bundles. The myofibrils were more numerous and the vesicles of the SR precursor, partly incrustated with ribosomes were dispersed among them. At day 22 of gestation the myotubes are thicker because of the myofibrils which are far more numberous. The sarcomeres were more fully developed, with the M line present. At day 28 of gestation and 3 days after delivery the already developed myofibers were present with a well organized SR system and fully developed sarcomeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号