首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 88 毫秒
1.
Summary The colocalization of the peptides neuropeptide Y (NPY) and Phe-Met-Arg-Phe-NH2 (FMRFamide) in the brain of the Atlantic salmon was investigated with double immunofluorescence labeling and peroxidase-antiperoxidase immunocytochemical techniques. Colocalization of NPY-like and FMRE amide-like immunoreactivities was observed in neuronal cell bodies and fibers in four brain regions: in the lateral and commissural nuclei of the area ventralis telencephali, in the nucleus ventromedialis thalami, in the laminar nucleus of the mesencephalic tegmentum, and in a group of small neurons situated among the large catecholaminergic neurons in the isthmal region of the brainstem. All cell bodies in these nuclei were immunoreactive to both NPY and FMRF. We consistently observed larger numbers of FMRF-immunoreactive than NPY-immunoreactive fibers. In the nucleus ventromedialis thalami NPY- and FMRFamide-like immunoreactivities were colocalized in cerebrospinal fluid (CSF)-contacting neurons. NPY-immunoreactive, but not FMRF-immunoreactive, neurons were found in the stratum periventriculare of the optic tectum, and at the ventral border of the nucleus habenularis (adjacent to the nucleus dorsolateralis thalami). Neurons belonging to the nucleus of the nervus terminalis were FMRF-immunoreactive but not NPY-immunoreactive. The differential labeling indicates, as do our cross-absorption experiments, that the NPY and FMRFamide antisera recognize different epitopes. Thus, it is probable that NPY-like and FMRFamide-like substances occur in the same neurons in some brain regions.  相似文献   

2.
B/K protein is a recently isolated member of the double C2-like-domain protein family, which is highly abundant in rat brain. We generated high-titer rabbit polyclonal antibodies with specificity to the 55-kDa rat B/K protein, and examined the expression pattern of B/K protein in rat brain using an immunohistochemical staining method. Immunoreactivity to B/K protein was widely found in distinct regions of rat brain: strongly in the hypothalamus, most of the circumventricular organs, the locus coeruleus, the A5 neurons of the pons, and the anterior pituitary; moderately in the anterior olfactory nucleus, the raphe nucleus, the subfornical organ, and the median eminence; and faintly in the olfactory bulb, the telencephalon, the substantia nigra pars compacta, and the ventral tegmental area. In contrast, immunoreactivity to B/K protein was not observed in the thalamus, the cerebellum, the posterior pituitary, or the spinal cord. In most of the B/K-expressing neurons, immunoreactivity was expressed mainly in soma but not in nerve fibers. B/K was also expressed in nonneuronal cells such as the tanycytes and the subcommissural organ. In the vasopressin-secreting supraoptic and paraventricular nuclei of the hypothalamus, the site where B/K cDNA was originally isolated from, all of the neurons showing vasopressin immunoreactivity also expressed B/K protein, suggesting an overlap of their expression patterns.  相似文献   

3.
Summary The anatomical distribution of neurons and nerve fibers containing corticotropin-releasing factor (CRF) has been studied in the brain of the snake, Natrix maura, by means of immunocytochemistry using an antiserum against rat CRF. To test the possible coexistence of CRF with the neurohypophysial peptides arginine vasotocin (AVT) and mesotocin (MST) adjacent sections were stained with antisera against the two latter peptides. CRF-immunoreactive (CRF-IR) neurons exist in the paraventricular nucleus (PVN). In some neurons of the PVN, coexistence of CRF with MST or of CRF with AVT has been shown. Numerous CRF-IR fibers run along the hypothalamo-hypophysial tract and end in the outer layer of the median eminence. In addition, some fibers reach the neural lobe of the hypophysis. CRF-IR perikarya have also been identified in the following locations: dorsal cortex, nucleus accumbens, amygdala, subfornical organ, lamina terminalis, nucleus of the paraventricular organ, nucleus of the oculomotor nerve, nucleus of the trigeminal nerve, and reticular formation. In addition to all these locations CRF-IR fibers were also observed in the lateral septum, supraoptic nucleus, habenula, lateral forebrain bundle, paraventricular organ, hypothalamic ventromedial nucleus, raphe and interpeduncular nuclei.  相似文献   

4.
Monoaminergic and cholinergic systems are important regulators of cortical and subcortical systems, and a variety of vegetative functions are controlled by the respective neurotransmitters. Neuronal excitability and transmitter release of these neurons are strongly regulated by their potassium conductances carried by Kir and K2P channels. Here we describe the generation and characterization of a polyclonal monospecific antibody against rat TASK-3, a major brain K2P channel. After removal of cross-reactivities and affinity purification the antibody was characterized by ELISA, immunocytochemistry of TASK-3 transfected cells, and Western blots indicating that the antibody only detects TASK-3 protein, but not its paralogs TASK-1 and TASK-5. Western blot analysis of brain membrane fractions showed a single band around 45 kD, close to the predicted molecular weight of the TASK-3 protein. In addition, specific immunolabeling using the anti-TASK-3 antibody in Western blot analysis and immunocytochemistry was blocked in a concentration dependent manner by its cognate antigen only. Immunocytochemical analysis of rat brain revealed strong expression of TASK-3 channels in serotoninergic neurons of the dorsal and median raphe, noradrenergic neurons of the locus coeruleus, histaminergic neurons of the tuberomammillary nucleus and in the cholinergic neurons of the basal nucleus of Meynert. Immunofluorescence double-labeling experiments with appropriate marker enzymes confirmed the expression of TASK-3 in cholinergic, serotoninergic, and noradrenergic neurons. In the dopaminergic system strong TASK-3 expression was found in the ventral tegmental area, whereas TASK-3 immunoreactivity in the substantia nigra compacta was only weak. All immunocytochemical results were supported by in situ hybridization using TASK-3 specific riboprobes.  相似文献   

5.
Summary The avidin-biotin peroxidase technique was used to determine the distribution of natriuretic peptides in the hearts and brains of the dogfishSqualus acanthias and the Atlantic hagfishMyxine glutinosa. Three antisera were used: one raised against porcine brain natriuretic peptide which cross-reacts with atrial natriuretic and C-type natriuretic peptides (termed natriuretic peptide-like immunoreactivity); the second raised against porcine brain natriuretic peptide which cross-reacts with C-type natriuretic peptide, but not with atrial natriuretic peptide (termed porcine brain natriuretic peptide-like immunoreactivity); and the third raised against rat atrial natriuretic peptide (termed rat atrial natriuretic peptide-like immunoreactivity). Only natriuretic peptide-like immunoreactivity was observed in the heart ofS. acanthias which was most likely due to the antiserum cross-reacting with C-type natriuretic peptide. No immunoreactivity was found in theM. glutinosa heart. In the brain ofS. acanthias, natriuretic peptide-like immunoreactive fibres were located in many areas of the telencephalon, diencephalon, mesencephalon, rhombencephalon, and spinal cord. Extensive immunoreactivity was observed in the hypothalamo-hypophyseal tract and the neurointermediate lobe of the hypophysis. Natriuretic peptide-like immunoreactive perikarya were found in ventromedial regions of the telencephalon and in the nucleus preopticus. Most perikarya had short, thick processes which extended toward the ventricle. Another group of perikarya was observed in the rhombencephalon. Porcine brain natriuretic peptide-like immunoreactive fibres were observed in the telencephalon, diencephalon, mesencephalon, and rhombencephalon, but perikarya were only present in the preoptic area. In theM. glutinosa brain, natriuretic peptide-like immunoreactive fibres were present in all regions. Immunoreactive perikarya were observed in the pallium, primordium hippocampi, pars ventralis thalami, pars dorsalis thalami, nucleus diffusus hypothalami, nucleus profundus, nucleus tuberculi posterioris, and nucleus ventralis tegmenti. Procine brain natriuretic peptide-like immunoreactive perikarya and fibres had a similar, but less abundant distribution than natriuretic peptide-like immunoreactive structures. Although the chemical structures of natriuretic peptides in the brains of dogfish and hagfish are unknown, these observations show that a component of the natriuretic peptide complement is similar to porcine brain natriuretic peptide or porcine C-type natriuretic peptide. The presence of natriuretic peptides in the brain suggest they could be important neuromodulators and/or neurotransmitters. Furthermore, there appears to be divergence in the structural forms of natriuretic peptides in the hearts and brains of dogfish and hagfish.  相似文献   

6.
The localization of cholinergic neurons in the cat lower brain stem was determined immunocytochemically with a monoclonal antibody against choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme. ChAT-positive neurons were observed in four major cell groups: cranial nerve motor and special visceromotor neurons: parasympathetic preganglionic visceromotor neurons; neurons located in the ponto-mesencephalic tegmentum including area X (or pedunculopontine tegmental nucleus), nucleus laterodorsalis tegmenti (Ldt) of Castaldi, and peri-locus coeruleus alpha (peri-alpha); and neurons located in nucleus reticularis magnocellularis (Mc) and adjacent nucleus reticularis gigantocellularis (Gc) of the medulla.  相似文献   

7.
The distribution of corticotropin releasing factor (CRF)-like immunoreactivity in the rat brain has been demonstrated by immunohistochemistry and radioimmunoassay using 4 different antisera. Two antisera were directed against synthetic ovine CRF, two antisera were directed against synthetic rat/human CRF. Immunohistochemistry revealed that there are discrete regions where CRF immunoreactive cell bodies are seen with all 4 antisera (e.g., the paraventricular nucleus, the dorsolateral tegmental nucleus) whereas there are cells observed only with one rat CRF antiserum (e.g., in the cortex) or terminal fields observed only with ovine CRF antisera (e.g., the spinal trigeminal tract, the substantia gelatinosa, the spinal cord). Radioimmunoassay showed different cross reactivity of the antisera with synthetic ovine or rat/human CRF and sauvagine, however, there was no cross reactivity with a variety of other peptides. Tissue values of CRF obtained by RIA of micropunched brain nuclei with the 4 antisera were frequently dissimilar suggesting that different antisera recognize different substances. High performance liquid chromatography and radioimmunoassay of brain tissue samples, revealed that there is more than one form of CRF-like immunoreactivity present. There is indirect evidence that there exists at least one peptide in the rat brain, prominent in the medulla and the spinal cord, which cross reacts with antisera directed to ovine CRF only.  相似文献   

8.
Relaxin 3 or insulin like peptide 7 has been identified as a new member of the insulin/relaxin superfamily. We recently reported that relaxin 3 was dominantly expressed in the brain, particularly in neurons of the nucleus incertus (NI) of the median dorsal tegmental pons and that it might act as a neurotransmitter. In the present study we investigated the developmental expression and serotonergic regulation of relaxin 3 gene in the rat brain. Relaxin 3 mRNA appeared at embryonic day 18 in the near region of the fourth ventricle, and was shown to have increased its density and the number of expressing neurons by in situ hybridization and RT-PCR examination. Relaxin 3 peptide was detected after birth by immunocytochemistry. Since the NI is located just caudal to the dorsal raphe nucleus where abundant serotonin (5-HT) neurons are present, we examined if 5-HT effects on the expression of relaxin 3. Relaxin 3 gene expression in the NI significantly increased after 5-HT depletion by p-chlorophenylalanine (PCPA) administration. We also observed the 5-HT1A receptor localization in relaxin 3 positive neurons of the NI. This result suggests that 5-HT negatively regulates the expression of relaxin 3 gene in the NI. The function of relaxin 3 neurons in the brain is influenced by the serotonergic activity.  相似文献   

9.
Relaxin is a peptide hormone with known actions associated with female reproductive physiology, but it has also been identified in the brain. Only one relaxin gene had been characterized in rodents until recently when a novel human relaxin gene, human gene-3 (H3) and its mouse equivalent (M3) were identified. The current study reports the identification of a rat homologue, rat gene-3 (R3) relaxin that is highly expressed in a discrete region of the adult brain. The full R3 relaxin cDNA was generated using RT-PCR and 3' and 5' RACE protocols. The derived amino acid sequence of R3 relaxin retains all the characteristic features of a relaxin peptide and has a high degree of homology with H3 and M3 relaxin. The distribution of R3 relaxin mRNA in adult rat brain was determined and highly abundant expression was only detected in neurons of the ventromedial dorsal tegmental nucleus (vmDTg) in the pons, whereas all other brain areas were unlabelled or contained much lower mRNA levels. Relaxin binding sites and relaxin immunoreactivity were also detected in the vmDTg. These together with earlier findings provide strong evidence for a role(s) for multiple relaxin peptides as neurotransmitters and/or modulators in the rat CNS.  相似文献   

10.
The importance of purinergic signaling in the intact mesolimbic–mesocortical circuit of the brain of freely moving rats is reviewed. In the rat, an endogenous ADP/ATPergic tone reinforces the release of dopamine from the axon terminals in the nucleus accumbens as well as from the somatodendritic region of these neurons in the ventral tegmental area, as well as the release of glutamate, probably via P2Y1 receptor stimulation. Similar mechanisms may regulate the release of glutamate in both areas of the brain. Dopamine and glutamate determine in concert the activity of the accumbal GABAergic, medium-size spiny neurons thought to act as an interface between the limbic cortex and the extrapyramidal motor system. These neurons project to the pallidal and mesencephalic areas, thereby mediating the behavioral reaction of the animal in response to a motivation-related stimulus. There is evidence that extracellular ADP/ATP promotes goal-directed behavior, e.g., intention and feeding, via dopamine, probably via P2Y1 receptor stimulation. Accumbal P2 receptor-mediated glutamatergic mechanisms seem to counteract the dopaminergic effects on behavior. Furthermore, adaptive changes of motivation-related behavior, e.g., by chronic succession of starvation and feeding or by repeated amphetamine administration, are accompanied by changes in the expression of the P2Y1 receptor, thought to modulate the sensitivity of the animal to respond to certain stimuli.  相似文献   

11.
Nicotine or cocaine, when administered intravenously, induces an increase of extracellular dopamine in the nucleus accumbens. The nicotine-mediated increase was shown to occur at least in part through increase of the activity of dopamine neurons in the ventral tegmental area. As part of our continuing studies of the mechanisms of nicotine effects in the brain, in particular, effects on reward and cognitive mechanisms, in the present study we examined the role of various receptors in the ventral tegmental area in nicotine and cocaine reward. We assayed inhibition of the increase of dopamine in the nucleus accumbens induced by intravenous nicotine or cocaine administration by antagonists administered into the ventral tegmental area. Nicotine-induced increase of accumbal dopamine release was inhibited by intrategmental nicotinic (mecamylamine), muscarinic (atropine), dopaminergic (D1: SCH 23390, D2: eticlopride), and NMDA glutamatergic (MK 801) and GABAB (saclofen) antagonists, but not by AMPA-kainate (CNQX, GYKI-52466) antagonists under our experimental circumstances. The intravenous cocaine-induced increase of dopamine in the nucleus accumbens was inhibited by muscarinic (atropine), dopamine 2 (eticlopride), and GABAB (saclofen) antagonists but not by antagonists to nicotinic (mecamylamine), dopamine D1 (SCH 23390), glutamate (MK 801), or AMPA-kainate (CNQX, GYKI-52466) receptors. Antagonists administered in the ventral tegmental area in the present study had somewhat different effects when they were previously administered intravenously. When administered intravenously atropine did not inhibit cocaine effects. The inhibition by atropine may be indirect, since this compound, when administered intrategmentally, decreased basal dopamine levels in the accumbens. The findings indicate that a number of receptors in the ventral tegmental area mediate nicotine-induced dopamine changes in the nucleus accumbens, a major component of the nicotine reward mechanism. Some, but not all, of these receptors in the ventral tegmental area also seem to participate in the reward mechanism of cocaine. The importance of local receptors in the ventral tegmental area was further indicated by the increase in accumbal dopamine levels after intrategmental administration of nicotine or also cocaine.  相似文献   

12.
Neuropeptide FF (NPFF) and neuropeptide VF (NPVF) are octapeptides belonging to the RFamide family of peptides that have been implicated in a wide variety of physiological functions in the brain, including central autonomic and neuroendocrine regulation. The effects of these peptides are mediated via NPFF1 and NPFF2 receptors that are abundantly expressed in the rat brain, including the hypothalamic paraventricular nucleus (PVN), an autonomic nucleus critical for the secretion of neurohormones and the regulation of sympathetic outflow. In this study, we examined, using whole cell patch-clamp recordings in the brain slice, the effects of NPFF and NPVF on inhibitory GABAergic synaptic input to parvocellular PVN neurons. Under voltage-clamp conditions, NPFF and NPVF reversibly and in a concentration-dependent manner reduced the evoked bicuculline-sensitive inhibitory postsynaptic currents (IPSCs) in parvocellular PVN neurons by 25 and 31%, respectively. RF9, a potent and selective NPFF receptor antagonist, blocked NPFF-induced reduction of IPSCs. Recordings of miniature IPSCs in these neurons following NPFF and NPVF applications showed a reduction in frequency but not amplitude, indicating a presynaptic locus of action for these peptides. Under current-clamp conditions, NPVF and NPFF caused depolarization (6-9 mV) of neurons that persisted in the presence of TTX but was abolished in the presence of bicuculline. Collectively, these data provide evidence for a disinhibitory role of NPFF and NPVF in the hypothalamic PVN via an attenuation of GABAergic inhibitory input to parvocellular neurons of this nucleus and explain the central autonomic effects of NPFF.  相似文献   

13.
The immunohistochemical distribution of bombesin-like immunoreactivity in the central nervous system of the rat was revealed using a rabbit antibody against [Glu7]bombesin(6–14). In radioimmunoassay, the antibody had minimal cross reactivity with substance P thereby enhancing the significance of histochemical controls proving that the immunoreactivity detected was related to bombesin but not to substance P. Bombesin-immunoreactive neurons were detected in several brain structures including the hypothalamus, interpeduncular nucleus, central grey, dorsolateral tegmental nucleus, dorsal parabrachial nucleus, nucleus of the solitary tract and trigeminal complex. In the spinal cord, intense immunoreactivity was found in the superficial layers of the posterior horn. Since in this area the reaction diminished after rhizotomy the location of the peptide in afferent neurons was considered. In the anterior horn the bombesin-like immunoreactivity located in nerve terminal-like structures was unchanged after rhizotomy suggesting that the cell bodies were located in CNS.  相似文献   

14.
Triple fluorescence labelling was employed to reveal the distribution of chemically identified neurons within the pontine laterodorsal tegmental nucleus and dorsal raphe nucleus which supply branching collateral input to the central nucleus of the amygdala and hypothalamic paraventricular nucleus. The chemical identity of neurons in the laterodorsal tegmental nucleus was revealed by immunocytochemical detection of choline-acetyltransferase or substance P; in the dorsal raphe nucleus, the chemical content of the neurons was revealed with antibody recognizing serotonin. The projections were defined by injections of two retrograde tracers, rhodamine-and fluorescein-labelled latex microspheres, in the central nucleus of the amygdala and paraventricular nucleus, respectively. Neurons projecting to both the central nucleus of the amygdala and the paraventricular nucleus were distributed primarily within the caudal extensions of the laterodorsal tegmental nucleus and dorsal raphe nucleus. Approximately 11% and 7% of the labelled cells in the laterodorsal tegmental nucleus and dorsal raphe nucleus projected via branching collaterals to the paraventricular nucleus and central nucleus of the amygdala. About half of these neurons in the laterodorsal tegmental nucleus were cholinergic, and one-third were substance-P-ergic; in the dorsal raphe nucleus, approximately half of the neurons containing both retrograde tracers were serotonergic. These results indicate that pontine neurons may simultaneously transmit signals to the central nucleus of the amygdala and paraventricular nucleus and that several different neuroactive substances are found in the neurons participating in these pathways. This coordinated signalling may lead to synchronized responses of the central nucleus of the amygdala and paraventricular nucleus for the maintenance of homeostasis. Interactions between different neuroactive substances at the target site may serve to modulate the responses of individual neurons.  相似文献   

15.
1. In situ hybridization histochemical techniques in combination with immunocytochemistry and acetylcholinesterase (AChE) histochemistry were used to study the colocalization of messenger RNA (mRNA) encoding the neuropeptide substance P (SP) in cholinergic cells of the laterodorsal tegmental nucleus (LDT) of the rat pontine brain stem. 2. Alternate serial sections were hybridized with a 48-base, 35S-labeled synthetic oligonucleotide probe encoding SP using in situ hybridization histochemistry and processed either histochemically for AChE or immunocytochemically for choline acetyltransferase (ChAT). 3. In addition, serial section analysis was used to demonstrate the correlation between SP and SP mRNA in the same cells of the LDT. 4. These studies reveal that the cholinergic neurons of the LDT synthesize SP.  相似文献   

16.
A possible role for G proteins in contributing to the chronic actions of cocaine was investigated in three rat brain regions known to exhibit electrophysiological responses to chronic cocaine: the ventral tegmental area, nucleus accumbens, and locus coeruleus. It was found that chronic, but not acute, treatment of rats with cocaine produced a small (approximately 15%), but statistically significant, decrease in levels of pertussis toxin-mediated ADP-ribosylation of Gi alpha and Go alpha in each of these three brain regions. The decreased ADP-ribosylation levels of the G protein subunits were shown to be associated with 20-30% decreases in levels of their immunoreactivity. In contrast, chronic cocaine had no effect on levels of G protein ADP-ribosylation or immunoreactivity in other brain regions studied for comparison. Chronic cocaine also had no effect on levels of Gs alpha or G beta immunoreactivity in the ventral tegmental area and nucleus accumbens. Specific decreases in Gi alpha and Go alpha levels observed in response to chronic cocaine in the ventral tegmental area, nucleus accumbens, and locus coeruleus are consistent with the known electrophysiological actions of chronic cocaine on these neurons, raising the possibility that regulation of G proteins represents part of the biochemical changes that underlie chronic cocaine action in these brain regions.  相似文献   

17.
Abstract: This study was aimed at identifying the neuronal pathways that mediate the eating-induced increase in the release of dopamine in the nucleus accumbens of the rat brain. For that purpose, a microdialysis probe was implanted in the ventral tegmental area and a second probe was placed in the ipsilateral nucleus accumbens. Receptor-specific compounds acting on GABAA (40 µ M muscimol; 50 µ M bicuculline), GABAB (50 µ M baclofen), acetylcholine (50 µ M carbachol), NMDA [30 µ M (±)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP)], and non-NMDA [300 µ M 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)] receptors were infused into the ventral tegmental area by retrograde dialysis, whereas extracellular dopamine was recorded in the ipsilateral nucleus accumbens. Intrategmental infusion of muscimol or baclofen decreased extracellular dopamine in the ipsilateral nucleus accumbens; CPP and CNQX were without effect, and bicuculline and carbachol increased dopamine release. During infusion of the various compounds, food-deprived rats were allowed to eat for 10 min. The infusions of muscimol, bicuculline, baclofen, carbachol, and CNQX did not prevent the eating-induced increase in extracellular dopamine in the nucleus accumbens. However, during intrategmental infusion of CPP, the eating-induced increase in extracellular dopamine in the nucleus accumbens was suppressed. These results indicate that a glutamatergic projection to the ventral tegmental area mediates, via an NMDA receptor, the eating-induced increase in dopamine release from mesolimbic dopamine neurons.  相似文献   

18.
Goncharuk V  Jhamandas JH 《Peptides》2008,29(9):1544-1553
Human neuropeptide FF2 (hFF2) receptor has been postulated to mediate central autonomic regulation by virtue of its ability to bind with high affinity to many amidated neuropeptides. In the present immunohistochemical study, we identified hFF2 positive neurons in the forebrain and medulla oblongata of individuals, who died suddenly of mechanical trauma or hypothermia. Morphologically, these neurons demonstrated features identified with both projection neurons and interneurons. In the forebrain, the highest density of hFF2 expressing neurons was observed in the anterior amygdaloid area and dorsomedial hypothalamic nucleus, especially in its caudal part. A lesser density of hFF2 neurons was identified in the ventromedial hypothalamic nucleus, lateral and posterior hypothalamic areas whereas few cells were visualized in the paraventricular hypothalamic nucleus, perifornical nucleus, horizontal limb of the diagonal band, ventral division of the bed nucleus of the stria terminalis, nucleus basalis of Meynert and ventral tegmental area. In the medulla, significant numbers of hFF2 neurons were observed in the dorsal motor nucleus of vagus and to a lesser extent in the area of catecholaminergic cell groups, A1/C1. These data provide first immunohistochemical evidence of hFF2 localization in the human brain, which is consistent with that reported for tissue distribution of FF2 mRNA and FF2 binding sites within the brain of a variety of mammalian species. The distribution of hFF2 may help in identifying the role of amidated neuropeptides in the human brain within the context of central autonomic and neuroendocrine regulation.  相似文献   

19.
Summary Application of horseradish peroxidase into the posterior thalamic and basal optic neuropils of Salamandra salamandra (L.) revealed strong reciprocal connections between the pretectum and the accessory optic system. Pretectal neurons located within the periventricular gray matter project to the basal optic neuropil distributing their terminals over the whole extent of this neuropil. A well developed nucleus of the basal optic neuropil, with its neurons within and medial to this neuropil, projects to the posterior thalamic neuropil. Its terminals appear to be located selectively within the core of the posterior thalamic neuropil which receives no ipsilateral retinal afferents.The pretectum and the accessory optic system are reciprocally connected to a ventral tegmental nucleus, which has not previously been described in urodeles. This nucleus is located immediately dorsal to the oculomotor and trochlear nuclei and extends from the oculomotor root to the middle of the trochlear nucleus.Dendrites of the nucleus of Darkschewitsch reach the posterior thalamic neuropil but mainly enter the rostral tegmental neuropil, while the dendrites of the nucleus of the medial longitudinal fasciculus ramify within the basal optic neuropil and the anterior tegmental neuropil with minor branches in the caudal posterior thalamic neuropil.  相似文献   

20.
Gamma-aminobutyric acid (GABA) is the most important inhibitory neurotransmitter in the central nervous system (CNS). Degradation of GABA in the CNS is catalyzed by the action of GABA transaminase (GABA-T). However, the neuroanatomical characteristics of GABA-T in the gerbil, which is a useful experimental animal in neuroscience, are still unknown. Therefore, we performed a comparative analysis of the distribution of GABA-T in rat and gerbil brains using immunohistochemistry. GABA-T immunoreactive neurons were observed in the regions which contained GABAergic neurons of both animals: corpus striatum; substantia nigra, pars reticulata; septal nucleus; and accumbens nucleus. GABA-T + neurons were restricted to layers III and V in the rat. Unlike the rat GABA-T + neurons were observed in layers II, III, and V of the gerbil cerebral cortex. These results suggest that the expression of GABA-T in the gerbil brain may be similar to that in the rat brain, except in the cerebral cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号