首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
fasiclin II (fas II), a member of the immunoglobulin superfamily, was previously characterized and cloned in grasshopper. To analyze the function of this molecule, we cloned the Drosophila fas II homolog and generated mutants in the gene. In both grasshopper and Drosophila, fasciclin II is expressed on the MP1 fascicle and a subset of other axon pathways. In fas II mutant Drosophila embryos, the CNS displays no gross phenotype, but the MP1 fascicle fails to develop. The MP1, dMP2, and vMP2 growth cones fail to recognize one another or other axons that normally join the MP1 pathway. During their normal period of axon out-growth, these growth cones stall and do not join any other neighboring pathway. Thus, fasciclin II functions as a neuronal recognition molecule for the MP1 axon pathway. These studies serve as molecular confirmation for the existence of functional labels on specific axon pathways in the developing nervous system.  相似文献   

2.
Fasciclin III: a novel homophilic adhesion molecule in Drosophila   总被引:16,自引:0,他引:16  
P M Snow  A J Bieber  C S Goodman 《Cell》1989,59(2):313-323
Drosophila fasciclin III is an integral membrane glycoprotein that is expressed on a subset of neurons and fasciculating axons in the developing CNS, as well as in several other tissues during development. Here we report on the isolation of a full-length cDNA encoding an 80 kd form of fasciclin III. We have used this cDNA, under heat shock control, to transfect the relatively nonadhesive Drosophila S2 cell line. Examination of these transfected cells indicates that fasciclin III is capable of mediating adhesion in a homophilic, Ca2+-independent manner. Sequence analysis reveals that fasciclin III encodes a transmembrane protein with no significant homology to any known protein, including the previously characterized families of vertebrate cell adhesion molecules. The distribution of this adhesion molecule on subsets of fasciculating axons and growth cones during Drosophila development suggests that fasciclin III plays a role in growth cone guidance.  相似文献   

3.
A number of different cell surface glycoproteins expressed in the central nervous system (CNS) have been identified in insects and shown to mediate cell adhesion in tissue culture systems. The fasciclin I protein is expressed on a subset of CNS axon pathways in both grasshopper and Drosophila. It consists of four homologous 150-amino acid domains which are unrelated to other sequences in the current databases, and is tethered to the cell surface by a glycosyl-phosphatidylinositol linkage. In this paper we examine in detail the expression of fasciclin I mRNA and protein during Drosophila embryonic development. We find that fasciclin I is expressed in several distinct patterns at different stages of development. In blastoderm embryos it is briefly localized in a graded pattern. During the germ band extended period its expression evolves through two distinct phases. Fasciclin I mRNA and protein are initially localized in a 14-stripe pattern which corresponds to segmentally repeated patches of neuroepithelial cells and neuroblasts. Expression then becomes confined to CNS and peripheral sensory (PNS) neurons. Fasciclin I is expressed on all PNS neurons, and this expression is stably maintained for several hours. In the CNS, fasciclin I is initially expressed on all commissural axons, but then becomes restricted to specific axon bundles. The early commissural expression pattern is not observed in grasshopper embryos, but the later bundle-specific pattern is very similar to that seen in grasshopper. The existence of an initial phase of expression on all commissural bundles helps to explain the loss-of-commissures phenotype of embryos lacking expression of both fasciclin I and of the D-abl tyrosine kinase. Fasciclin I is also expressed in several nonneural tissues in the embryo.  相似文献   

4.
K Zinn  L McAllister  C S Goodman 《Cell》1988,53(4):577-587
The fasciclin I, II, and III glycoproteins are expressed on different subsets of axon bundles (fascicles) in insect embryos and are thus candidates for surface recognition molecules involved in growth cone guidance. Here we present the sequence of grasshopper fasciclin I and the identification and sequence of the Drosophila fasciclin I homolog. In both species, fasciclin I appears to be an extrinsic membrane protein with a signal sequence but no transmembrane region; the protein comprises four homologous domains of approximately 150 amino acids each. Antibodies against Drosophila fasciclin I reveal that it is expressed on the surface of a subset of commissural axon pathways in the embryonic central nervous system and on all sensory axon pathways in the peripheral nervous system. This pattern of expression is similar to that in grasshopper.  相似文献   

5.
Fasciclin I is a membrane-associated glycoprotein that is regionally expressed on a subset of fasciculating axons during neuronal development in insects; it is expressed on apposing cell surfaces, suggesting a role in specific cell adhesion. In this paper we show that Drosophila fasciclin I is a novel homophilic cell adhesion molecule. When the nonadhesive Drosophila S2 cells are transfected with the fasciclin I cDNA, they form aggregates that are blocked by antisera against fasciclin I. When cells expressing fasciclin I are mixed with cells expressing fasciclin III, another Drosophila homophilic adhesion molecule, the mixture sorts into aggregates homogeneous for either fasciclin I- or fasciclin III-expressing cells. The ability of these two novel adhesion molecules to mediate cell sorting in vitro suggests that they might play a similar role during neuronal development.  相似文献   

6.
Monoclonal antibody 6F8 was used to characterize and clone fasciclin IV, a new axonal glycoprotein in the grasshopper, and to study its function during growth cone guidance. Fasciclin IV is dynamically expressed on a subset of axon pathways in the developing CNS and on circumferential bands of epithelial cells in developing limb buds. One of these bands corresponds to the location where the growth cones of the Ti1 pioneer neurons make a characteristic turn while extending toward the CNS. Embryos cultured in the 6F8 antibody or Fab exhibit aberrant formation of this axon pathway. cDNA sequence analysis suggests that fasciclin IV has a signal sequence; long extracellular, transmembrane, and short cytoplasmic domains; and shows no homology with any protein in the available data bases. Thus, fasciclin IV appears to be a novel integral membrane protein that functions in growth cone guidance.  相似文献   

7.
Wills Z  Marr L  Zinn K  Goodman CS  Van Vactor D 《Neuron》1999,22(2):291-299
The ability of neuronal growth cones to be guided by extracellular cues requires intimate communication between signal transduction systems and the dynamic actin-based cytoskeleton at the leading edge. Profilin, a small, actin-binding protein, has been proposed to be a regulator of the cell motility machinery at leading edge membranes. However, its requirement in the developing nervous system has been unknown. Profilin associates with members of the Enabled family of proteins, suggesting that Profilin might link Abl function to the cytoskeleton. Here, genetic analysis in Drosophila is used to demonstrate that mutations in Profilin (chickadee) and Abl (abl) display an identical growth cone arrest phenotype for axons of intersegmental nerve b (ISNb). Moreover, the phenotype of a double mutant suggests that these components function together to control axonal outgrowth.  相似文献   

8.
Fasciclin I is a homophilic neural cell adhesion molecule which is regionally expressed on a subset of fasciculating axons in both the grasshopper and Drosophila embryo, suggesting a role in axonal recognition. It is also dynamically expressed on a variety of other embryonic tissues. Biochemical analysis of the fasciclin I glycoprotein from Drosophila embryonic membranes and Schneider 1 cells indicates that it is tightly associated with the lipid bilayer by a phosphatidylinositol lipid moiety. In Drosophila embryos a large fraction of fasciclin I protein has lost its membrane anchor. The ratio of this soluble form to the phosphatidylinositol-linked form changes during embryogenesis. We speculate that removal of the phosphatidylinositol lipid from the fasciclin I protein could be a mechanism to regulate its adhesive function.  相似文献   

9.
Calmodulin and profilin coregulate axon outgrowth in Drosophila   总被引:4,自引:0,他引:4  
Coordinated regulation of actin cytoskeletal dynamics is critical to growth cone movement. The intracellular molecules calmodulin and profilin actively regulate actin-based motility and participate in the signaling pathways used to steer growth cones. Here we show that in the developing Drosophila embryo, calmodulin and profilin convey complimentary information that is necessary for appropriate growth cone advance. Reducing calmodulin activity by expression of a dominant inhibitor (KA) stalls axon extension of pioneer neurons within the CNS, while a partial loss of profilin function decreases extension of motor axons in the periphery. Yet, surprisingly, when calmodulin and profilin are simultaneously reduced, the ability of both CNS pioneer axons and motor axons to extend beyond the choice points is restored. In the CNS, at the time when growth cones must decide whether to cross or not to cross the midline, a reduction in calmodulin and/or roundabout signaling causes axons to cross the midline inappropriately. These inappropriate crossings are suppressed when profilin activity is simultaneously reduced. Interestingly, the mutual suppression of calmodulin and profilin activity requires a minimal level of profilin. In KA combinations with profilin null alleles, defects in axon extension and midline guidance are synergistically enhanced rather than suppressed. Together, our data indicate that the growth cone must coordinate the activity of both calmodulin and profilin in order to advance past selected choice points, including those dictating midline crossovers.  相似文献   

10.
The Dock SH2-SH3 domain adapter protein, a homolog of the mammalian Nck oncoprotein, is required for axon guidance and target recognition by photoreceptor axons in Drosophila larvae. Here we show that Dock is widely expressed in neurons and at muscle attachment sites in the embryo, and that this expression pattern has both maternal and zygotic components. In motoneurons, Dock is concentrated in growth cones. Loss of zygotic dock function causes a selective delay in synapse formation by the RP3 motoneuron at the cleft between muscles 7 and 6. These muscles often completely lack innervation in late stage 16 dock mutant embryos. RP3 does form a synapse later in development, however, because muscles 7 and 6 are normally innervated in third-instar mutant larvae. The absence of zygotically expressed Dock also results in subtle defects in a longitudinal axon pathway in the embryonic central nervous system. Concomitant loss of both maternally and zygotically derived Dock dramatically enhances these central nervous system defects, but does not increase the delay in RP3 synaptogenesis. These results indicate that Dock facilitates synapse formation by the RP3 motoneuron and is also required for guidance of some interneuronal axons The involvement of Dock in the conversion of the RP3 growth cone into a presynaptic terminal may reflect a role for Dock-mediated signaling in remodeling of the growth cone's cytoskeleton.  相似文献   

11.
Bifocal is a putative cytoskeletal regulator and a Protein phosphatase-1 (PP1) interacting protein that mediates normal photoreceptor morphology in Drosophila. We show here that Bif and PP1-87B as well as their ability to interact with each other are required for photoreceptor growth cone targeting in the larval visual system. Single mutants for bif or PP1-87B show defects in axonal projections in which the axons of the outer photoreceptors bypass the lamina, where they normally terminate. The data show that the functions of bif and PP1-87B in either stabilizing R-cell morphology (for Bif) or regulating the cell cycle (for PP1-87B) can be uncoupled from their function in visual axon targeting. Interestingly, the axon targeting phenotypes are observed in both PP1-87B mutants and PP1-87B overexpression studies, suggesting that an optimal PP1 activity may be required for normal axon targeting. bif mutants also display strong genetic interactions with receptor tyrosine phosphatases, dptp10d and dptp69d, and biochemical studies demonstrate that Bif interacts directly with F-actin in vitro. We propose that, as a downstream component of axon signaling pathways, Bif regulates PP1 activity, and both proteins influence cytoskeleton dynamics in the growth cone of R cells to allow proper axon targeting.  相似文献   

12.
13.
Mutations in the genes for components of the dynein-dynactin complex disrupt axon path finding and synaptogenesis during metamorphosis in the Drosophila central nervous system. In order to better understand the functions of this retrograde motor in nervous system assembly, we analyzed the path finding and arborization of sensory axons during metamorphosis in wild-type and mutant backgrounds. In wild-type specimens the sensory axons first reach the CNS 6-12 h after puparium formation and elaborate their terminal arborizations over the next 48 h. In Glued1 and Cytoplasmic dynein light chain mutants, proprioceptive and tactile axons arrive at the CNS on time but exhibit defects in terminal arborizations that increase in severity up to 48 h after puparium formation. The results show that axon growth occurs on schedule in these mutants but the final process of terminal branching, synaptogenesis, and stabilization of these sensory axons requires the dynein-dynactin complex. Since this complex functions as a retrograde motor, we suggest that a retrograde signal needs to be transported to the nucleus for the proper termination of some sensory neurons.  相似文献   

14.
From a screen for genes expressed and required in the Drosophila salivary gland, we identified pasilla (ps), which encodes a set of proteins most similar to human Nova-1 and Nova-2. Nova-1 and Nova-2 are nuclear RNA-binding proteins normally expressed in the CNS where they directly regulate splicing. In patients suffering from paraneoplastic opsoclonus myoclonus ataxia (POMA), Nova-1 and Nova-2 proteins are present as auto-antigens. Consistent with a role in splicing, PS is localized to nuclear puncta. The salivary glands of ps mutants internalize normally and maintain epithelial polarity. However, the mutant salivary glands develop irregularities in overall morphology and have defects in apical secretion. The secretory defects in ps mutants provide a potential mechanism for the loss of motor function observed in POMA patients.  相似文献   

15.
The Semaphorins are a family of secreted and transmembrane proteins known to elicit growth cone repulsion and collapse. We made and characterized a putative null mutant of the C. elegans gene semaphorin-2a (Ce-sema-2a). This mutant failed to complement mutants of mab-20 (Baird, S. E., Fitch, D. H., Kassem, I. A. A. and Emmons, S. W. (1991) Development 113, 515-526). In addition to low-frequency axon guidance errors, mab-20 mutants have unexpected defects in epidermal morphogenesis. Errant epidermal cell migrations affect epidermal enclosure of the embryo, body shape and sensory rays of the male tail. These phenotypic traits are explained by the formation of inappropriate contacts between cells of similar type and suggest that Ce-Sema-2a may normally prevent formation or stabilization of ectopic adhesive contacts between these cells.  相似文献   

16.
A defining characteristic of neuronal cell type is the growth of axons and dendrites into specific layers and columns of the brain. Although differences in cell surface receptors and adhesion molecules are known to cause differences in synaptic specificity, differences in downstream signaling mechanisms that determine cell type-appropriate targeting patterns are unknown. Using a forward genetic screen in Drosophila, we identify the GTPase effector Genghis khan (Gek) as playing a crucial role in the ability of a subset of photoreceptor (R cell) axons to innervate appropriate target columns. In particular, single-cell mosaic analyses demonstrate that R cell growth cones lacking Gek function grow to the appropriate ganglion, but frequently fail to innervate the correct target column. Further studies reveal that R cell axons lacking the activity of the small GTPase Cdc42 display similar defects, providing evidence that these proteins regulate a common set of processes. Gek is expressed in all R cells, and a detailed structure-function analysis reveals a set of regulatory domains with activities that restrict Gek function to the growth cone. Although Gek does not normally regulate layer-specific targeting, ectopic expression of Gek is sufficient to alter the targeting choices made by another R cell type, the targeting of which is normally Gek independent. Thus, specific regulation of cytoskeletal responses to targeting cues is necessary for cell type-appropriate synaptic specificity.  相似文献   

17.
Interactions between epithelial cells are mediated by adherens junctions that are dynamically regulated during development. Here we show that the turnover of β-catenin is increased at cell interfaces that are targeted for disassembly during Drosophila axis elongation. The Abl tyrosine kinase is concentrated at specific planar junctions and is necessary for polarized β-catenin localization and dynamics. abl mutant embryos have decreased β-catenin turnover at shrinking edges, and these defects are accompanied by a reduction in multicellular rosette formation and axis elongation. Abl promotes β-catenin phosphorylation on the conserved tyrosine 667 and expression of an unphosphorylatable β-catenin mutant recapitulates the defects of abl mutants. Notably, a phosphomimetic β-catenin(Y667E) mutation is sufficient to increase β-catenin turnover and rescue axis elongation in abl deficient embryos. These results demonstrate that the asymmetrically localized Abl tyrosine kinase directs planar polarized junctional remodeling during Drosophila axis elongation through the tyrosine phosphorylation of β-catenin.  相似文献   

18.
In Drosophila melanogaster, fluctuations in 20-hydroxyecdysone (ecdysone) titer coordinate gene expression, cell death, and morphogenesis during metamorphosis. Our previous studies have supported the hypothesis that betaFTZ-F1 (an orphan nuclear receptor) provides specific genes with the competence to be induced by ecdysone at the appropriate time, thus directing key developmental events at the prepupal-pupal transition. We are examining the role of betaFTZ-F1 in morphogenesis. We have made a detailed study of morphogenetic events during metamorphosis in control and betaFTZ-F1 mutant animals. We show that leg development in betaFTZ-F1 mutants proceeds normally until the prepupal-pupal transition, when final leg elongation is delayed by several hours and significantly reduced in the mutants. We also show that betaFTZ-F1 mutants fail to fully extend their wings and to shorten their bodies at the prepupal-pupal transition. We find that betaFTZ-F1 mutants are unable to properly perform the muscle contractions that drive these processes. Several defects can be rescued by subjecting the mutants to a drop in pressure during the normal time of the prepupal-pupal transition. Our findings indicate that betaFTZ-F1 directs the muscle contraction events that drive the major morphogenetic processes during the prepupal-pupal transition in Drosophila.  相似文献   

19.
The "labeled pathways" hypothesis predicts that axon fascicles in the embryonic neuropil are differentially labeled by surface recognition molecules used for growth cone guidance. To identify candidates for such recognition molecules, we generated monoclonal antibodies (MAbs) that recognize surface antigens expressed on subsets of axon fascicles in the grasshopper embryo. The 3B11 and 8C6 MAbs immunoprecipitate 70- and 95-kd membrane glycoproteins called fasciclin I and II, respectively, which are expressed on different subsets of axon fascicles during development. These two glycoproteins are expressed regionally on particular portions of embryonic axons in correlation with their patterns of fasciculation, dynamically during the period of axon outgrowth in a manner consistent with a role in growth cone guidance, and at other times and places during embryogenesis, suggesting multiple developmental roles.  相似文献   

20.
The semaphorin gene family has been shown to play important roles in axonal guidance in both vertebrates and invertebrates. Both transmembrane (Sema1a, Sema1b, Sema5c) and secreted (Sema2a, Sema2b) forms of semaphorins exist in Drosophila. Two Sema receptors, plexins (Plex) A and B, have also been identified. Many questions remain concerning the axon guidance functions of the secreted semaphorins, including the identity of their receptors. We have used the well-characterized sensory system of the Drosophila embryo to address these problems. We find novel sensory axon defects in sema2a loss-of-function mutants in which particular axons misproject and follow inappropriate pathways to the CNS. plexB loss-of-function mutants show similar phenotypes to sema2a mutants and sema2a interacts genetically with plexB, supporting the hypothesis that Sema2a signals through PlexB receptors. Sema2a protein is expressed by larval oenocytes, a cluster of secretory cells in the lateral region of the embryo and the sema2a mutant phenotype can be rescued by driving Sema2a in these cells. Ablation of oenocytes results in sensory axon defects similar to the sema2a mutant phenotype. These data support a model in which Sema2a, while being secreted from oenocytes, acts in a highly localized fashion: It represses axon extension from the sensory neuron cell body, but only in regions in direct contact with oenocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号