首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Herein we have focused attention on major phenotypic features of peripheral blood eosinophils from chronic Schistosoma mansoni-infected patients. For this purpose, detailed immunophenotypic profiles of a range of cell surface markers were performed, including activation markers (CD23/CD69/CD25/HLA-DR), co-stimulatory molecules (CD28/CD80/CD86), chemokine receptors (CXCR1/CXCR2/CCR3/CCR5) besides L-selectin-CD62L and adhesion molecules (CD18/CD54). Our major findings pointed out increased frequency of CD23+-cells, besides decreased percentages of CD69+-eosinophils, suggesting a chronic activation status with low frequency of early activated eosinophils in chronic S. mansoni-infected patients (INT) in comparison to non-infected individuals (NI). Moreover, a dichotomic expression of beta-chemokine receptors was observed during human schistosomiasis mansoni with higher CCR5 and lower levels of CCR3 observed between groups. Enhanced expression of co-stimulatory receptors (CD28/CD86) and adhesion molecules (CD54/CD18), besides striking lower frequency of L-selectin+ were reported for eosinophils from INT group as compared to NI. Interestingly, the frequency of CD62L+-eosinophils and a range of cell activation related molecules pointed out an opposite pattern of association in NI and INT, where only INT patients that display lower frequency of CD62L+-eosinophils (first CD62L tertile) kept the unusual relationship between the expression of L-selectin and the CD23 activation marker. These findings suggest that distinct dynamic of activation markers expressed by eosinophils may occur during chronic S. mansoni infection.  相似文献   

3.
The effect of infection of sheep with the gastrointestinal nematode parasite Trichostrongylus colubriformis on expression of adhesion molecules CD11a, CD11b, CD11c, CD18, CD44, CD49d and CD62L by peripheral blood eosinophils was examined by flow cytometry. Initially, to establish the sensitivity of adhesion molecules to inflammatory signals, eosinophil-rich exudates were elicited in non-lactating mammary glands of immune sheep by infusion of 50 microg of soluble antigen extract from T. colubriformis third stage larvae. Eosinophils comprised 40.8% of mammary leucocytes and 4.5% of peripheral blood leucocytes. In comparison with blood, the percentage of eosinophils expressing CD18 increased and the percentage expressing CD62L decreased in exudates and the mean fluorescent intensity, an indicator of receptor number per cell, for CD11a and CD49d also decreased on exudate eosinophils. Peripheral blood eosinophils were examined over 8 weeks during trickle infection of immune sheep with infective or irradiated third stage larvae of T. colubriformis. During the last 3 weeks of infection, CD11a staining decreased in infected sheep and CD44 staining decreased in sheep receiving either infective or irradiated larvae. Other surface markers did not change. The results indicate that systemic changes in expression of adhesion molecules by eosinophils occur during T. colubriformis infection in sheep.  相似文献   

4.
Chemokines are small molecular weight peptides responsible for adhesion, activation, and recruitment of leukocytes into tissues. Leukocytes are thought to influence follicular atresia, ovulation, and luteal function. Many studies in recent years have focused attention on the characterization of leukocyte populations within the ovary, the importance of leukocyte-ovarian cell interactions, and more recently, the mechanisms of ovarian leukocyte recruitment. Information about the role of chemokines and leukocyte trafficking (chemotaxis) during ovarian function is important to understanding paracrine-autocrine relationships shared between reproductive and immune systems. Recent advances regarding chemokine expression and leukocyte accumulation within the ovulatory follicle and the corpus luteum are the subject of this mini-review.  相似文献   

5.
6.
The cyclic nature of the capillary bed in the corpus luteum offers a unique experimental model to examine the life cycle of endothelial cells, involving discrete physiologically regulated steps of angiogenesis, blood vessel maturation and blood vessel regression. The granulosa cells and theca cells of the developing antral follicle and the steroidogenic cells of the corpus luteum produce and respond to angiogenic factors and vasoactive peptides. Following ovulation the neovascularization during the early stages of corpus luteum development has been compared to the rapid angiogenesis observed during tumor formation. On the other end of the spectrum, the microvascular endothelial cells are the first cells to undergo apoptosis at the onset of corpus luteum regression. Important insights on the morphology and function of luteal endothelial cells have been gained from a combination of in vitro and in vivo studies on endothelial cells. Endothelial cells communicate with cells comprising the functional unit of the corpus luteum, i.e., other vascular cells, steroidogenic cells, and immune cells. This review is designed to provide an overview of the types of endothelial cells present in the corpus luteum and their involvement in corpus luteum development and regression. Available evidence indicates that microvascular endothelial cells of the corpus luteum are not alike, and may differ during the process of angiogenesis and angioregression. The contributions of vasoactive peptides generated by the luteal endothelin-1 and the renin-angiotensin systems are discussed in context with the function of endothelial cells during corpus luteum formation and regression. The ability of two cytokines, tumor necrosis factor alpha and interferon gamma, are evaluated as paracrine mediators of endothelial cell function during angioregression. Finally, chemokines are discussed as a vital endothelial cell secretory products that contribute to the recruitment of eosinophils and macrophages. The review highlights areas for future investigation of ovarian microvascular endothelial cells. The potential clinical applications of research directed on corpus luteum endothelial cells are intriguing considering reproductive processes in which vascular dysfunctions may play a role such as ovarian failure, polycystic ovary syndrome (PCOS), and ovarian hyperstimulation syndrome (OHSS).  相似文献   

7.
Regulation of expression of the genes encoding steroidogenic enzymes   总被引:1,自引:0,他引:1  
In recent years it has become apparent that tropic hormones involved in steroidogenesis act to regulate the expression of the enzymes involved in the various steroidogenic pathways. This is particularly evident in the ovary where the episodic secretion of steroids throughout the ovarian cycle is regulated largely by changes in the levels of the particular enzymes involved in each step of the steroid biosynthetic pathways. Recently, the genes for the various cytochrome P450 species involved in ovarian steroidogenesis, namely cholesterol side-chain cleavage P450 (P450SCC), 17 alpha-hydroxylase P450 (P450(17 alpha], and aromatase cytochrome P450 (P450AROM) have been isolated and characterized, making it possible to study the regulation of expression at the molecular level. To this end, a series of chimeric constructs have been prepared in which fragments of the 5'-untranslated region of bovine P450(17 alpha) and P450SCC have been inserted upstream of the chloramphenicol acetyl transferase (CAT) and beta-globin reporter genes. These constructs have been used to transfect primary cultures of bovine luteal and thecal cells. The results indicate that cAMP responsiveness lies within defined regions of genes which do not contain a classical CRE, similar to previous results utilizing adrenal cells in culture. Furthermore, although constructs containing both the P450(17 alpha) and P450SCC 5'-upstream regions are expressed in both luteal and thecal cell cultures, only those containing the P450SCC sequences are expressed in luteal cells. Studies on the expression of P450AROM indicate that the promoter which is responsible for its expression in human placenta is not operative in the corpus luteum. Thus estrogen biosynthesis may be regulated by the differential use of tissue specific promoters, thus accounting for the complexity and multifactorial nature of the expression of this activity.  相似文献   

8.
The morphology of the post-ovulatory follicle (or corpus luteum) in the sparrow (Passer domesticus) ovary has been investigated with special reference to the origin of luteal cells which finally fill the fillicular activity. The development and degeneration of luteal cell mass has been described in three phases. The luteal cell mass consists of hypertrophied granulosa luteal cells during the first phase and of both granulosa and thecal luteal cells during the second phase. During the second phase owing to their different staining reactions, both types of luteal cells can be differentiated. In the advanced stages of regression, i.e. during the third phase, the whole luteal cell mass consists of thecal luteal cells and connective tissue elements as the granulosa luteal cells had degenerated and disappeared by this stage.  相似文献   

9.
Pancreatic islet endothelial cells (ECs) form the barrier across which autoreactive T cells transmigrate during the development of islet inflammation in type 1 diabetes. Little is known about the immune phenotype of islet ECs that might shape their molecular interaction with autoreactive T cells before and during the development of islet inflammation. In this study we examined the expression and functional significance of costimulatory molecules by human islet ECs. Freshly isolated human islet ECs constitutively expressed CD86 (B7-2) and ICOS ligand but not CD80 (B7-1) or CD40 costimulatory molecules. The functional activity of islet EC-expressed CD86 was examined by coculture of resting islet ECs with CD4 T cells stimulated by CD3 ligation alone. Marked T cell proliferation in the coculture was completely abrogated by mAb blockade of CD86, confirming that costimulatory properties are conferred on ECs by CD86 expression. In view of its location on the vasculature, we hypothesized a role for CD86 in T cell adhesion/transmigration. In keeping with this, adhesion/transmigration of activated (CD3 ligated) memory (CD45R0(+)) CD4 T cells across islet ECs was completely inhibited in the presence of CD86 blocking mAb. Identical results were obtained for T cell adhesion using either CTLA-4 blocking mAb or CTLA-4Ig (abatacept), indicating CTLA-4 as the T cell ligand for these CD86-mediated effects. These data suggest a novel role for CD86 expression on the microvasculature, whereby ligation of CTLA-4 on CD4 T cells by CD86 on islet ECs is key to the adhesion of recently activated T cells.  相似文献   

10.
Ovarian progesterone secretion during the diestrus stage of the estrous cycle is produced by luteal cells derived from granulosa and thecal cells after the differentiation process that follows ovulation. Our results show that blockade of the preovulatory rise of ovarian ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, by treatment with the specific inhibitor alpha-difluoromethylornithine (DFMO) leads to a significant decrease in the ovarian progesterone content and a dramatic fall in the plasma levels of this hormone during the following diestrus. The same inhibition was produced in spite of the fact that both luteinizing and follicle stimulating hormones were given concomitantly with DFMO. On the other hand, the acute rise in the plasma progesterone levels observed after administration of human chorionic gonadotropin to mice at different periods of the estrous cycle was not affected by DFMO administration. Our results indicate that although elevated levels of ODC are not required for acute ovarian steroidogenesis, the preovulatory peak of ovarian ODC activity observed in the evening of proestrus may be critical for the establishment of a constitutive steroidogenic pathway and progesterone secretion by the corpus luteum during the diestrus stage of the murine estrous cycle.  相似文献   

11.
Proteoglycan (PG)-induced arthritis, a murine model of rheumatoid arthritis, is characterized by autoimmunity against mouse cartilage PG and chronic joint inflammation. L-selectin (CD62L) and CD44 are major adhesion molecules on leukocytes that regulate their homing to lymph nodes and entry into inflamed tissues. In the present study, we studied the requirement for CD44 and CD62L expression for mediating lymphocyte homing, thus permitting the development of autoimmunity vs mediating the entry of leukocytes into the joints, thus allowing inflammation in PG-induced arthritis. We immunized wild-type, CD44 knockout (KO), CD62L KO, and double (CD44/CD62L) KO BALB/c mice with PG and monitored the effects of gene deficiencies on PG-specific immunity, arthritis severity, leukocyte trafficking, and the ability of lymphocytes to adoptively transfer disease to syngeneic SCID mice. Single and double KO mice demonstrated reduced PG-specific spleen cell proliferation, but the production of Th cytokines and autoantibodies was comparable in KO and wild-type mice. KO leukocytes had reduced ability to adhere tightly to the synovial endothelium in arthritic joints. This diminished leukocyte adhesion correlated with the magnitude of granulocyte (neutrophil) influx and the severity of inflammation, which were both reduced in the joints of KO mice. However, transfer of spleen cells from mildly arthritic KO donors to SCID hosts resulted in development of severe arthritis. Our results indicate that CD44 and CD62L expression in the cells of the innate immune system (granulocytes) is important for their efficient influx into the joints and also suggest that granulocytes play a crucial role in arthritis progression.  相似文献   

12.
During the reproductive cycle, ovarian follicles undergo major tissue-remodeling involving vascular changes and proteolysis. Anticoagulant heparan sulfate proteoglycans (aHSPGs) are expressed by granulosa cells during the development of the ovarian follicle. The function of aHSPGs in the ovary is unknown, but they might be involved in proteolysis control through binding and activation of serine protease inhibitors. To identify functional interactions between aHSPGs and heparin-binding protease inhibitors in the follicle, we have coordinately localized aHSPGs, antithrombin III, protease nexin-1, and plasminogen activator inhibitor-1 in the rat ovary during natural and gonadotropin-stimulated cycles. Anticoagulant HSPGs were visualized by autoradiography of cryosections incubated with 125I-antithrombin III, and protease inhibitors were assessed by immunohistochemistry and Northern blot hybridization. Anticoagulant HSPGs were expressed in follicles before ovulation, were transiently decreased in postovulatory follicles, and were abundant in the corpus luteum, mainly on capillaries. Anticoagulant HSPGs were colocalized with protease nexin-1 in follicles from the early antral stage until ovulation, with antithrombin III in the preovulatory stage and after ovulation, and with plasminogen activator inhibitor-1 in the corpus luteum. These data demonstrate that aHSPGs are critically expressed in the ovary to interact sequentially with protease nexin-1, antithrombin III, and plasminogen activator inhibitor-1 during the cycle. The specificity of these inhibitors is shifted toward thrombin inhibition in the presence of heparin, suggesting that aHSPGs direct their action to control fibrin deposition in the follicle. The occupation of aHSPGs antithrombin-binding sites by mutant R393C antithrombin III, injected in the ovarian bursa, decreased ovulation efficiency, further supporting the involvement of aHSPGs in the ovulation process.  相似文献   

13.
14.
15.
Uterine and ovarian blood flow during the estrous cycle in mares   总被引:3,自引:0,他引:3  
Uterine and ovarian blood flow was investigated in four mares during two consecutive estrous cycles using transrectal color Doppler sonography. The uterine and ovarian arteries of both sides were scanned to obtain waves of blood flow velocity. The pulsatility index (PI) reflected blood flow. There were significant time trends in PI values of all uterine and ovarian blood vessels during the estrous cycle (P < 0.05). PI values did not differ between the uterine arteries ipsi- and contralateral to the corpus luteum or the ovulatory follicle. PI values of the uterine arteries showed a wave shaped profile throughout the estrous cycle. The highest PI values occurred on Days 0 and 1 (Day 0 = ovulation) and around Day 11, and the lowest PI values were measured around Days 5 and -2 of the estrous cycle. During diestrus (Days 0-15) PI values of the ovarian artery ipsilateral to the corpus luteum were significantly lower than PI values of the contralateral ovarian artery (P < 0.0001). No differences (P > 0.05) in resistance to ovarian blood flow occurred between sides during estrus (Days -6 to -1). In this cycle stage PI values decreased in both ovarian vessels (P < 0.05). During diestrus, high PI values of the ovarian artery ipsilateral to the corpus luteum were measured between Days 0 and 2, followed by a decline until Day 6 (P < 0.05). From this time on, the resistance to blood flow increased continuously until Day 15 (P < 0.05). The cyclic blood flow pattern in the contralateral ovarian artery was similar to that in the uterine arteries (r = 0.68; P < 0.0001). No correlations occurred between the diameter of the corpus luteum and the PI values of the ipsilateral ovarian artery (P > 0.05) during diestrus. During estrus, there was a negative relationship between growth of the diameter of the ovulatory follicle and changes in PI values of the dominant ovarian artery (r = -0.41; P < 0.05). PI values of the uterine arteries and of the ovarian artery ipsilateral to the ovulatory follicle were negatively related to estrogen (E) levels in plasma during estrus (uterine arteries: r = -0.21; P < 0.05; dominant ovarian artery: r = -0.35; P < 0.05). In diestrus, PI values of the dominant ovarian artery were negatively related to plasma progesterone levels (r = -0.38; P < 0.0001), but not the PI values of the uterine arteries (P > 0.05). The findings of this study show that there are characteristic changes in blood supply of the uterus and the ovaries throughout the equine estrous cycle. There are negative correlations between resistance to blood flow in the uterine and ovarian arteries and the plasma estrogen levels during estrus. In diestrus, there is a negative relationship between the resistance to ovarian blood flow and the progesterone levels.  相似文献   

16.
The bovine ovary contains a considerable number of leucocytes which can be located with an antibody against the CD18 molecule. In the present study, subtyping and cell counting were carried out on histological sections stained with Sirius red for eosinophils and with toluidine blue for mast cells. The CD18(+) cells were identified immunohistologically. Eosinophils and mast cells contributed considerably to the CD18(+) pool. The number of eosinophils in the corpus luteum increased rapidly in early development to approximately 90% of the CD18(+) cells, and decreased to 30% during secretion and to 10% during regression. Mast cells were not detectable in the follicles, the corpus luteum and the periphery of the cortex, but were observed in the interstitial cortical stroma and the medulla. The number of mast cells in these regions, which corresponded to 60-76% of the CD18(+) cells, did not change significantly throughout the oestrous cycle. It is concluded that eosinophils are selectively recruited at the periovulatory period and that mast cells are unevenly distributed.  相似文献   

17.
在哺乳动物中,卵巢黄体(corpus luteum,CL)是由破裂排卵后的卵泡所形成的,也是血管增生比较激烈的地方。尤其是在卵巢黄体早期发育阶段,这种快速形成的致密毛细血管网可以确保产生激素的细胞获得氧气、营养和合成激素等所必要的前体,同时释放大量的激素用于早期妊娠的建立和维持。目前的研究已经表明,血管内皮生长因子(vascular endothel ial growth factor,VEGF)作为重要的促血管生成因子,在卵巢黄体发育过程中对血管增生具有至关重要的调节作用,而VEGF作为转录因子HIF-1的下游靶基因,受缺氧诱导因子HIF-1信号通路的调控。该文一方面对卵巢黄体发育过程中VEGF依赖性血管增生的调控机制进行概述,另一方面就转录因子H1F-1对VEGF的转录激活调控机制进行系统阐述,从而揭示HIF-1对卵巢黄体发育过程dgVEGF依赖性血管新生的调控作用,为进一步研究哺乳动物卵巢黄体发育过程中血管增生的分子调控机制提供坚实的理论基础。  相似文献   

18.
The major reproductive events in the oestrous cycles of nonhibernating mega- and microchiropteran species are reviewed. However, special attention is given to the reproductive biology of the temperate North American species, Tadarida brasiliensis mexicana (Molossidae), the Mexican free-tailed bat, which expresses dextral uterine and ovarian dominance. Only the larger right ovary is capable of producing an ovulatory follicle and the left has long been considered atrophic. In order to elucidate the normal oestrous cycle and define the structural and functional characteristics of the ovaries of this nonhibernating bat several analytical technique were utilized. These included light microscopic analysis, histochemical localization of delta 5-3 beta-hydroxysteroid dehydrogenase (HSD) activity, and radioimmunoassay of seasonal plasma progesterone levels. Interstitial tissue was found in both ovaries, but the left was almost entirely an interstitial organ. Histochemical analysis demonstrated that the gonads have seasonally varying amounts of delta 5-2 beta-HSD localized either in the thecal cells of the Graafian follicle or in the interstitium. The corpus luteum persisted throughout gestation, reaching maximum development just prior to parturition. Circulating progesterone levels correlated directly with luteal gland size and peaked at 106 ng/ml when the corpus luteum was largest.  相似文献   

19.
The existing of basement membrane improves the development of endothelium while constructing blood vessel equivalent. The amniotic membrane (AM) provides a natural basement membrane and has been used in ocular surface reconstruction. This study evaluated the molecular and cellular characteristics of porcine vascular endothelial cells (ECs) cultured on AM. ECs cultured on AM expressed the endothelial marker vWF and exhibited normal endothelial morphology. Here, we demonstrated that AM enhanced the expression of intercellular molecules, platelet-endothelial cell adhesion molecule-1 (PECAM-1), and adhesion molecule VE-cadherin at the intercellular junctions. The expression level of integrin was markedly higher in ECs cultured on AM than on plastic dish. Furthermore, the AM downregulated the expression of E-selectin and P-selectin in both LPS-activated and non-activated ECs. Consistently, adhesion of leukocytes to both activated and non-activated cells was decreased in ECs cultured on AM. Our results suggest that AM is an ideal matrix to develop a functional endothelium in blood vessel equivalent construction.  相似文献   

20.
During the estrous cycle and early pregnancy, lymphohemopoietic cytokines and chemokines contribute to the regulation of ovarian function by orchestrating the recruitment and activation of leukocytes associated with the ovulatory follicle and corpus luteum. The purpose of this study was to investigate the physiological role of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the ovary, utilizing mice genetically deficient in GM-CSF. Our results show that the mean duration of the estrous cycle in GM-CSF-deficient (GM-/-) mice was extended by 1.5 days (mean +/- SE, 4.9 +/- 0.3 vs. 6.5 +/- 0.5 days for GM+/+ and GM-/- mice, respectively). Similar ovulation rates were observed in immature superovulated mice (31.8 +/- 7.7 vs. 28.9 +/- 6.4 oocytes per mouse) and adult naturally cycling mice (10.4 +/- 0.8 vs. 10.3 +/- 0.8 oocytes per mouse). Furthermore, comparable numbers of oocytes were released from GM+/+ and GM-/- ovaries in an in vitro perfusion model. However, ovaries in pregnant GM-/- mice were found to comprise fewer cells and synthesize less progesterone (141.6 +/- 10.3 vs. 116.5 +/- 6 nM plasma), although the duration of pseudopregnancy was unaltered by GM-CSF deficiency (11.0 +/- 0.2 vs. 11.0 +/- 0.5 days). Immunohistochemical staining of leukocytes in the ovary during the periovulatory period indicated that the size and composition of ovarian leukocyte populations were unaltered in the absence of GM-CSF. However, an effect of GM-CSF deficiency on the activation phenotype of ovarian leukocytes was indicated by a 57% increase in mean secretion of nitric oxide in in vitro-perfused GM-/- ovaries, and diminished major histocompability complex (MHC) class II (Ia) expression in ovarian macrophages and/or dendritic cells (30.5 +/- 7. 2% vs. 9.1 +/- 1.8% positive stain in GM+/+ and GM-/- ovaries, respectively). Furthermore, ovarian macrophages and neutrophils were diminished in number after parturition, with significantly decreased CD11b+ (Mac-1) staining in the stromal region of postpartum GM-/- ovaries (6.7 +/- 0.6 vs. 3.6 +/- 0.7% positive stain). In summary, GM-CSF does not appear to be essential for ovarian function but may play a role in fine-tuning the activation status and adhesive properties of ovarian myeloid leukocytes. Aberrant activation of these cells appears to compromise the luteinization process and the steroidogenic capacity of the corpus luteum during early pregnancy in GM-CSF-deficient mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号