首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative contribution of autotrophic carbon sources (aquatic macrophytes, flooded forest, phytoplankton) for heterotrophic bacterioplankton was evaluated in a floodplain lake of the Central Amazon. Stable carbon isotopes (13C) were used as tracers. Values of 13C of different autotrophic sources were compared to those of dissolved organic carbon (DOC) and those of bacterially produced CO2.The percentage of carbon derived from C4 macrophytes for bacterially produced CO2 was the highest, on average 89%. The average 13C value of CO2 from bacterial respiration was –18.5 ± 3.3. Considering a fractionation of CO2 of 3 by bacterial respiration, 13C value was –15.5, near C4 macrophyte 13C value (–13.1).The average value of total DOC 13C was –26.8 ± 2.4. The percentage of C4 macrophytes carbon for total DOC was on average 17%. Considering that bacteria consume mainly carbon from macrophytes, the dominance of C3 plants for total DOC probably reflects a faster consumption of the former source, rather than a major contribution of the latter source.Heterotrophic bacterioplankton in the floodplain may be an important link in the aquatic food web, transferring the carbon from C4 macrophytes to the consumers.  相似文献   

2.
Summary Measurements of leaf thickness and 13C value were obtained for twenty species and three intergeneric hybrids of the Crassulaceae. The data include plants growing in their native habitats and also in greenhouse cultivation. There is a strong relationship between leaf thickness and leaf 13C values. The plants with the thickest leaves of ca. 7 to 11 mm had 13C values ranging from -11.5 to -13.8. Plants with leaves that were thinner than 2.0 mm all had 13C values that were more negative than -23. Plants having intermediate leaf thickness possessed intermediate 13C values. The leaf tissue of four genotypes spanning the range of leaf thicknesses all exhibited a two-fold or greater nocturnal increase in titratable acidity. It appears that the differences in leaf thickness and 13C values among the tested species are genetically determined.  相似文献   

3.
Intra- and inter-tree variations in 13C/12C ratios were studied within a single clone plantation of 20-year-old Sitka spruce, some of which were treated with mist simulating acidic cloud water. For groups of trees of similar height and the same treatment, sampled at the same whorl height, 13C values for current year needles showed variations (1 SD) of between 0.2 and 0.7. The variations reflect the seasonally averaged influences, on intercellular CO2 concentrations, of slight variations in the microhabitat within a group. For a typical intra-group variation of 0.4 one may be able to distinguish between groups whose mean intercellular CO2 concentrations differ by only 8 ppm. Acid misting resulted in a lowering of 13C values by c. 0.7 (significant at the P0.05 level). This reflects higher intercellular CO2 concentrations for acid misted trees, which can be interpreted in terms of their having assimilation rates c. 10% lower than those of control trees, and might explain the observed reduction in stem growth for acid-misted trees. Without careful attention to sampling strategy, however, these small inter-tree 13C variations can be easily masked by the much larger intra-tree variations with height. Large gradients of increasing needle 13C with height, of c. 0.5 m-1, were observed in two untreated trees of different total height. The gradient was similar for both trees so, though 13C values of both trees were identical close to their leaders (–27), the taller tree displayed much lower values close to the ground (–31). The gradients are believed to reflect lower light levels close to the ground, rather than the accumulation of respired CO2 in the atmosphere. The different height response of stems versus needles, reflected by an increase in 13Cstems13Cneedles with height (for cellulose), is discussed in terms of stem photosynthetic recapture of internally respired CO2.  相似文献   

4.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (13C = –44.6 ± 0.2) were characterized by the values of 13CCO 2 = –50.2 ± 0.4, 13Cbiom = –46.6 ± 0.4, and 13Cexo = –41.5 ± 0.4, respectively. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (13C = –21 ± 0.4) were characterized by the isotope effects 13CCO 2 = –24.1 ± 0.4, 13Cbiom = –19.2 ± 0.4, and 13Cexo = –19.1 ± 0.4, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the environment is discussed.  相似文献   

5.
Summary The ratio of deuterium to hydrogen (expressed as D) in hydrogen released as water during the combustion of dried plant material was examined. The D value (metabolic hydrogen) determined on plant materials grown under controlled conditions is correlated with pathways of photosynthetic carbon metabolism. C3 plants show mean D values of-132 for shoots and -117 for roots; C4 plants show mean D values of -91 for shoots and-77 for roots and CAM plants a D value of-75 for roots and shoots. The difference between the D value of shoot material from C3 and C4 plants was confirmed in species growing under a range of glasshouse conditions. This difference in D value between C3 and C4 species does not appear to be due to differences in the D value (tissue water) in the plants as a result of physical fractionation of hydrogen isotopes during transpiration. In C3 and C4 plants the hydrogen isotope discrimination is in the same direction as the carbon isotope discrimination and factors contributing to the difference in D values are discussed. In CAM plants grown in the laboratory or collected from the field D values range from-75 to +50 and are correlated with 13C values. When deprived of water, the D value (metabolic hydrogen) in both soluble and insoluble material in leaves of Kalanchoe daigremontiana Hamet et Perr., becomes less negative. These changes may reflect the deuterium enrichment of tissue water during transpiration, or in field conditions, may reflect the different D value of available water in areas of increasing aridity. Whatever the origin of the variable D value in CAM plants, this parameter may be a useful index of the water relations of these plants under natural conditions.  相似文献   

6.
The carbon isotope composition of an animals breath reveals the composition of the nutrients that it catabolizes for energy. Here we describe the use of Keeling plots, a method widely applied in ecosystem ecology, to measure the 13C of respired CO2 of small vertebrates. We measured the 13C of Rufous Hummingbirds (Selasphorus rufus) in the laboratory and of Mourning (Zenaida macroura) and White-winged (Z. asiatica) Doves in the field. In the laboratory, when hummingbirds were fed a sucrose based C3 diet, the 13C of respired CO2 was not significantly different from that of their diet (13CC3 diet). The 13C of respired CO2 for C3 fasted birds was slightly, albeit significantly, depleted in 13C relative to 13CC3 diet. Six hours after birds were shifted to a sucrose based C4 diet, the isotopic composition of their breath revealed that birds were catabolizing a mixture of nutrients derived from both the C3 and the C4 diet. In the field, the 13C of respired CO2 from Mourning and White-winged Doves reflected that of their diets: the CAM saguaro cactus (Carnegeia gigantea) and C3 seeds, respectively. Keeling plots are an easy, effective and inexpensive method to measure 13C of respired CO2 in the lab and the field.  相似文献   

7.
Charophyte oosporangia and water samples from a highly calcareous lake were measured for stable carbon and oxygen isotopic composition. The time period over which the oosporangia calcify is short, thus any biochemical relationship between the water and oosporangia"s calcite represents only one time window (late Summer in Malham Tam). This important temporal restraint must also apply to interpretations of all fossil material measured. The 18Oc of the charophyte oosporangia is deduced to be in equilibrium with the 18O of the water for a given temperature. The 13 Cc of the charophyte oosporangia was approximately 2.5 per mil lower than the 13CDIC in the water we measured. With the release Of CO2 with phosphoric acid from the charophyte oosporangia, there was no significant difference in the 18Oc values obtained, regardless of whether or not the carbonate was separated from the organic center, however 13Cc values were marginally lower for carbonate plus organic center measurements. Our results indicate that fossil charophyte gyrogonites can be used to elucidate the geochemistry of the ancient water body in which they lived.  相似文献   

8.
The grass flora of Namibia (374 species in 110 genera) shows surprisingly little variation in 13C values along a rainfall gradient (50–600 mm) and in different habitat conditions. However, there are significant differences in the 13C values between the metabolic types of the C4 photosynthetic pathway. NADP-ME-type C4 species exhibit the highest 13C values (–11.7 ) and occur mainly in regions with high rainfall. NAD-ME-type C4 species have significantly lower 13C values (–13.4 ) and dominate in the most arid part of the precipitation regime. PCK-type C4 species play an intermediate role (–12.5 ) and reach a maximum abundance in areas of intermediate precipitation. This pattern is also evident in genera containing species of different metabolic types. Within the same genus NAD species reach more negative 13C values than PCK species and 13C values decreased with rainfall. Also in Aristida, with NADP-ME-type photosynthesis, 13C values decreased from –11 in the inland region (600 mm precipitation) to –15 near the coast (150 mm precipitation), which is a change in discrimination which is otherwise associated by a change in metabolism. The exceptional C3 species Eragrostis walteri and Panicum heterostachyum are coastal species experiencing 50 mm precipitation only. Many of the rare species and monotypic genera grow in moist habitats rather than in the desert, and they are not different in their carbon isotope ratios from the more common flora. The role of species diversity with respect to habitat occupation and carbon metabolism is discussed.  相似文献   

9.
Summary Carbon isotope composition, photosynthetic gas exchange, and nitrogen content were measured in leaves of three varieties of Metrosideros polymorpha growing in sites presenting a variety of precipitation, temperature and edaphic regimes. The eight populations studied could be divided into two groups on the basis of their mean foliar 13C values, one group consisting of three populations with mean 13C values ca.-26 and another group with 13C values ca.-28. Less negative 13C values appeared to be associated with reduced physiological availability of soil moisture resulting from hypoxic conditions at a poorly drained high elevation bog site and from low precipitation at a welldrained, low elevation leeward site. Gas exchange measurements indicated that foliar 13C and intrinsic wateruse efficiency were positively correlated. Maximum photosynthetic rates were nearly constant while maximum stomatal conductance varied substantially in individuals with foliar 13C ranging from-29 to-24. In contrast with the patterns of 13C observed, leaf nitrogen content appeared to be genetically determined and independent of site characteristics. Photosynthetic nitrogenuse efficiency was nearly constant over the range of 13C observed, suggesting that a compromise between intrinsic water- and N-use efficiency did not occur. In one population variations in foliar 13C and gas exchange with leaf cohort age, caused the ratio of intercellular to atmospheric partial pressure of CO2 predicted from gas exchange and that calculated from 13C to be in close agreement only in the two youngest cohorts of fully expanded leaves. The results indicated that with suitable precautions concerning measurement protocol, foliar 13C and gas exchange measurements were reliable indicators of potential resource use efficiency by M. polymorpha along environmental gradients.  相似文献   

10.
Stable carbon (13C) and nitrogen (15N) isotopes were used to elucidate primary food sources and trophic relationships of organisms in Khung Krabaen Bay and adjacent offshore waters. The three separate sampling sites were mangroves, inner bay and offshore. The 13C values of mangrove leaves were –28.2 to –29.4, seagrass –10.5, macroalgae –14.9 to –18.2, plankton –20.0 to –21.8, benthic detritus –15.1 to –26.3, invertebrates –16.5 to –26.0, and fishes –13.4 to –26.3. The 15N values of mangrove leaves were 4.3 to 5.7, seagrass 4.3, macroalgae 2.2 to 4.4, plankton 5.7 to 6.4 , benthic detritus 5.1 to 5.3, invertebrates 7.2 to 12.2 , and fishes 6.3 to 15.9. The primary producers had distinct 13C values. The 13C values of animals collected from mangroves were more negative than those of animals collected far from shore. The primary carbon sources that support food webs clearly depended on location. The contribution of mangroves to food webs was confined only to mangroves, but a mixture of macroalgae and plankton was a major carbon source for organisms in the inner bay area. Offshore organisms clearly derived their carbon through the planktonic food web. The 15N values of consumers were enriched by 3–4 relative to their diets. The 15N data suggests that some of aquatic animals had capacity to change their feeding habits according to places and availability of foods and as a result, individuals of the same species could be assigned to different trophic levels at different places.  相似文献   

11.
The effect of interspecific competition and element additions (N and P) on four grassland species (Poa pratensis, Lolium perenne, Festuca valida, Taraxacum officinale) grown under field conditions was studied. Two grasses (L. perenne, F. valida) grown in monoculture (absence of competition) showed lower carbon isotope discrimination (13C) and enriched 15N values. Nitrogen addition (as urea) had inconsistent effects on species 13C while caused enrichment of 15N of P. pratensis and F. valida but strong depletion of 15N of T. officinale. Phosphorous had no significant effect on 13C but depleted 15N of all species.  相似文献   

12.
Summary The 13C values of submerged aquatic plants from contrasting but relatively defined habitats, and the 13C values of emergent, floating and submerged leaves of dimorphic aquatic plants, were measured. In many instances the 13C values of dissolved inorganic carbon in the water were also measured. Plant 13C values in the vicinity of-40 to-50 were found in rapidly flowing spring waters with carbonate 13C values of-16 to-21, consistent with the notion that species such as Fontinalis antipyretica almost exclusively assimilate free CO2 via RuP2 carboxylase. Plant 13C values in the vicinity of-10 to-15 in sluggish water with carbonate 13C values of about-5 were observed, consistent with the notion that boundary layer diffusion and/or HCO3 - uptake may determine the 13C value of submerged aquatic plants in these circumstances. Comparisons of 13C values of the same or related species growing in waters of similar carbonate 13C value but different flow rates confirmed this view; more negative 13C values were frequently associated with plants in fast moving water. In Britain, but not in Finland, the 13C values of submerged leaves of dimorphic plants were almost invariably more negative than in aerial leaves. The 13C value of carbonate from chalk streams and in acid springs indicate substantial inputs of respiratory CO2, as opposed to atmospheric carbon. The contributions of these variations in 13C of the carbon source, and of isotope fractionation in diffusion, to the 13C value of submerged parts of dimorphic plants is discussed.  相似文献   

13.
Given a uniform N source, the 15N of barley shoots provided a genotypic range within treatments and a separation between control and salt-stress treatments as great as did 13C*. Plant 15N has been represented in the literature as a bioassay of external source 15N and used to infer soil N sources, thus precluding consideration of the plant as a major cause in determining its own 815N. We believe this to be the first report of plant 15N as a genetic trait. No mechanistic model is needed for use of 15N as a trait in controlled studies; however, a qualitative model is suggested for further testing.Symbol 15N (or 13C) the difference between: (1) the ratio of heavy to light isotopes of the element in a sample and (2) that of its reference standard  相似文献   

14.
Three species of the reef coral genus Madracis display skeletal isotopic characteristics that relate to depth, colony topography, and consequently to coral physiology. The joint interpretation of skeletal 13C and 18O provides information on the ecological plasticity and adaptation to depth of a coral species. Isotopic results are most easily understood in terms of kinetic effects, which reduce both 18O and 13C below isotopic equilibrium values, and metabolic effects, which only influence the skeletal 13C. Madracis mirabilis is adapted to depths shallower than 20 m, and shows the greatest range in kinetic effects and the strongest metabolic 13C enrichments caused by symbiont photosynthesis. Madracis formosa lives deeper than 40 m, and shows a reduced range of kinetic effects and relatively weak metabolic 13C enrichments. Madracis pharensis inhabits depths from 5 to >60 m, and does not attain the strength of kinetic effects of either of the other two species, apparently because it is not quite as well adapted to rapid growth at either extreme.  相似文献   

15.
Dehairs  F.  Rao  R. G.  Chandra Mohan  P.  Raman  A.V.  Marguillier  S.  Hellings  L. 《Hydrobiologia》2000,431(2-3):225-241
Stable carbon isotopic composition and C/N ratio were used to trace the input of carbon associated with mangrove litter into the estuary of the Godavari–Gautami delta system and Kakinada bay (Andhra Pradesh, India). Suspended organic matter in the mangrove channels was more depleted in 13C (average 13C = –24.5) than in Kakinada bay which showed 13C values for suspended matter (average 13C = –22.7) closer to those expected for marine phytoplankton. Suspended organic matter from mangrove channels was enriched in nitrogen (average C/N atom ratio 12.7) and 13C (average 13C = –24.5) relative to mangrove leaf litter, which had a C/N ratio of 75 and a 13C value of –28. Lowest C/N ratios for suspended matter were observed during southwest monsoon when rainfall was highest. Although in general, mangrove litter fall was also lower during this period, no clear correlation was observed between litter fall and C/N ratio of suspended matter. In general, the composition of suspended matter pointed towards phytoplankton as a major component. Isotopic composition of zooplankton suggested selective feeding on 13C-enriched, marine phytoplankton in open Kakinada bay and on 13C-depleted organic matter, such as estuarine phytoplankton and mangrove litter, in the mangrove channels. From the 13C signature, it appeared that mangrove carbon was present to some extent in zooplankton and macrofauna from the mangrove mudflats and channels, but the signal rapidly decreased in Kakinada bay. Nitrogen isotopic composition of zooplankton and macrofauna indicated a progressive enrichment of 15N away from the mangrove forest towards the northern part of Kakinada bay, in approach of Kakinada city. This is thought to reflect input of anthropogenic nitrogen enriched in 15N and subsequent uptake of this enriched nitrogen into the aquatic food chain.  相似文献   

16.
A study of the isotopic composition of organic matter was conducted in a freshwater marsh over seasonal and diel time scales to determine the sources of dissolved organic matter (DOM) and the processes leading to its formation. Bulk C and N isotopic compositions of the bacterial fraction (0.2–0.7 m) and particulate organic matter (POM; 0.7–10 m) were compared on a seasonal basis with the change in 13C of DOM. The bulk isotopic data support the idea that DOM was, in part, derived from the breakdown of larger organic matter fractions. The bacterial fraction and POM were compositionally similar throughout the year, based on a comparison of the 13C of individual amino acids in each fraction. Annual variation in the 13C of amino acids in DOM was greater relative to the variation in larger fractions indicating that microbial reworking was an important factor determining the proteinaceous component of DOM. The 13C enrichment of serine and leucine in each organic matter fraction suggested microbial reworking was an important factor determining organic matter composition during the most productive times of year. Changes in the bulk 13C of DOM were more significant over daily, relative to seasonal, time scales where values ranged by 6 and followed changes in chlorophyll a concentrations. Although bulk 13C values for POM ranged only from –29 to –28 during the same diel period, the 13C of alanine in POM ranged from –30 to –22. Alanine is directly synthesized from pyruvate and is therefore a good metabolic indicator. The 13C of individual amino acids in DOM revealed the diel change in the importance of autotrophic versus heterotrophic activity in influencing DOM composition. Diel changes in the 13C of phenylalanine, synthesized by common pathways in phytoplankton and bacteria, were similar in both DOM and POM. The diel change in 13C of isoleucine and valine, synthesized through different pathways in phytoplankton and bacteria, were distinctly different in DOM versus POM. This disparity indicated a decoupling of the POM and DOM pools, which suggests a greater source of bacterial-derived organic matter at night. The results of this study demonstrate the use of the isotopic composition of individual amino acids in determining the importance of microbial reworking and autotrophic versus heterotrophic contributions to DOM over both diel and seasonal time scales.  相似文献   

17.
Isotope analysis of the biochemical fractions isolated quantitatively from young and mature leaves of Bryophyllum daigremontianum Berger have been carried out before and after a dark period of accumulation of organic acids. The mature leaf is enriched in 13C compared to the young leaf. The 13C values of the different leaf constituents vary between the 13C values of C4 plants (-11) and those of C3 plants (-27). During the dark period, the two types of leaves store organic acids with 13C values of -15 and lose insoluble sugars, including starch with a 13C value of -12. Furthermore, young leaves store phosphorylated compounds with 13C values of -11 and lose weakly polymerised sugars with 13C values of -18. These results led to the formulation of a hypothesis of the origin of the two substrates of -carboxylation: phosphoenolpyruvate arises from the glycolytic breakdown of the insoluble sugars rich in 13C, and the major portion of the CO2 is the result of the complete breakdown (respiration) of the soluble sugars rich in 12C. The existence of two independent sugar pools leads to the assumption that there are two separate glycolytic pathways. The 13C enrichment of the stored products of the young leaves in the day seems to be the result of a weak discrimination for 13C by ribulose diphosphate carboxylase, which reassimilates to a great extent the CO2 released from malate accumulated in the night.Abbreviations CAM crassulacean acid metabolism - C3 metabolism metabolism with primary carbon fixed by the Calvin and Benson pathway - C4 metabolism metabolism with primary carbon fixed by the Hatch and Slack pathway - 13C() (Rsample-RPDB) 103/RPDB where PDB=Pee Dee belemnite (belemite from the Pee Dee formation South Carolina) and R=13C/12C - NAD-MDH(EC1.1.1.37) NAD-malate dehydrogenase - NADP-ME (EC1.1.1.40) NADP-malic enzyme - PEP phosphoenolpyruvate - PEPC (EC4.1.1.31) PEP carboxylase - PGA phosphoglyceric acid - Py.di-PK(EC2.7.9.1) pyruvate, Pi-dikinase - RuDP ribulose diphosphate - RuDPC (EC4.1.1.39) RuDP carboxylase  相似文献   

18.
Tate  Amanda W.  Hershey  Anne E. 《Hydrobiologia》2003,499(1-3):13-23
Carbon and nitrogen stable isotopic data from the primary producers in mangrove ecosystems are needed to investigate trophic links and biogeochemical cycling. Compared with other mangrove species (e.g. Rhizophora mangle) very few measurements have been conducted on the white mangrove, Laguncularia racemosa. The carbon and nitrogen stable isotopic and elemental compositions of L. racemosa were analyzed and compared from Florida and Belize. 13C values of L. racemosa from Florida (mean = –26.4) were slightly higher than those from Twin Cays, Belize (mean = -27.4), which may be due to higher salinity in some parts of the Florida site. There was no difference between the 15N values from L. racemosa from these two sites (Florida mean = 0.6; Belize mean = 0.3), which are indicative of nitrogen derived from nitrogen fixation in a planktonic marine system. However, higher 15N values from L. racemosa at Man of War Cay in Belize (11.4 and 12.3), which is fertilized by roosting marine birds (14.0), illustrate that L. racemosa can sensitively reflect alternative nitrogen sources. Although the isotopic data could not distinguish between Avicennia germinans, R. mangle and L. racemosa in Belize the L. racemosa had considerably higher C/N ratios (46.5 – 116.1) compared with the Florida samples (42.2 – 76.0) or the other mangrove species. Unlike some previous findings from R. mangle, substrate characteristics (e.g. salinity, NH4 +, and H2S) were not related to the isotopic or elemental composition of L. racemosa. 13C, 15N and C/N were analyzed for ecosystem components from L. racemosa habitats at Twin Cays, including other plants (e.g. R. mangle, A. germinans and seagrass), detritus, microbial mats and sediments. Results from mass-balance calculations show that mangrove detritus composes very little of the sediment, which is principally composed of microbial biomass (80 – 90%). Detritus at some sites is also influenced by sources other than that from L. racemosa, including seagrass leaves.  相似文献   

19.
Time-series 18O and 13C records from cohabiting massive coralPorites australiensis and giant clamTridacna gigas from the Great Barrier Reed of Australia, and from calcareous green algae in a core through modernHalimeda bioherm accreting in the eastern Java Sea, provide insights into the complex links between environmental factors and stable isotopes imprinted in these reef skeletal materials. The aragonitic coral and giant clam offer 20 years and 15 years of growth history, respectively. The giant clam yields mean 18O and 13C values of-0.5±0.5 and 2.2±0.2 (n=67), which agree well with the predicted equilibrium values. The coral yields mean 18O and 13C values of-5.6±0.5 and-1.8±0.7 (n=84), offering a striking example of kinetic and metabolic fractionation effects. Although both the coral and giant clam harbor symbionts and were exposed to a uniform ambient environment during their growth histories, their distinct isotopic compositions demonstrate dissimilar calcification pathways. The 18O records contain periodicities corresponding to the alternating annual density bands revealed by X-radiography and optical transmitted light. Attenuation of the 18O seasonal amplitudes occurring in the giant clam record 8 years after skeletal growth commenced is attributed to a changeover from fast to slow growth rates. Extreme seasonal 18O amplitudes of up to 2.2 discerned in both the coral and giant clam records exceed the equivalent seasonal temperature contrast in the reef environment, and are caused by the combined effect of rainfall and evaporation during the monsoon and dry seasons, respectively. Thus in addition of being useful temperature recorders, reef skeletal material of sufficient longevity, such asPorites andTridacna, may also indicate rainfall variations. Changing growth rates, determined from the annual growth bands, may exert a primary control on the coral 13C record which shows a remarkable negative shift of 1.7 over its growth history, by comparison with only 0.15 negative shift in the contemporaneous giant clam record. Use of coral 13C records as proxies of fossil fuel CO2 uptake by the ocean must be regarded with caution. The 18O and 13C records fromHalimeda are remarkably uniform over 1000 years of bioherm accretion history (18O=-1.7±0.2; 13C=3.9±0.1,n=28), in spite of variable Mg-calcite cements present in the utricles. Most of the cement infilling is probably syndepositional, and both theHalimeda aragonite and the Mg-calcite cements containign 12.3 mole % MgCO3 are deposited in isotopic equilibrium. Therefore, in favorable circumstances these algal skeletal remains may act as the shallow water analogs of benthic foraminifera in deep sea sediments in recording ambient sea water isotopic composition and temperature.  相似文献   

20.
We determined the 18O and 13C composition of the same fixed growth increment in severalPorites lutea coral skeletons from Phuket, South Thailand. Skeletal growth rate and 18O are inversely related. We explain this in terms of McConnaughey's kinetic isotopic disequilibria model. Annual trends in 18O cannot be solely explained by observed variations in seawater temperature or salinity and may also reflect seasonal variations in calcification rate. Coral tissue chlorophylla content and 13C of the underlying 1 mm of skeleton are positively related, suggesting that algal modification of the dissolved inorganic carbonate pool is the main control on skeletal 13C. However, in corals that bleached during a period of exceptionally high seawater temperatures in the summer of 1991, 13C of the outer 1 mm of skeleton and skeletal growth rate (over 9 months up to and including the bleaching event) are inversely related. Seasonal variations in °13C may reflect variations in calcification rate, zooxanthellae photosynthesis or in seawater 13C composition. Bleached corals had reduced calcification over the 9-month period up to and including the bleaching event and over the event they deposited carbonate enriched in13C and18O compared with unaffected corals. However, calcification during the event was limited and insufficient material was deposited to influence significantly the isotopic signature of the larger seasonal profile samples. In profile, overall decreases in 18O and 13C were observed, supporting evidence that positive temperature anomalies caused the bleaching event and reflecting the loss of zooxanthellae photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号