首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The productivity was evaluated of a strain of Chlamydomonas perigranulata isolated from the RedSea. A mutant with small light-harvesting pigments(LHC-1) was obtained by UV mutagenesis. Thechlorophylls content of the wild type was twice ashigh as that of LHC-1, and the initial slope of thephotosynthesis-irradiance curve was higher in the wildtype. However, the maximum photosynthetic activity ona per cell basis was almost the same. It isconcluded that LHC-1 is a mutant with lesslight-harvesting pigment (LHP) than the wild type. Aspreviously reported, the mutant with lower LHP contenthas a higher productivity in a continuous culturesystem, so we compared the productivity of the wildtype and the mutant. The maximum productivity of LHC-1was 1.5 times higher than that of the wild type. Itis suggested that the technique of reducing thecontent of light-harvesting pigment should be madeavailable for other organisms.  相似文献   

2.
The calculated value of microalgal massproductivity is an important parameter incommercial mass production and derivativecompound production. Mathematical analysiswas conducted in order to predict the rateof microalgal mass production, which wascalculated from the factor of oxygenevolution rate and the respiration rate percell. Calculated productivities of twomutants with small light-harvestingpigment, a phycocyanin deficient mutant ofSynechocystis PCC 6714 (strain PD-1)and a mutant with small light-harvestingpigment of Chlamydomonasperigranulata (strain LHC-1), wereevaluated compared with the wild-types ofthese mutants, respectively. The resultsshow that calculated productivity isimproved by reducing the content oflight-harvesting pigment, which issupported by the actual values ofphotosynthetic productivity. Productiveimprovement by reducing the content oflight-harvesting pigment is not limited toa special strain but applies to a widevariety of photosynthetic organisms.  相似文献   

3.
Anastasios Melis   《Plant science》2009,177(4):272-280
The theoretical maxima of solar energy conversion efficiencies and productivities in oxygenic photosynthesis are evaluated. These are contrasted with actual measurements in a variety of photosynthetic organisms, including green microalgae, cyanobacteria, C4 and C3 plants. Minimizing, or truncating, the chlorophyll antenna size of the photosystems can improve photosynthetic solar energy conversion efficiency and productivity up to 3-fold. Generation of truncated light-harvesting chlorophyll antenna size (tla) strains, in all classes of photosynthetic organisms would help to alleviate excess absorption of sunlight and the ensuing wasteful dissipation of excitation energy, and to maximize solar-to-product energy conversion efficiency and photosynthetic productivity in high-density mass cultivations. The tla concept may find application in the commercial exploitation of microalgae and plants for the generation of biomass, biofuels, chemical feedstocks, as well as nutraceuticals and pharmaceuticals.  相似文献   

4.
The effects on photoinhibition of light-harvesting pigments in microalgal cells were examined using the wild type and a phycocyanin- deficient mutant (PD-1) of Synechosystis PCC 6714. Mutant PD-1 showed higher resistance to high light than the wild type in terms of the decline of photosynthetic activity at any light intensity and with various cell densities. This suggests that the loss of productivity induced by high light intensity would be improved by reducing the content of light-harvesting pigments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Lines of winter hexaploid Triticale and their F1 and F2 hybrids differing in morphological structure, pigment contents, photosynthetic productivity, and grain crops were studied. F1 hybrids received by crossing of Triticale lines contrasting in pigment contents showed in some cases a heterosis effect for chlorophyll (Chl) content per unit leaf area. Variation analysis demonstrated a polygenic control of Triticale pigment contents, and different rate of increase in F2 generation. We found maternal type of heritability of Chl b content and Chl content in light-harvesting complex of photosystem 2.  相似文献   

6.
Microalgal productivity was examined using both a wild type and a phycocyanin-deficient mutant of Synechocystis PCC 6714 (PD-1). The culture was conducted at various light intensities under low and high cell densities in a continuous culture system. At low light intensity, photosynthetic productivity was almost the same for both low and high cell densities. However, at higher light intensities photosynthetic productivity was higher in mutant PD-1 than in the wild type. At 2000 μmol photon m−2 s−1 the productivity was 50% higher in mutant PD-1. This result is consistent with our first report (Nakajima & Ueda, 1997), which showed that photosynthetic productivity can be improved by reducing the light harvesting pigment content in high cell density cultures at high light intensities. It is concluded that the technology for reducing LHP content is a useful method for improving photosynthetic productivity in algal mass production. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The truncated light-harvesting antenna2 (tla2) mutant of Chlamydomonas reinhardtii showed a lighter-green phenotype, had a lower chlorophyll (Chl) per-cell content, and higher Chl a/b ratio than corresponding wild-type strains. Physiological analyses revealed a higher intensity for the saturation of photosynthesis and greater P(max) values in the tla2 mutant than in the wild type. Biochemical analyses showed that the tla2 strain was deficient in the Chl a-b light-harvesting complex, and had a Chl antenna size of the photosystems that was only about 65% of that in the wild type. Molecular and genetic analyses showed a single plasmid insertion in the tla2 strain, causing a chromosomal DNA rearrangement and deletion/disruption of five nuclear genes. The TLA2 gene, causing the tla2 phenotype, was cloned by mapping the insertion site and upon complementation with each of the genes that were deleted. Successful complementation was achieved with the C. reinhardtii TLA2-CpFTSY gene, whose occurrence and function in green microalgae has not hitherto been investigated. Functional analysis showed that the nuclear-encoded and chloroplast-localized CrCpFTSY protein specifically operates in the assembly of the peripheral components of the Chl a-b light-harvesting antenna. In higher plants, a cpftsy null mutation inhibits assembly of both the light-harvesting complex and photosystem complexes, thus resulting in a seedling-lethal phenotype. The work shows that cpftsy deletion in green algae, but not in higher plants, can be employed to generate tla mutants. The latter exhibit improved solar energy conversion efficiency and photosynthetic productivity under mass culture and bright sunlight conditions.  相似文献   

8.
Polle JE  Kanakagiri SD  Melis A 《Planta》2003,217(1):49-59
DNA insertional mutagenesis and screening of the green alga Chlamydomonas reinhardtii was employed to isolate tla1, a stable transformant having a truncated light-harvesting chlorophyll antenna size. Molecular analysis showed a single plasmid insertion into an open reading frame of the nuclear genome corresponding to a novel gene ( Tla1) that encodes a protein of 213 amino acids. Genetic analysis showed co-segregation of plasmid and tla1 phenotype. Biochemical analyses showed the tla1 mutant to be chlorophyll deficient, with a functional chlorophyll antenna size of photosystem I and photosystem II being about 50% and 65% of that of the wild type, respectively. It contained a correspondingly lower amount of light-harvesting proteins than the wild type and had lower steady-state levels of Lhcb mRNA. The tla1 strain required a higher light intensity for the saturation of photosynthesis and showed greater solar conversion efficiencies and a higher photosynthetic productivity than the wild type under mass culture conditions. Results are discussed in terms of the tla1 mutation, its phenotype, and the role played by the Tla1 gene in the regulation of the photosynthetic chlorophyll antenna size in C. reinhardtii.  相似文献   

9.
C. Wilhelm  I. Wiedemann  M. May 《Planta》1990,180(3):456-457
The major light-harvesting complexes from Mantoniella squamata (Prasinophyceae) and from Chlorella fusca (Chlorophyceae) were analyzed with respect to polypeptide composition and pigmentation. It was found that the polypeptides of Mantoniella are smaller than those of Chlorella and bind twice the amount of pigment. We assume that the amount of pigment per polypeptide is of ecological as well as of taxonomical importance.Abbreviations Chl chlorophyll - LHC light-harvesting complex - Xan xanthophyll We thank the support by the Deutsche Forschungsgemeinschaft.  相似文献   

10.
Fluorescence induction curves of purple bacteria (Rs. rubrum, Rps. viridis and Rb. capsulatus) were measured in the sub-millisecond time range employing a xenon flash technique. The induction curves of all three species displayed a sigmoidal shape. Analysis of the curves showed that none of the species examined had an antenna organization of a lake (i.e. unrestricted energy transfer between photosynthetic units). The apparent time constants of inter-unit exciton transfer were estimated to be approximately 24 ps in the case of LHC 1-containing species (Rs. rubrum and Rps. viridis) and 40 ps in the case of the LHC 2-containing species Rb. capsulatus. This result demonstrates that LHC 2 (B800–850) acts as a sort of insulator between photosynthetic units. Assuming a coordination number of 6 in the LHC 1-containing species the mean single step energy transfer time between adjacent LHC 1 can be estimated to be 4–5 ps. This is not perfectly compatible with the much faster Förster transfer rate of <1ps that follows from the minimal chromophore-chromophore distances estimated from digital image processing of micrographs from stained membranes. It thus may be concluded that the photosynthetic units (reaction center plus LHC 1) are loosely arranged in the photosynthetic membrane, like in the fluid-mosaic-membrane model, rather than in a hexagonally crystalline configuration.Abbreviations A antenna pigment - APD avalanche photodiode - LHC 1 light-harvesting complex 1 of purple bacteria - LHC 2 light-harvesting complex 2 of purple bacteria - P primary donor - PSU photosynthetic unit - QA first quinone acceptor - RC reaction center  相似文献   

11.
Truncation of the algal light-harvesting antenna is expected to enhance photosynthetic productivity. The wild type and three mutant strains of Synechocystis sp. strain 6803 with a progressively smaller phycobilisome antenna were examined under different light and CO(2) conditions. Surprisingly, such antenna truncation resulted in decreased whole-culture productivity for this cyanobacterium.  相似文献   

12.
Microalgae have been proposed as eco-friendly feedstocks for biodiesel production, because they accumulate large amounts of lipids and increase their biomass through photosynthesis. However, the photosynthetic efficiency of microalgae is too low for this strategy to be economically feasible. In an effort to overcome this issue, random mutants with reduced chlorophyll antenna size were generated by ethyl methanesulfonate (EMS)-mediated mutagenesis of Chlorella vulgaris. The antenna size mutant, herein designated E5, exhibited 56.5 and 75.8 % decreases in chlorophyll a and b contents, respectively, with significant reductions in the expression levels of peripheral light-harvesting antenna proteins in photosystem II. The saturated photosynthetic activity and electron transport rate of the E5 mutant were significantly higher and also showed reduced non-photochemical quenching (NPQ), compared to those of the wild type. Consequentially, the E5 mutant cultures achieved 44.5 % improvement in biomass productivity under high light (200 μmol photons m?2 s?1). These results suggest that improving the photosynthetic efficiency of microalgae could greatly enhance their biomass production, and such mutant strains can be applicable for large-scale outdoor cultivation which is typically exposed to high light intensity.  相似文献   

13.
Corn ( Zea mays L. cv. OP Golden Bantum) was grown under low irradiance blue, red or blue plus red light. Red was more effective than blue light for synthesis of Chl a, b and light-harvesting proteins (LHC-2) associated with photosystem 2(PS2). Blue light was slightly more effective for synthesis of light-harvesting proteins (LHC-1) associated with photosystem 1 (PS1), but below a fluence rate of 1 μmol m−2 s−1 the response to blue vs that to red depended on irradiance level. Blue light containing a small amount of red light was as effective as red light for Chl a and b synthesis, but no more effective than blue light for LHC-2 synthesis. Adding small amounts of blue light to red repressed the effect of red light on LHC-2 synthesis and produced irradiance response curves similar to those produced by blue alone for LHC-2 synthesis. This repression by blue light depended on the ratio of red to blue and the level of the blue light.  相似文献   

14.
The concept of the Truncated Light-harvesting chlorophyll Antenna (TLA) size, as a tool by which to maximize sunlight utilization and photosynthetic productivity in microalgal mass cultures or high-density plant canopies, is discussed. TLA technology is known to improve sunlight-to-product energy conversion efficiencies and is hereby exemplified by photosynthetic productivity estimates of wild type and a TLA strain under simulated mass culture conditions. Recent advances in the generation of TLA-type mutants by targeting genes of the chloroplast signal-recognition particle (CpSRP) pathway, affecting the thylakoid membrane assembly of light-harvesting proteins, are also summarized. Two distinct CpSRP assembly pathways are recognized, one entailing post-translational, the other a co-translational mechanism. Differences between the post-translational and co-translational integration mechanisms are outlined, as these pertain to the CpSRP-mediated assembly of thylakoid membrane protein complexes in higher plants and green microalgae. The applicability of the CpSRP pathway genes in efforts to generate TLA-type strains with enhanced solar energy conversion efficiency in photosynthesis is evaluated.  相似文献   

15.
A comparative study of photosystem II complexes isolated from tobacco (Nicotiana tabacum L. cv. John William's Broadleaf) which contains normal stacked thylakoid membranes, and from two chlorophyll deficient tobacco mutants (Su/su and Su/su var. Aurea) which have low stacked grana or essentially unstacked thylakoids with occasional membrane doublings, has been carried out. The corresponding photosystem II complexes had an O2 evolving activity ranging from 290 (for the wild type) to 1100 mol O2 x mg chlorophyll-1 x h-1 (for the mutant Su/su var. Aurea). The reduced photosynthetic unit size was also obvious in the mangenese and cytochromeb559 content. The photosystem II complex from the wild type contained 4 Mn and 1 cytochromeb559 per 200 to 280 chlorophylls, while the corresponding value for the mutant Su/su var. Aurea was 4 Mn and 1 cytochromeb559 per 35 to 60 chlorophylls. We have also examined the polypeptide composition and show that the photosystem II complex from the wild type consisted of polypeptides of 48, 42, 33, 32, 30, 28, 23, 21, 18, 16 and 10 kDa, while the mutant complex mainly contained the polypeptides of 48, 42, 33, 32, 30, 28 and 10 kDa. In the mutant photosystem II complex the light-harvesting chlorophyll protein (peptide of 28 kDa) was reduced by a factor of 5 to 6 as compared to the wild type. With respect to the peptide composition and the photosynthetic unit size, the Triton-solubilized photosystem II complex from the mutant Su/su var. Aurea was very similar to O2 evolving photosystem II reaction center core complexes.Abbreviations PS photosystem - chl chlorophyll - LHCP light-harvesting chlorophyll a/b protein complex  相似文献   

16.
Leaves of the two new chlorophyll b-less rice mutants VG28-1, VG30-5 and the wild type rice cv. Zhonghua 11 were subjected to temperatures 28, 36, 40, 44 and 48℃ in the dark for 30 min or gradually elevated temperature from 30℃ to 80℃ at 0.5℃/min. The thermostability of photosynthetic apparatus was estimated by the changes in chlorophyll fluorescence parameters, photosynthetic rate and pigment content, chloroplast ultrastructure and tissue location of H2O2 accumulation. There were different patterns of Fo-temperature curves between the Chl b-less mutants and the wild type plant, and the temperature of Fo rising threshold was shifted 3℃ lower in the Chl b-less mutants (48℃) than in the wild type (51℃). At temperature up to about 45℃, chloroplasts were swollen and thylakoid grana became misty accompanied with the complete loss of photosynthetic oxygen evolution in the two Chl b-less mutants, but chloroplast ultrastruc-ture in the wild type showed no obvious alteration. After 55℃ exposure, the disordered thylakoid and significant H2O2 accumulation in leaves were found in the two Chl b-less mutants, whereas in the wild type plant, less H2O2 was accumulated and the swollen thylakoid still maintained a cer-tain extent of stacking. A large extent of the changes in qP, NPQ and Fv/Fm was consistent with the Pn decreasing rate in the Chl b-less mutants during high temperature treatment as compared with the wild type. The results indicated that the Chl b-less mutants showed a tendency for higher thermosensitivity, and loss of Chl b in LHC II could lead to less thermostability of PSII structure and function. Heat damage to photosynthetic apparatus might be partially attributed to the in-ternal oxidative stress produced at severely high temperature.  相似文献   

17.
Localization of lumenal carbonic anhydrase Cah3 in thylakoid membranes of Chlamydomonas reinhardtii was studied using wild-type algae and photosynthetic mutants with different composition of chlorophyll-protein complexes in the photosystems. In addition, the photosynthetic characteristics of wild-type C. reinhardtii and cia3 mutants lacking the activity of carbonic anhydrase Cah3 were examined. Western blot analysis revealed the lack of cross reaction with antibodies to Cah3 in the mutant lacking the photosystem II (PSII) reaction center, in contrast to the mutant deficient in light-harvesting complex of PSII. These data show that the lumenal Cah3 is associated with polypeptides on the donor side of PSII reaction center. Using immunoelectron microscopy and antibodies to Cah3 from C. reinhardtii, we showed for the first time that the major part of thylakoid Cah3 is localized in the pyrenoid where the bulk of Rubisco is located. The rate of photosynthetic oxygen evolution and PSII photochemical efficiency were lower in C. reinhardtii cia3 mutant than in the wild type, especially in the cells grown at limiting CO2 concentrations. These observations show that Cah3 takes part in CO2-concentrating mechanism of the chloroplast. The results support our hypothesis [1, 2] that the carboxylation reaction in microalgae proceeds in the pyrenoid, a specific Rubisco-containing part of the chloroplast, which acquires CO2 from the lumen of intrapyrenoid thylakoids. We discuss significance of the pyrenoid as an autonomous metabolic microcompartment, in which Cah3 plays a key role in the production and concentration of CO2 for Rubisco. These functions may promote the photosynthetic efficiency owing to the effective CO2 supply for the Calvin cycle.  相似文献   

18.
The Chlamydomonas reinhardtii truncated light-harvesting antenna 4 (tla4) DNA transposon mutant has a pale green phenotype, a lower chlorophyll (Chl) per cell and a higher Chl a/b ratio in comparison with the wild type. It required a higher light intensity for the saturation of photosynthesis and displayed a greater per chlorophyll light-saturated rate of oxygen evolution than the wild type. The Chl antenna size of the photosystems in the tla4 mutant was only about 65% of that measured in the wild type. Molecular genetic analysis revealed that a single plasmid DNA insertion disrupted two genes on chromosome 11 of the mutant. A complementation study identified the “chloroplast signal recognition particle 54” gene (CpSRP54), as the lesion causing the tla4 phenotype. Disruption of this gene resulted in partial failure to assemble and, therefore, lower levels of light-harvesting Chl-binding proteins in the C. reinhardtii thylakoids. A comparative in silico 3-D structure-modeling analysis revealed that the M-domain of the CpSRP54 of C. reinhardtii possesses a more extended finger loop structure, due to different amino acid composition, as compared to that of the Arabidopsis CpSRP54. The work demonstrated that CpSRP54 deletion in microalgae can serve to generate tla mutants with a markedly smaller photosystem Chl antenna size, improved solar energy conversion efficiency, and photosynthetic productivity in high-density cultures under bright sunlight conditions.  相似文献   

19.
Earlier we have shown by in vitro reconstitution experiments that the pigment composition of the chlorophyll alb-binding light-harvesting complex of the green alga Chlorella fusca could be altered in a relatively broad range (Meyer and Wilhelm 1993). In this study we used these reconstituted complexes of different pigment loading to analyze the excitonic interactions between the pigment molecules and the secondary structure by means of circular dichroism spectra in the visible and the far UV spectral regions, respectively. We found that, in contrast to the expectations, the pigment composition and pigment content hardly affected the circular dichroism spectra in the visible spectral region. Reconstituted complexes, independent of their pigment composition, exhibited the most characteristic circular dichroism bands of the native light-harvesting complex, even if one polypeptide bound only 3 chlorophyll a, 3 chlorophyll b and 1–2 xanthophyll molecules. Full restoration of the protein secondary structure, however, could not be achieved. The -helix content depended significantly on the pigment composition as well as on the pigment-protein ratio of the reconstituted complexes. Further binding of pigments resulted in restoration of the minor excitonic circular dichroism bands, the amplitudes of which depended on the pigment content of the reconstituted complexes. These data suggest that in the reconstitution of light-harvesting complexes a central cluster of pigment molecules plays an important role. Further binding of pigments to the peripheral binding sites appeared also to stabilize the protein secondary structure of the reconstituted complexes.Abbreviations CD- circular dichroism - LHC- chlorophyll a/b light-harvesting complex(es) - LHC II- light-harvesting complex(es) of Photosystem II of higher plants - LHCP- light-harvesting Chl a/b-binding protein(s) - PP- polypeptide(s)  相似文献   

20.
One of the major factors limiting biomass productivity in algae is the low thermodynamic efficiency of photosynthesis. The greatest thermodynamic inefficiencies in photosynthesis occur during the conversion of light into chemical energy. At full sunlight the light‐harvesting antenna captures photons at a rate nearly 10 times faster than the rate‐limiting step in photosynthetic electron transport. Excess captured energy is dissipated by non‐productive pathways including the production of reactive oxygen species. Substantial improvements in photosynthetic efficiency have been achieved by reducing the optical cross‐section of the light‐harvesting antenna by selectively reducing chlorophyll b levels and peripheral light‐harvesting complex subunits. Smaller light‐harvesting antenna, however, may not exhibit optimal photosynthetic performance in low or fluctuating light environments. We describe a translational control system to dynamically adjust light‐harvesting antenna sizes for enhanced photosynthetic performance. By expressing a chlorophyllide a oxygenase (CAO) gene having a 5′ mRNA extension encoding a Nab1 translational repressor binding site in a CAO knockout line it was possible to continuously alter chlorophyll b levels and correspondingly light‐harvesting antenna sizes by light‐activated Nab1 repression of CAO expression as a function of growth light intensity. Significantly, algae having light‐regulated antenna sizes had substantially higher photosynthetic rates and two‐fold greater biomass productivity than the parental wild‐type strains as well as near wild‐type ability to carry out state transitions and non‐photochemical quenching. These results have broad implications for enhanced algae and plant biomass productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号