首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Major histocompatibility complex (MHC) class II molecules play crucial roles in immune activation by presenting foreign peptides to antigen-specific T helper cells and thereby inducing adaptive immune responses. Although adaptive immunity is a highly effective defense system, it takes several days to become fully operational and needs to be triggered by danger-signals generated during the preceding innate immune response. Here we show that MHC class II molecules synergize with Toll-like receptor (TLR) 2 and TLR4 in inducing an innate immune response.

Methodology/Principal Findings

We found that co-expression of MHC class II molecules and TLR2 or TLR4 in human embryonic kidney (HEK) cells 293 leads to enhanced production of the anti-microbial peptide human-β-defensin (hBD) 2 after treatment with TLR2 stimulus bacterial lipoprotein (BLP) or TLR4 ligand lipopolysaccharide (LPS), respectively. Furthermore, we found that peritoneal macrophages of MHC class II knock-out mice show a decreased responsiveness to TLR2 and TLR4 stimuli compared to macrophages of wild-type mice. Finally, we show that MHC class II molecules are physically and functionally associated with TLR2 in lipid raft domains of the cell membrane.

Conclusions/Significance

These results demonstrate that MHC class II molecules are, in addition to their central role in adaptive immunity, also implicated in generating optimal innate immune responses.  相似文献   

2.
Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cre and PTENfl/fl mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that pan PI-3 kinase inhibitors reverse the lymphoproliferative phenotype in vivo.  相似文献   

3.
RP105 is a member of the toll-like receptor family of proteins that transmits an activation signal in B cells, playing a role in regulation of B cell growth and death; in macrophages and dendritic cells, RP105 is a specific inhibitor of TLR4 signaling. RP105 is uniquely important for regulating TLR4-dependent signaling. It also proved that RP105 is closely related to TLR2 in macrophage activation by Mycobacterium tuberculosis lipoproteins. The aim of our study is to investigate the role of RP105 in mouse macrophages activation of TLR4 and TLR2 signaling by lipopolysaccharides (LPS) and Pam3CysSerLys4 (Pam3CSK4) alone or in combination, and the interaction between TLR2 and TLR4 signaling through RP105. Our results indicate that besides exhibiting negative regulation of TNF-α and IL12-p40 secretion in macrophage activated by LPS, RP105 is also involved in macrophages activation by Pam3CSK4 through TLR2 signaling and exhibited regulation to IL-10 and RANTES production by mouse peritoneal macrophage activated by Pam3CSK4. In macrophages activation by LPS and Pam3CSK4 in combination, TLR2 signaling can overcome RP105-mediated regulation of TLR4 signaling. Thus, our data demonstrate that not only TLR4 signaling, but also RP105 appears to be an essential accessory for immune responses through TLR2 signaling. The function of TLR2 and TLR4 in response to TLR ligands could be associated with each other by RP105. These results can help us understanding the unique role of RP105 in macrophages response to TLR ligands.  相似文献   

4.
Microglia are the resident macrophage-like population in the CNS. Microglia remain quiescent until injury or infection activates the cells to perform effector inflammatory and APC functions. Our previous studies have shown that microglia infected with a neurotropic strain of Theiler's murine encephalomyelitis virus secreted innate immune cytokines and up-regulated costimulatory molecules and MHC class II, enabling the cells to present viral and myelin Ags to CD4+ T cells. Recently, TLRs have been shown to recognize pathogen-associated molecular patterns and initiate innate immune responses upon interaction with infectious agents. We examined TLR expression on brain microglia and their functional responses upon stimulation with various TLR agonists. We report that mouse microglia express mRNA for all of the recently identified TLRs, TLR1-9, used for recognition of bacterial and viral molecular patterns. Furthermore, stimulation of quiescent microglia with various TLR agonists, including LPS (TLR4), peptidoglycan (TLR2), polyinosinic-polycytidylic acid (TLR3), CpG DNA (TLR9), and infection with viable Theiler's murine encephalomyelitis virus, activated the cells to up-regulate unique patterns of innate and effector immune cytokines and chemokines at the mRNA and protein levels. In addition, TLR stimulation activated up-regulation of MHC class II and costimulatory molecules, enabling the microglia to efficiently present myelin Ags to CD4+ T cells. Thus, microglia appear to be a unique and important component of both the innate and adaptive immune response, providing the CNS with a means to rapidly and efficiently respond to a wide variety of pathogens.  相似文献   

5.
6.
Production of IFN-gamma by CD4 T cells is generally thought to be mediated by TCR triggering, however, Ag-nonspecific activation of effector CD8 T cells has been reported in infection models. In this study, we demonstrate that Ag-experienced CD4 T cells in the spleen of Salmonella-infected mice acquire the capacity to rapidly secrete IFN-gamma in response to stimulation with bacterial lysate or LPS. This innate responsiveness of T cells was transient and most apparent during, and immediately following, active Salmonella infection. Furthermore, innate T cell production of IFN-gamma in response to bacterial lysate or LPS was Ag independent and could be induced in Listeria-infected mice and in the absence of MHC class II expression. IL-18 was required for maximal innate responsiveness of CD4 T cells in Salmonella-infected mice and for optimal bacterial clearance in vivo. These data demonstrate that CD4 T cells acquire the capacity to respond to innate stimuli during active bacterial infection, a process that may contribute significantly to amplifying effector responses in vivo.  相似文献   

7.
Ligands binding to Toll-like receptor (TLR), interleukin 1 receptor (IL-1R), or IFN-γR1 are known to trigger MyD88-mediated signaling, which activates pro-inflammatory cytokine responses. Recently we reported that staphylococcal enterotoxins (SEA or SEB), which bind to MHC class II molecules on APCs and cross link T cell receptors, activate MyD88- mediated pro-inflammatory cytokine responses. We also reported that MyD88(-/-) mice were resistant to SE- induced toxic shock and had reduced levels of serum cytokines. In this study, we investigated whether MHC class II- SE interaction by itself is sufficient to activate MyD88 in MHC class II(+) cells and induce downstream pro-inflammatory signaling and production of cytokines such as TNF-α and IL-1β. Here we report that human monocytes treated with SEA, SEB, or anti-MHC class II monoclonal antibodies up regulated MyD88 expression, induced activation of NF-kB, and increased expression of IL-1R1 accessory protein, TNF-α and IL-1β. MyD88 immunoprecipitated from cell extracts after SEB stimulation showed a greater proportion of MyD88 phosphorylation compared to unstimulated cells indicating that MyD88 was a component of intracellular signaling. MyD88 downstream proteins such as IRAK4 and TRAF6 were also up regulated in monocytes after SEB stimulation. In addition to monocytes, primary B cells up regulated MyD88 in response to SEA or SEB stimulation. Importantly, in contrast to primary B cells, MHC class II deficient T2 cells had no change of MyD88 after SEA or SEB stimulation, whereas MHC class II-independent activation of MyD88 was elicited by CpG or LPS. Collectively, these results demonstrate that MHC class II utilizes a MyD88-mediated signaling mechanism when in contact with ligands such as SEs to induce pro-inflammatory cytokines.  相似文献   

8.
Low-affinity IgG3 Abs to microbial membranes are important for primary immune defense against microbes, but little is known about the importance of TLRs in their production. IgG3 levels were extremely low in mice lacking radioprotective 105 (RP105), a B cell surface molecule structurally related to TLRs. RP105(-/-) B cells proliferated poorly in response to not only the TLR4 ligand LPS but also TLR2 ligand lipoproteins, both of which mediate the immunostimulatory activity of microbial membranes. RP105(-/-) mice were severely impaired in hapten-specific Ab production against LPS or lipoproteins. CD138 (syndecan-1)-positive plasma cells were detected after lipid A injection in wild-type spleen but much less in RP105(-/-) spleen. RP105 ligation in vivo induced plasma cell differentiation. RP105 expression was approximately 3-fold higher on marginal zone B cells than on follicular and B1 cells and was down-regulated on germinal center cells. These results demonstrate that a signal via RP105 is uniquely important for regulating TLR-dependent Ab production to microbial membranes.  相似文献   

9.
10.
Lipopolysaccharide (LPS) from gram-negative bacteria activates B cells, enabling them to proliferate and differentiate into plasma cells. This response is critically dependent on the expression of TLR4; but other genes, such as RP105 and MHC class II, have also been shown to contribute to B cell LPS response. Here, we have evaluated the role of genetic control of the B cell response to LPS at the single cell level. We compared the response to LPS of peritoneal cavity (PEC) and splenic B cells on the BALB/c genetic background (LPS-low responder) to those on the C57BL/6J background (LPS-high responder) and their F1 progeny (CB6F1). Both PEC and splenic B cells from B6 exhibited 100% clonal growth in the presence of LPS; whereas, BALB/c PEC and splenic B cells achieved only 50% and 23% clonal growth, respectively. Adding CpG to the LPS stimulus pushed PEC B cell clonal growth in the low responder strain BALB/c up to 90%, showing that the nonresponse to LPS is a specific effect. Surprisingly, PEC B cells on the F1 background behaved as high responders, while splenic B cells behaved as low responders to LPS. The data presented here reveals a previous unsuspected behavior in the genetic control of the B cell response to LPS with an opposing impact in splenic versus peritoneal cavity B cells. These results suggest the existence of an, as yet, unidentified genetic factor exclusively expressed by coelomic B cells that contributes to the control of the LPS signaling pathway in the B lymphocyte.  相似文献   

11.
12.
TLRs provide critical signals to induce innate immune responses in APCs such as dendritic cells (DCs) that in turn link to adaptive immune responses. Results from our previous studies demonstrated that saturated fatty acids activate TLRs, whereas n-3 polyunsaturated fatty acids inhibit agonist-induced TLR activation. These results raise a significant question as to whether fatty acids differentially modulate immune responses mediated through TLR activation. The results presented in this study demonstrate that the saturated fatty acid, lauric acid, up-regulates the expression of costimulatory molecules (CD40, CD80, and CD86), MHC class II, and cytokines (IL-12p70 and IL-6) in bone marrow-derived DCs. The dominant negative mutant of TLR4 or its downstream signaling components inhibits lauric acid-induced expression of a CD86 promoter-reporter gene. In contrast, an n-3 polyunsaturated fatty acid, docosahexaenoic acid, inhibits TLR4 agonist (LPS)-induced up-regulation of the costimulatory molecules, MHC class II, and cytokine production. Similarly, DCs treated with lauric acid show increased T cell activation capacity, whereas docosahexaenoic acid inhibits T cell activation induced by LPS-treated DCs. Together, our results demonstrate that the reciprocal modulation of both innate and adaptive immune responses by saturated fatty acid and n-3 polyunsaturated fatty acid is mediated at least in part through TLRs. These results imply that TLRs are involved in sterile inflammation and immune responses induced by nonmicrobial endogenous molecules. These results shed new light in understanding how types of dietary fatty acids differentially modulate immune responses that could alter the risk of many chronic diseases.  相似文献   

13.
Mechanistic understanding of RP105 has been confounded by the fact that this TLR homolog has appeared to have opposing, cell type-specific effects on TLR4 signaling. Although RP105 inhibits TLR4-driven signaling in cell lines and myeloid cells, impaired LPS-driven proliferation by B cells from RP105(-/-) mice has suggested that RP105 facilitates TLR4 signaling in B cells. In this article, we show that modulation of B cell proliferation by RP105 is not a function of B cell-intrinsic expression of RP105, and identify a mechanistic role for dysregulated BAFF expression in the proliferative abnormalities of B cells from RP105(-/-) mice: serum BAFF levels are elevated in RP105(-/-) mice, and partial BAFF neutralization rescues aberrant B cell proliferative responses in such mice. These data indicate that RP105 does not have dichotomous effects on TLR4 signaling and emphasize the need for caution in interpreting the results of global genetic deletion.  相似文献   

14.
15.
There is increasing awareness that helminth infections can ameliorate proinflammatory conditions. In part, this is due to their inherent ability to induce Th2 and, perhaps, regulatory T cell responses. However, recent evidence indicates that helminths also have direct anti-inflammatory effects on innate immune responses. In this study, we address this issue and show that soluble molecules from the eggs of the helminth parasite Schistosoma mansoni (SEA) suppress LPS-induced activation of immature murine dendritic cells, including MHC class II, costimulatory molecule expression, and IL-12 production. SEA-augmented LPS-induced production of IL-10 is in part responsible for the observed reduction in LPS-induced IL-12 production. However, analyses of IL-10(-/-) DC revealed distinct IL-10-independent suppressive effects of SEA. IL-10-independent mechanisms are evident in the suppression of TLR ligand-induced MAPK and NF-kappaB signaling pathways. Microarray analyses demonstrate that SEA alone uniquely alters the expression of a small subset of genes that are not up-regulated during conventional TLR-induced DC maturation. In contrast, the effects of SEA on TLR ligand-induced DC activation were striking: when mixed with LPS, SEA significantly affects the expression of >100 LPS-regulated genes. These findings indicate that SEA exerts potent anti-inflammatory effects by directly regulating the ability of DC to respond to TLR ligands.  相似文献   

16.
An ideal vaccine for induction of CD4(+) T cell responses should induce local inflammation, maturation of APC, and peptide loading of MHC class II molecules. Ligation of Toll-like receptor (TLR) 2 provides the first two of these three criteria. We have studied whether targeting of TLR2 results in loading of MHC class II molecules and enhancement of CD4(+) T cell responses. To dissociate MHC class II presentation from APC maturation, we have used an antagonistic, mouse anti-human TLR2 mAb (TL2.1) as ligand and measured proliferation of a mouse Ckappa-specific human CD4(+) T cell clone. TL2.1 mAb was 100-1000 times more efficiently presented by APC compared with isotype-matched control mAb. Moreover, TL2.1 mAb was internalized into endosomes and processed by the conventional MHC class II pathway. This novel function of TLR2 represents a link between innate and adaptive immunity and indicates that TLR2 could be a promising target for vaccines.  相似文献   

17.
Complex mechanisms operate on mucosal tissues to regulate immune responsiveness and tolerance. When the lymphocyte subpopulations from murine nasal-associated lymphoid tissues (NALT) were characterized, we observed an accumulation of B220(low)CD3(low)CD4(-)CD8(-)CD19(-)c-Kit(+) cells. TCR transgenic mice and athymic mice were used for monitoring T cell lineage and the presence of extrathymic T cell precursors. The majority of cells from NALT exhibited a T cell precursor phenotype (CD4(-)CD8(-)CD19(-)c-Kit(+)). Fas-independent apoptosis was their main mechanism of cell death. We also demonstrated that B220(low)CD4(-)CD8(-)CD19(-) cells from NALT exhibited the potential to down-regulate the activation of mature T cells. However, the innate immunity receptor TLR2 was also highly expressed by this cell subpopulation. Moreover, nasal stimulation with a TLR2/6 agonist resulted in a partial activation of the double-negative cells. These results suggest that the immune responses in NALT may be in part modulated by a cell subpopulation that maintains a tolerogenic milieu by its proapoptotic status and suppressive activity, which can be reverted through stimulation of a TLR signaling cascade.  相似文献   

18.
The common, co-segregating Toll-like receptor 4 (TLR4) non-synonymous single nucleotide polymorphisms (SNPs), Asp299Gly and Thr399Ile, are associated with hyporesponsiveness to inhaled lipopolysaccharide (LPS) and increased susceptibility to Gram negative pathogens in humans. The purpose of this study was to identify the relative contributions of the Asp299Gly and the Thr399Ile variants in inhibiting the function of TLR4. 293/hMD2-CD14 cell line was transfected with lentiviral constructs containing human wild type (WT) TLR4-EGFP or TLR4-EGFP with Asp299Gly, Thr399Ile or Asp299Gly/Thr399Ile complementary DNA (cDNA). Multiple stable cell lines were established for each construct: three for WT TLR4, Asp299Gly, and Thr399Ile, and only two for Asp299Gly/Thr399Ile mutants and EGFP control. We did not observe a significant effect of polymorphisms on cell surface and intracellular TLR4 expression nor were there any significant differences in TLR4 and EGFP protein levels assessed by Western blotting and confocal microscopy among the multiple cell lines of each of the constructs. All cell lines had a dose-dependent responsiveness to LPS stimulation. However, compared to the WT TLR4, cells expressing TLR4 with Asp299Gly but not Thr399Ile polymorphism produced significantly less (P<0.05) IL-8 following LPS stimulation. Similarly, cells expressing TLR4 Asp299Gly but not Thr399Ile allele had significantly lower percentage of phosphorylated and total NF-κB P65 following LPS stimulation. While we could not do statistics on the Asp299Gly/Thr399Ile group, we observed a reduced responsiveness to LPS compared to WT TLR4. Taken together, we observed that the TLR4 Asp299Gly variant, but not the Thr399Ile variant, is responsible for impaired responsiveness of TLR4 to LPS and corresponding activation of NF-κB.  相似文献   

19.
Toll-like receptors (TLR) are key components of innate immune system. As TLR activation could induce potentially harmful inflammatory response, activation of TLR signaling pathways has to be under tight control. Besides other control mechanisms, an inhibitory function of murine TLR4 splice variants was recently demonstrated. In this study we investigated expression of four TLR4 splice variants in human antigen presenting cells (APC). Furthermore, we studied modification in TLR4 splice variants expression in APC in cystic fibrosis (CF) patients chronically infected by Gram-negative bacteria. We developed a novel reliable real-time PCR detection system that allowed monitoring of individual TLR4 splice variants expression. In APC from healthy donors we detected a characteristic transient increase of two out of four splice variants after lipopolysaccharide (LPS) stimulation. Similarly to murine TLR4, one of these variants, NM 003266, might translate to a potentially inhibitory protein. In contrast to controls, CF monocytes had significantly changed LPS-induced expression of TLR4 gene and its variants including reduced ability to up-regulate the expression of the potentially inhibitory variant upon stimulation. In accordance with this observation, monocytes from CF patients produced significantly more tumor necrosis factor after LPS stimulation than healthy controls. Our results thus describe the kinetics of TLR4 splicing variants expression after LPS stimulation and indicate a possible alteration of its regulation in CF patients.  相似文献   

20.
Toll-like receptor (TLR) 2 has recently been associated with cellular responses to numerous microbial products, including LPS and bacterial lipoproteins. However, many preparations of LPS contain low concentrations of highly bioactive contaminants described previously as "endotoxin protein," suggesting that these contaminants could be responsible for the TLR2-mediated signaling observed upon LPS stimulation. To test this hypothesis, commercial preparations of LPS were subjected to a modified phenol re-extraction protocol to eliminate endotoxin protein. While it did not influence the ability to stimulate cells from wild-type mice, repurification eliminated the ability of LPS to activate cells from C3H/HeJ (Lpsd) mice. Additionally, only cell lines transfected with human TLR4, but not human or murine TLR2, acquired responsiveness to both re-extracted LPS and to a protein-free, synthetic preparation of lipid A. These results suggest that neither human nor murine TLR2 plays a role in LPS signaling in the absence of contaminating endotoxin protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号