首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Changes in components of leaf water potential during soil waterdeficits influence many physiological processes. Research resultsfocusing on these changes during desiccation of peanut (Arachishypogeae L.) leaves are apparently not available. The presentstudy was conducted to examine the relationships of leaf waterl, solute s and turgor p potentials, and percent relative watercontent (RWC) of peanut leaves during desiccation of detachedleaves and also during naturally occurring soil moisture deficitsin the field. The relationship of p to l and RWC was evaluated by calculatingp from differences in l and s determined by thermocouple psychrometryand by constructing pressure-volume (P-V) curves from the land RWC measurements. Turgor potentials of ‘Early Bunch’and ‘Florunner’ leaves decreased to zero at l of–1.2 to –1.3 MPa and RWC of 87%. There were no cultivardifferences in the l at which p became zero. P-V curves indicatedthat the error of measuring s after freezing due to dilutionof the cellular constituents was small but resulted in artefactualnegative p values. Random measurements on two dates of l, s, and calculation ofp from well-watered and water-stressed field plots consistingof several genotypes indicated that zero p occurred at l of–1.6 MPa. It was concluded that the relationships of p,l, s, and RWC of peanut leaves were similar to leaves of othercrops and that these relationships conferred no unique droughtresistance mechanism to peanut.  相似文献   

2.
Larqué-Saavedra, A., Rodriguez, M. T., Trejo, C. andNava, T. 1985. Abscisic acid accumulation and water relationsof four cultivars of Phaseolus vulgaris L. under drought.—J.exp. Bot 36: 1787–1792. Plants of four cultivars of Phaseolus vulgaris L. differingin drought resistance were grown in pots under greenhouse conditionsand prior to flowering water was withheld from the pots untilthe mid-day transpiration rate reached values below 1.0 µgH2O cm–2 s–1 (designated the ‘drought’stage). At this point leaves were harvested on 3 or 4 occasionsover 24 h to determine the abscisic acid (ABA) concentration,total water potential (), solute potential (1) and turgor potential(p). Results showed that values of , 1, and p differed between cultivarswhen they reached the ‘drought’ stage. The stomatalsensitivity to changes in and p, was as follows: Michoacán12A3 > Negro 150 Cacahuate 72 > Flor de Mayo. These datacorrelated well with the pattern of drought resistance reportedfor the cultivars. ABA accumulation at the ‘drought’ stage differedbetween cultivars at each sampling time, but overall differencesin ABA level between cultivars were not significant. ABA levelsdid not, therefore, correlate with the drought resistance propertiesreported for the cultivars. Results are discussed in relationto and hour of the day when bean samples were taken for ABAanalysis. Key words: Phaseolus vulgaris L., drought resistance, abscisic acid  相似文献   

3.
Seed germination rates (GR =inverse of time to germination)are sensitive to genetic, environmental, and physiological factors.We have compared the GR of tomato (Lycopersicon esculentum Mill.)seeds of cultivar T5 to those of rapidly germinating L. esculentumgenotypes PI 341988 and PI 120256 over a range of water potential(). The influence of seed priming treatments and removal ofthe endosperm/testa cap enclosing the radicle tip on germinationat reduced were also assessed. Germination time-courses atdifferent 's were analysed according to a model that identifieda base, or minimum, allowing germination of a specific percentage(g) of the seed population (b(g)), and a ‘hydrotime constant’(H) indicating the rate of progress toward germination per MPa.h.The distribution of b(g) determined by probit analysis was characterizedby a mean base (b) and the standard deviation in b among seeds(b). The three derived parameters, b, b) and H, were sufficientto predict the time-courses of germination of intact seeds atany . A normalized time-scale for comparing germination responsesto reduced is introduced. The time to germination at any (tg())can be normalized to be equivalent to that observed in water(tg(0)) according to the equation tg(0)=[l–(/b(g))]tg().PI 341988 seeds were more tolerant of reduced and had a morerapid GR than T5 seeds due to both a lower b and a smaller H.The rapid germination of PI 120256, on the other hand, couldbe attributed entirely to a smaller H. Seed priming (6 d in–1.2 MPa polyethylene glycol 8000 solution at 20 ?C followedby drying) increased GR at all >b(g), but did not lower theminimum allowing germination; i.e. priming reduced H withoutlowering b. Removing the endosperm/testa cap (cut seeds) markedlyincreased GR and lowered the mean required to inhibit germinationby 0.7 to 0.9 MPa. However, this resulted primarily from downwardadjustment in b during the incubation of cut seeds at low inthe test solutions. The difference in b between intact and cutseeds incubated at high was much less (0.l MPa), indicatingthat at the time of radicle protrusion, the endosperm had weakenedto the point where it constituted only a small mechanical barrier.In the intact seed, endosperm weakening and the downward adjustmentin embryo b ceased at < –0.6 MPa, while the reductionin H associated with priming proceeded down to at least –1.2MPa. Based on these data and on the pressure required to pushthe embryos from the seeds at various times after imbibition,it appears that the primary effect of priming was to shortenthe time required for final endosperm weakening to occur. However,as priming increased GR even in cut seeds, priming effects onthe embryo may control the rate of endosperm weakening. Key words: tomato, Lycopersicon esculentum Mill., water potential, germination rate, seed priming, genetic variation  相似文献   

4.
Thomas, H. 1987. Physiological responses to drought of Loliumperenne L.: Measurement of, and genetic variation in, waterpotential, solute potential, elasticity and cell hydration.—J.exp. Bot. 38: 115–125. Clonally-replicated genotypes of Loiium perenne L. were grownin a controlled environment. Leaf water potential (w) osmoticpotential (s), turgor potential (p = ws), elasticity(E), leaf hydration (g water per g dry matter, H) and numberof green leaves per tiller (NGL) were measured before and duringa 42 d drought treatment. A simplified method of estimating E (at w < 1?0 MPa) usingonly six measurements was developed to permit a measurementrate of 8 leaves per hour. Measurement errors in all characterswere 3% or less. During drought, w and s (at w = 0?5 MPa) decreased significantly,p and E increased significantly, and H decreased slightly. Plantsize during drought was negatively correlated with s, and Hand positively correlated with p, osmotic adjustment, E andNGL. Measurements made on the genotypes before draughting didnot give a reliable indication of their physiological conditionafter adaptation to drought. Genetically controlled variation (‘broad sense heritability’)of drought-adapted plants for E was 15%, w 23%, s, 34%, p, 35%,H 34% and NGL 64%. The possibilities for, and effectivenessof, divergent selection of genotypes with high and low expressionof the characters are discussed. Key words: Water relations, Lolium, genetic variation  相似文献   

5.
The effect of Chromium VI on leaf water potential (w), solutepotential (a), turgor potential (p) and relative water content(RWC) of primary and first trifoliatc leaves of Phaseolus vulgarisL. was studied under normal growth conditions and during anartificially induced water stress period in order to establishthe possible influence of this heavy metal on the water stressresistance of plants. Plants were grown on perlite with nutrientsolution containing 0, 1•0, 2•5, 5•0 or 10•0µg cm–3 Cr as Na2Cr2O7.2H2O. The effect of Cr onwater relations was highly concentration dependent, and primaryand first trifoliate leaves were affected differently. The growthreducing concentrations of Cr (2•5, 5•0 and 10•0µg cm–3) generally decreased s and w and increasedp in primary leaves. The 1•0 µg cm–3 Cr treatmentdid not affect growth, but altered water relations substantially:in primary leaves w and p were increased and s decreased, whilein trifoliate leaves the effect was the opposite. All Cr treatedplants resisted water stress for longer than control plants.The higher water stress resistance may be due to the lower sand to the increased cell wall elasticity observed in Cr VItreated plants. Key words: Phaseolus vulgaris, Chromium VI, water stress, Richter plot  相似文献   

6.
Legge, N. J. 1985. Water movement from soil to root investigatedthrough simultaneous measurement of soil and stem water potentialin potted trees.—J. exp. Bot. 36: 1583–1589. Osmotic tensiometers implanted in the stems of three mountainash (Eucalyptus regnans F. Muell.) saplings growing in largeplastic bins recorded stem water potential, w, while soil waterpotential, w, was simultaneously recorded by instruments nearthe trees' roots and in the surrounding root-free soil Earlyin a drying cycle, with the soil still wet, the diurnal variationin 1, was often slight, despite diurnal variations in u approaching2.0 M Pa. Late in a drying cycle the diurnal fluctuations in1, and u were very similar although changes in 1, still laggedup to 1.5 h behind changes in u. 1values at this time occasionallyreached –3.0 MPa with no apparent damage to the treesWatering the bins in daytime led to a response in 1, valueswithin about 5 min, whereas u, values did not respond for afurther 20 min. u values then rose rapidly but after only 1h began to decline again, while 1, values remained at or nearsaturation for the rest of the day. Water uptake hypotheseswhich attribute an important role to a soil-root interface resistanceare not supported by these data Key words: —Soil water potential, penrhizal gradients  相似文献   

7.
An equation is derived expressing average turgor pressure ofa leaf (p) as a function of relative water content (RWC). Basedon this derivation, the relationships of the bulk elastic modulus(v) and both RWC and p, are formulated and discussed. The bulkelastic modulus (v) becomes zero for p = 0, that is at the turgorloss point for the leaf. At full water saturation the valueof ev is proportional to the water saturation turgor potentialp(max). The factor relating P and v (structure coefficient ,Burstrom, Uhrstr?m and Olausson, 1970) changes only very littlefor values of p, which are not too close to zero. An exampleis given for the calculation from experimental data of the turgorpressure function, the structure coefficient function, and thev function. Key words: Cell wall, Turgor pressure, Bulk elastic modulus  相似文献   

8.
By analysing the relationship between inverse water potential(–1), and relative water content (RWC) measured on leavesof roses (Rosa hybrida cv. Sonia), grown soilless, it was foundthat a non-linear (NL) model was better suited than a linearmodel to reproduce values observed in the non-turgid region.To explain this apparent curvature, it is assumed that a reductionof the non-osmotic water fraction (Ap) takes place when decreases.Osmotic potentials () measured on fresh and frozen leaf discstend to support this hypothesis. A method for exploiting PVcurves, which takes into account the variation of Ap, is described.It delivers values for the turgor pressure (p), the relativeosmotic water content, and the mean bulk volumetric elasticitycoefficient, lower than those given by the linear model. Onthe other hand, it gives higher estimates for Ap and for . Whenapplying the traditional model to obtain estimates for waterrelations characteristics of rose leaves, and comparing resultsfrom two distinct salinity treatments (electrical conductivitiesof 1·8 mS cm–1 and 3·8 mS cm–1, respectively),one deduces a significant reduction of at turgor-loss in thehigh salinity treatment. The NL method is, in addition, ablesimultaneously to reveal a reduction of and a significant increasein p at RWC=100% this proves that soilless–grown roseplants are able to osmoregulate when subjected to a constantand relatively high degree of salinity. Key words: Apoplastic water, non-linear regression, pressure-volume curves, tissue-water relations  相似文献   

9.
Seed priming (imbibition in water or osmotic solutions followedby redrying) generally accelerates germination rates upon subsequentre-imbibition, but the response to priming treatments can varyboth within and among seed lots. Seed maturity could influenceresponsiveness to priming, perhaps explaining variable primingeffects among developmentally heterogeneous seed lots. In thecurrent study, muskmelon (Cucumis melo L.) seeds at two stagesof development, maturing (40 d after anthesis (DAA)) and fullymature (60 DAA), were primed in 0?3 M KNO3 for 48 h at 30 ?C,dried, and imbibed in polyethylene glycol 8000 solutions of0 to –1?2 MPa at 15, 20, 25, and 30 ?C. Germination sensitivitiesto temperature and water potential () were quantified as indicatorsof the influence of seed maturity and priming on seed vigour.Germination percentages of 40 and 60 DAA control seeds weresimilar in water at 30 ?C, but the mean germination rate (inverseof time to germination) of 40 DAA seeds was 50% less than thatof 60 DAA seeds. Germination percentages and rates of both 40and 60 DAA seeds decreased at temperatures below 25 ?C. Reductionsin also delayed and inhibited germination, with the 40 DAAseeds being more sensitive to low than the 60 DAA seeds. Primingsignificantly improved the performance of 40 DAA seeds at lowtemperatures and reduced , but had less effect on 60 DAA seeds.Priming lowered both the minimum temperature (Tb) and the minimum (b) at which germination occurred. Overall, priming of 40 DAAseeds improved their germination performance under stress conditionsto equal or exceed that of control 60 DAA seeds, while 60 DAAseeds exhibited only modest improvements due to priming. Asthe osmotic environment inside mature fruits approximates thatof a priming solution, muskmelon seeds may be ‘primed’in situ during the late stage of development after maximum dryweight accumulation. Key words: Cucumis melo L., seed priming, germination, vigour, development, temperature  相似文献   

10.
The components of leaf water potential (l) and relative watercontent (RWC) were measured for stands of bambara groundnut(Vigna subterranea) exposed to three soil moisture regimes incontrolled-environment glasshouses at the Tropical Crops ResearchUnit, Sutton Bonington Campus. Treatments ranged from fullyirrigated (wet) to no irrigation from 35 days after sowing (DAS)(dry). RWC values varied between 92–96% for the wet treatment,but declined from 93% to 83% in the dry treatment as the seasonprogressed. l at midday decreased in both the wet and dry treatments,but the seasonal decline was more pronounced in the latter:seasonal minimum values were –1.19 and –2.08 MPa,respectively. Plants in the wet treatment maintained turgor(p) at about 0.5 MPa throughout the season, whereas values inthe dry treatment approached zero towards the end of the season.There was a linear relationship between p and l9 with p approachingzero at a l of –2.0 MPa. Mean daily leaf conductance wasconsistently higher in the wet treatment (0.46–0.79 cm-1)than in the intermediate and dry treatments (0.13–0.48cm s-1 Conductances in the intermediate and dry treatments weresimilar, and the lower evapotranspirational water losses inthe latter were attributable to its consistently lower leafarea indices (L): L at final harvest was 3.3, 3.3 and 1.9 forthe wet, intermediate and dry treatments. Bambara groundnutwas apparently able to maintain turgor through a combinationof osmotic adjustment, reductions in leaf area index and effectivestomatal regulation of water loss. Key words: Vigna subterranea, water relations, soil moisture  相似文献   

11.
We examined the importance and the mechanisms of the root systems'effect on leaf water status in two bean species: Phaseolus vulgarisL. cv. Redcloud (Pv) and P. acutifolius Gray MN cultivatedaccession 258/78 (Pa). Pa maintains a higher leaf water potential(1) than Pv. We used reciprocal grafts between the two species.We grew four plants (one of each graft combination) in one potso they experienced the same soil water potential. Shoot genotypedetermined 1 of well-watered plants. Root genotype determined1 of the most stressed plants. Stressed Pa root systems increased1 of Pv shoots by 0·1 MPa over Pv shoots on Pv roots.Pa roots did not maintain by affecting stomatal conductancenor by simply having more dry weight. Pa roots may have greaterhydraulic conductivity than Pv roots. Key words: Phaseolus acutifolius, Phaseolus vulgaris, leaf water potential, root-shoot communication  相似文献   

12.
Data from pressure-volume (PV) analysis may be submitted totransformation I [i.e. leaf water potential (1) versus inverserelative water content (1/R)] or to transformation II (i.e.1/1 versus R). This may cause an essential distortion of theerror structure especially in transformation II due to the relativelylarge range which is to be covered by the 1/1 ratio. Similarly,logarithmic transformation of leaf turgor potential (P) whenderiving the sensitivity factor of elasticity (ß)by linear regression from values of In p and 1/R may distortthe error structure. In order to investigate the magnitude ofthe distortion effect on parameters derived from PV analysisby regression a non-linear regression procedure was comparedwith the common linear procedure when calculating p from ßin the turgid region and leaf osmotic potential (P) in boththe turgid and non-turgid region. As test plants we used fieldgrown species of spring barley (Hordeum distichum L., cvs Gunnarand Alis). The results show that transformations and applicationof linear regression procedures distort the error structureof p more than the error structure of ', which was only slightlyaffected. However, we recommend the use of the non-linear procedurein both cases. Furthermore, from PV analysis, obtained by thermocouple hygrometryon living and killed leaf tissue, respectively, we derived themathematical basis for calculating the apoplastic water fraction(Ra). Ra was 0.15 at R= 1 and decreased with dehydration. The equations describing the relation between and R and betweenp and R were extended to take into account the apoplastic waterfraction. Key words: Apoplastic water, distortion errors, non-linear regression, pressure-volume curves  相似文献   

13.
Sitka spruce seedlings were subjected to drought in experimentsin a growthroom, a greenhouse, and out of doors. The plantswere grown in a double chamber with the bulk of the roots inthe upper part where they dried out the soil when water waswithheld. A few new roots penetrated into the lower part inwhich the soil remained moist. The double chamber system enabledthe plant to attain a high water psotential by night and theshoot was only periodically under mild water stress. Measurementswere made on soil water potential (solt), leaf water potential(1), transpiration (E), and stomatal conductance (ks). As soildecreased over a period of 4.5 d, E and ks decreased progressively.The decline in E and ks which indicated stomatal closure, occurredat a higher 1 than has been reported for Sitka spruce. The behaviourof the stomata appeared to be modified by conditions at theroot, and it is proposed that differences in the response to1,depend on Whether the latter is reduced by resistances in thexylem between root and leaf, as is known to occur in large treesin moist soil, or by stresses at the root itself.  相似文献   

14.
KUMAR  A; ELSTON  J 《Annals of botany》1992,70(1):3-9
Various kinds of measurement of tissue water status were madeseveral times during water stress and recovery in Brassica juncea(cv Canadian Black) and B napus (cv Drakkar) Unstressed plantsof the two species had similar leaf water potentials (w), solute(s) and turgor potentials (p) Values of relative water content(RWC) and the slope of the linear relationship between p andRWC (p/RWC) were greater in B napus than in B juncea Statistical correlations of pooled data for the watered andstressed treatments differentiated the relationships among RWC,w and its components in the two species The major statisticaldifference was that p/RWC was related to RWC in B napus andto w and s in B juncea A decline in p/RWC with decreasing sin B juncea may be a mechanism for maintaining p at low soilwater potentials through maintenance of more elastic cell walls. Brassica juncea, Brassica napus, osmotic adjustment, tissue elasticity, water relations  相似文献   

15.
The effects of two shoot densities (14 and 44 shoots/vine) andtwo crop levels (one and two clusters/shoot) on gas exchangeand water relations of field-grown Sauvignon blanc (Vitis viniferaL.) were studied in a factorial design over 3 years. The two-clustertreatments had 0.14 MPa higher stem water potential (stem),1.4 µmol m–2 s–1 higher assimilation rate(A), 0.04 mol m–2 s–1 higher stomatal conductance(gs) and 0.008 mol m–2 s–1 higher non-stomatal (gm)conductance. The two-cluster treatments had higher gs and transpirationrates than the one-cluster treatments, for similar stem. A quantitativeanalysis suggests that storage capacity cannot account for thesimultaneous increase in gs and stem in the two-cluster treatments.Similar gs-gm responses were found In the one- and two-clustertreatments, regard less of differences between the treatmentsin gs-stem response. Key words: Grapevine, stomatal conductance, assimilation rate, water relations  相似文献   

16.
Continuous measurements were made of stem shrinkage, stem waterpotential (3) and transpiration rate (T) in young, pot-growncabbage plants subjected to cycling evaporative demands. Sequencesof increasing evaporative demands induced increases in T anddecreases in both 3 and stem diameter and conversely, wheneverevaporative demand decreased, T declined and 3 and stem diameterrose. Over short periods, stem water potentials and stem shrinkagewere virtually parallel even when rapid oscillations were induced.Over longer periods the effects of growth were important comparedwith those of water stress on stem diameter when the moisturecontent of the soil was high. Growth, however, ceased when theplant was subjected to relatively mild water stress (3 = –0.4MPa). Stem diameters, after correction for growth, were linearlyrelated to plant water potential. The results suggest that stemshrinkage and only a few calibration measurements might be usedto provide continuous estimates of water potentials in fieldcrops. Key words: Cabbage, Stem diameter, Stem water potential  相似文献   

17.
The effects of storage conditions on the germination of developingmuskmelon (Cucumis melo L.) seeds were tested to determine whetherafter-ripening is required to obtain maximum seed vigour. Seedswere harvested at 5 d intervals from 35 (immature) to 60 (fullymature) days after anthesis (DAA), washed, dried, and storedat water contents of 3·3 to 19% (dry weight basis) at6, 20, or 30°C for up to one year. Germination was testedin water and in polyethylene glycol 8000 solutions ( –0·2to –1·2 MPa osmotic potential) at 15, 20, 25 or30°C. Germination percentages and rates (inverse of meantimes to radicle emergence) were compared to those of newlyharvested, washed and dried seeds. For 40 and 60 DAA seeds,one year of storage at 20°C and water contents <6·5%significantly increased germination percentages and rates at20°C, but had little effect on germination at 25 and 30°C.Storage reduced the estimated base temperature (Tb) and meanbase water potential (b) for germination of both 40 and 60 DAAseeds by approximately 5°C and 0·3 MPa, respectively.Immature 35 DAA seeds showed the greatest benefit from storageat 3 to 5% water content and 30°C, as germination percentagesand rates increased at all water potentials (). Storage underthese same conditions had little effect on the germination ofmature seeds in water, but increased germination percentagesand rates at reduced 's. Accelerated ageing for one month at30°C and water contents from 15 to 19° increased germinationrates and percentages of mature seeds at reduced 's, but longerdurations resulted in sharp declines in both parameters. Immatureseeds lost viability within one month under accelerated ageingconditions. An after-ripening period is required at all stagesof muskmelon seed development to expand the temperature andwater potential ranges allowing germination and to achieve maximumgerminability and vigour. Post-harvest dormancy is deepest atthe point of maximum seed dry weight accumulation and declinesthereafter, both in situ within the ripening fruit and duringdry storage. Key words: Muskmelon, Cucumis melo L., seed, development, dormancy, germination, vigour, after-ripening  相似文献   

18.
The effects of transpiration rate on the vertical gradientsof leaf and stem xylem water potential ( and ) were examinedusing hydroponic sunflower plants. Transpiration was variedby stepwise alterations of environmental conditions. The gradientsof and were relatively small (2.3 and 0.8 x 105 Pa m–1)when transpiration rates approached zero, but increased sharplyto 5.4 and 2.3 x 105 Pa m–1 as transpiration increased.However, the gradients were independent of transpiration ratesabove 0.4 g dm–2 h–1 owing to variability of theplant resistance. The gradients of I were usually less thanhalf those of I. 1 in individual leaves remained constant over a wide range oftranspiration rates (0.4—2.4 g dm–2 h–1) andeach leaf possessed a characteristic plateau value related toits elevation. I responded similarly but was approximately 2.0x 105 Pa higher than I at the same elevation. Identical resultswere obtained regardless of the procedure employed to vary transpiration. The drop in water potential between stem and leaf implies thatthe leaf resistance is appreciable. This was confirmed usingrapidly transpiring excised leaves freely supplied with water.I increased by 2.0–2.5 x 105 Pa following removal of theroot resistance but remained 2 x 105 Pa lower than similar excisedleaves in darkness. Furthermore, I in excised leaves remainedconstant over a wide range of transporting rates, demonstratingthat the leaf resistance is also variable. The results are discussed in relation to previous reports.  相似文献   

19.
Suboptimal temperature (T) affects germination rates (reciprocalof time to radicle emergence) on a thermal time basis; thatis, the T in excess of a base or minimum temperature multipliedby the time to a given per cent germination [tg) is a constant.Respiration rates are also sensitive to T, and proportionalrelationships are often found between respiration rates andgermination rates. Reduced water potential () delays seed germinationon a hydrotime basis (i.e. the in excess of a base water potentialmultiplied by tg is a constant). It was tested whether respirationrates prior to radicle emergence vary in proportion to T and as expected from the thermal and hydrotime models. Respirationrates (C02 evolution) of cold-tolerant, rapidly germinating(PI 341988) and cold-sensitive, more slowly germinating (T5)tomato [Lycopersicon esculentum Mill.) seeds were evaluatedover a range of T and conditions. For both genotypes, respirationrates until the beginning of radicle emergence were relatedto T on a thermal time basis and increased approximately linearlywith above -2.0 MPa, consistent with the hydrotime model. Respirationrates were uniquely related to germination rates, regardlessof whether germination timing was affected by T, , or genotype.However, germination timing was unaffected when respirationrates were manipulated by varying 02 partial pressure. Thus,while both germination and respiration rates vary with T and consistent with thermal and hydrotime models of biologicaltime, respiration rates per se were not the limiting factorin germination timing of tomato seeds. Key words: Lycopersicon esculentum Mill., tomato, germination, respiration, temperature, water potential  相似文献   

20.
NOBEL  PARK S.; CUI  MUYI 《Annals of botany》1992,70(6):485-491
Attached 2-month-old roots of the succulent plant, Opuntia ficus-indica,shrank 0.4% radially during periods of maximal transpirationunder wet conditions. In contrast, reversible decreases in diameterof nearly 20% occurred for these roots as their ambient waterpotential () in the vapour phase decreased from –0.01to –10 MPa over 8 d, the changes being slightly more rapidat 40 °C than at 10 °C. Such substantial diameter changesbecame progressively less with root age, from a 43% decreasein diameter at 3 weeks to a 6% decrease at 12 months Root shrinkagewas slight when was decreased from –0.01 to –0.3MPa, the latter being similar to the root water potential.As was further decreased from –0.3 to –10 MPa,water movement out of cortical cells caused considerable rootshrinkage. The root hydraulic conductivity (Lp) decreased only30 to 60% for a change in from –0.01 to –10 MPacompared with a decrease of over 106-fold for the soil hydraulicconductivity over this range. The overall conductivity of thesoil, the root-soil air gap, and the root was predicted to bedominated by Lp for soil above –0.3 MPa. As simulatedsoil decreased below –0.3 MPa, the root-soil air gap initiallybecame the primary limiter of water loss from the roots. Below–5 MPa for 1-month-old roots and below –2 MPa for12-month-old roots, the soil became the main limiter of waterloss. Thus, water uptake from wet soils apparently was mainlycontrolled by root properties Water loss to drying soils wascontrolled by the development of a root-soil air gap aroundshrinking roots during the initial phase of soil drying andby the reduction of the soil hydraulic conductivity at evenlower soil. Root diameter, root hydraulic conductivity, root-soil air gap, soil hydraulic conductivity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号