首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fluorescent chelate probe and a Millipore filtration technique have been used to study the effects of β-bungarotoxin (β-toxin) on passive and active Ca++ uptake and ATPase in fragmented sarcoplasmic reticulum (SR) of rabbit skeletal muscle. β-Toxin at 3 × 10?6 M did not affect ATPase activity. In the absence of ATP, β-Toxin increased the passive uptake of Ca++; in the presence of ATP, active Ca++ uptake was inhibited. The effect of β-toxin in SR can be detected at concentrations as low as 10?9 M. The results suggest that β-toxin induces Ca++ leakage in SR membranes.  相似文献   

2.
3.
To elucidate the mechnism by which quercetin enhances the rate of tension development in skinned muscle fibers, effects on calcium release from longitudinal tubule-derived SR (LSR) after phosphate-supported calcium uptake were examined. In all studies, 100 μM quercetin (which inhibits initial calcium uptake velocity 85%) was added at or shortly after the time calcium content reached a maximum at various extravesicular Ca2+ concentrations (Cao). At moderate Cao (0.2–1.0 μM). where spontaneous calcium release rate depended on Cao, quercetin caused a marked stimulation of calcium release. This was accompanied by a 60% reduction in calcium influx and a 30-fold increase in calcium efflux. Thus, the previously reported quercetin-induced increase in the rate of tension development by skinned muscle fibers may result, at least in part, from sensitization of Ca2+-triggered calcium release to lower Cao.  相似文献   

4.
The rates of calcium transport and Ca2+-dependent ATP hydrolysis by rabbit skeletal muscle sarcoplasmic reticulum were stimulated by monovalent cations. The rate of decomposition of phosphoprotein intermediate of the Ca2+-dependent ATPase of sarcoplasmic reticulum was also increased by these ions to an extent that is sufficient to account for the stimulation of calcium transport and Ca2+-dependent ATPase activity. The order of effectiveness of monovalent cations tested at saturating concentrations in increasing rate of phosphoprotein decomposition is: K+, Na+ greater than Rb+, NH4+ greater than Cs+ greater than Li+, choline+, Tris+.  相似文献   

5.
The action of ruthenium red (RR) on Ca2+ loading by and Ca2+ release from the sarcoplasmic reticulum (SR) of chemically skinned skeletal muscle fibers of the rabbit was investigated. Ca2+ loading, in the presence of the precipitating anion pyrophosphate, was monitored by a light-scattering method. Ca2+ release was indirectly measured by following tension development evoked by caffeine. Stimulation of the Ca2+ loading rate by 5 microM RR was dependent on free Ca2+, being maximal at pCa 5.56. Isometric force development induced by 5 mM caffeine was reversibly antagonized by RR. IC50 for the rate of tension rise was 0.5 microM; that for the extent of tension was 4 microM. RR slightly shifted the steady state isometric force/pCa curve toward lower pCa values. At 5 microM RR, the pCa required for half-maximal force was 0.2 log units lower than that of the control, and maximal force was depressed by approximately 16%. These results suggest that RR inhibited Ca2+ release from the SR and stimulated Ca2+ loading into the SR by closing Ca2+-gated Ca2+ channels. Previous studies on isolated SR have indicated the selective presence of such channels in junctional terminal cisternae.  相似文献   

6.
Iron administration results in the development of oxidative stress in skeletal muscles, as evidenced by increases in amounts of lipid oxidation fluorescent end products, decreases in vitamin E concentration, and inhibition of calcium transport by sarcoplasmic reticulum. Exhaustive physical loading or hyperoxia, or their combination, does not lead to apparent modification in calcium transport by sarcoplasmic reticulum in skeletal muscle homogenates. However, physical loading or hyperoxia does in fact induce oxidative stress since they magnify the effect of iron loading on the inhibition of calcium transport.  相似文献   

7.
Corbular sarcoplasmic reticulum of rabbit cardiac muscle   总被引:6,自引:0,他引:6  
The structure of corbular sarcoplasmic reticulum as part of the sarcoplasmic reticulum (SR) in perfusion-fixed rabbit cardiac muscle was studied by thin sections and freeze fracture. In thin sections, processes on the surface of corbular SR have all the anatomical features of junctional processes of junctional SR. By freeze fracture, the E face of corbular SR was particle poor and showed deep pits; the P face was particle rich. The demonstrated structural homology of corbular SR to all forms of junctional SR justifies its inclusion in that group.  相似文献   

8.
Summary The effects of various lysophospholipids on the calcium transport activity of sarcoplasmic reticulum (SR) from rabbit skeletal and canine cardiac muscles were examined. The lipids decreased calcium transport activity in both membrane types; the effectiveness being in the order lysoPC > lsyoPS, lysoPG > lysoPE. The maximum inhibition induced by lysoPC, lysoPG and lysoPS was greater than 85% of the normal Ca2+-transport rate. In cardiac SR lysoPE had a maximal inhibition of about 50%. Half maximal inhibition of calcium transport by lysoPC was achieved at 110 nmoles lysoPC/mg SR. At this concentration of lysoPC, the (Ca2+ + Mg2+)-ATPase and Ca2+-uptake activities were inhibited to the same extent (about 60%) in skeletal sarcoplasmic reticulum, while in cardiac sarcoplasmic reticulum, there was less than 20% inhibition of the Ca2+ + Mg2+-ATPase activity. Studies with EGTA-induced passive calcium efflux showed that up to 200 nmoles lysoPC/mg SR did not alter calcium permeability significantly in cardiac sarcoplasmic reticulum. In skeletal muscle membranes the lysophospholipid mediated decrease in calcium uptake correlated well with the increase in passive calcium efflux due to lysophosphatidylcholine. The difference in the lysophospholipid-induced effects on the sarcoplasmic reticulum from the two muscle types probably reflects variations in protein and other membrane components related to the respective calcium transport systems.  相似文献   

9.
Sarcoplasmic reticulum vesicles were shown to possess a class of tightly bound calcium ions, inaccessible to the chelator, ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid at 0 degrees C or 25 degrees C, amounting to 4.5 nmol/mg of protein (approximately 0.5 mol/mol (Ca2+,Mg2+)-ATPase). The calcium ionophores, A23187 and X537A, induced rapid exchange of tightly bound calcium in the presence of chelator. Chelator alone at 37 degrees C, caused irreversible loss of bound calcium, which correlated with uncoupling of transport from (Ca2+,Mg2+)-ATPase activity. Uncoupling was not accompanied by increased permeability to [14C]inulin. Slow exchange of tightly bound calcium with medium calcium was unaffected by turnover of the ATPase or by tryptic cleavage into 55,000- and 45,000-dalton fragments. Binding studies with labeled calcium suggested that tight binding involves a two-step process: Ca2+ + E in equilibrium K E . Ca2+ leads to E < Ca2+ where E and < Ca2+ represent the ATPase and tightly bound calcium, and K = 1.6 X 10(3) M-1. It is suggested that tightly bound calcium is located in a hydrophobic pocket in, or in close proximity to the ATPase, and, together with tightly bound adenine nucleotides (Aderem, A., McIntosh, D. B., and Berman, M. C. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 3622-03632), is related to the ability of the ATPase to couple hydrolysis of ATP to vectorial transfer of calcium across the membrane.  相似文献   

10.
The Ca2+ uptake mechanism of sarcoplasmic reticulum (SR) was comparatively examined in fast-twitch and slow-twitch muscles. The competition of Mg2+ and Ca2+ at the binding sites is important in the function of the Mg2+-activated Ca2+-ATPase of the SR. The best ratio of divalent cations for Ca2+ uptake is not the same in the two kinds of muscle. The formation of the phosphorylated intermediate in more dependent on changes in the concentrations of the two divalent cations in the SR membrane of the fast-twitch than in that of the slow-twitch muscle. The requirement for Mg2+ to an efficient function of the transport ATPase and Ca2+ uptake of SR is greater in the latter than in the former.  相似文献   

11.
Cardiac sarcoplasmic reticulum contains an endogenous calcium-calmodulin-dependent protein kinase and a 22,000-Da substrate, phospholamban. This kinase is half-maximally activated (EC50) by 3.8 +/- 0.3 microM calcium and is absolutely dependent on exogenous calmodulin (EC50 = 49 nM). To determine the effect of this phosphorylation on calcium transport, sarcoplasmic reticulum vesicles (0.5 mg/ml) were preincubated under conditions for optimal phosphorylation (50 mM potassium phosphate, pH 7.0, 10 mM MgCl2, 0.5 mM EGTA, 0.478 mM CACl2, 0.1 microM calmodulin, 0.5 mM ATP). Control sarcoplasmic reticulum was preincubated under identical conditions but in the absence of ATP to avoid phosphorylation. Both control and phosphorylated vesicles were centrifuged and resuspended in 0.3 M sucrose, 20 mM Tris-HCl, 100 mM KCl, pH 7.0, to remove calmodulin and subsequently assayed for calcium (45Ca) transport in the presence of 2.5 mM Tris-oxalate. Phosphorylation of sarcoplasmic reticulum vesicles by calcium-calmodulin-dependent protein kinase resulted in a significant increase (2- to 4-fold) in the rate of calcium transport at low calcium concentrations (less than 3 microM), while calcium transport was minimally affected at higher calcium. Hill coefficients (n) derived from Hill plots of transport data showed no difference between control and phosphorylated sarcoplasmic reticulum (n = 2.0), indicating that phosphorylation does not alter the cooperativity between calcium sites on the calcium pump. The EC50 for calcium activation of calcium transport by control vesicles was 0.86 +/- 0.1 microM calcium, and phosphorylation of phospholamban decreased this value to 0.61 +/- 0.07 microM calcium (n = 7, p less than 0.028), indicating an increase in the apparent affinity for calcium upon phosphorylation. These results were found to be specific for calcium-calmodulin-dependent phosphorylation of phospholamban. Control experiments on the effects of the reactants used in the phosphorylation assay and subsequent centrifugation of sarcoplasmic reticulum showed no alteration of the rate of calcium transport. Therefore, the calcium pump in cardiac sarcoplasmic reticulum appears to be regulated by an endogenous calcium-calmodulin-dependent protein kinase, and this may provide an important regulatory mechanism for the myocardium.  相似文献   

12.
Unfractionated and low buoyant density sarcoplasmic reticulum vesicles released calcium spontaneously after ATP- or acetyl phosphate-supported calcium uptake when internal Ca2+ was stabilized by the use of 50 mM phosphate as calcium-precipitating anion. This spontaneous calcium release could not be attributed to falling Ca2+ concentration outside the vesicles (Ca02+), substrate depletion, ADP accumulation, nonspecific membrane deterioration or the attainment of a high vesicular calcium content. Instead, spontaneous calcium release was directly proportional to Ca02+ at the time that calcium content was maximal. A causal relationship between high Ca02+ and spontaneous calcium release was suggested by the finding that elevation of Ca02+ from less than 1 μM to 3–5 μM increased the rate and extent of calcium release.The spontaneous calcium release was due both to acceleration of calcium efflux and slowing of calcium influx that was not accompanied by a significant change in the rate of ATP hydrolysis. Neither reversal of the transmembrane KCl gradient nor incubation with cation and proton ionophores abolished the spontaneous calcium release. The persistence of calcium release under conditions where the membrane was permeable to both anions and cations makes it unlikely that this phenomenon is due to a changing transmembrane potential.  相似文献   

13.
14.
15.
Sarcomplasmic reticulum from rabbit fast skeletal muscle contains intrinsic protein kinase activity (ATP:protein phosphotransferase, EC 2.7.1.37) and a substrate. The protein kinase activity was Mg2+ dependent and could also phosphorylate exogenous protein substrates. Autophosphorylation of sarcoplasmic reticulum vesicles was not stimulated by cyclic AMP, neither was it inhibited by the heat-stable protein kinase inhibitor protein. The phosphorylated membranes had the characteristics of a protein with a phosphoester bond. An average of 73 pmol Pi/mg protein were incorporated in 10 min at 30 degrees C. Addition of exogenous cyclic AMP-dependent protein kinase increased the endogenous level of phosphorylation by 25-100%. Sarcoplasmic reticulum membrane phosphorylation, mediated by either endogenous cyclic AMP-independent or exogenous cyclic AMP-dependent protein kinase, occurred on a 100 000 dalton protein and both enzyme activities resulted in enhanced calcium uptake and Ca2+-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3), in a manner similar to cardiac microsomal preparations. Regulation of Ca2+ transport in skeletal sarcoplasmic reticulum may be mediated by phosphorylation of a 100 000 dalton component of these membranes.  相似文献   

16.
To define the mechanism responsible for the slow rate of calcium transport by cardiac sarcoplasmic reticulum, the kinetic properties of the Ca2+-dependent ATPase of canine cardiac microsomes were characterized and compared with those of a comparable preparation from rabbit fast skeletal muscle. A phosphoprotein intermediate (E approximately P), which has the stability characteristics of an acyl phosphate, is formed during ATP hydrolysis by cardiac microsomes. Ca2+ is required for the E approximately P formation, and Mg2+ accelerates its decomposition. The Ca2+ concentration required for half-maximal activation of the ATPase is 4.7 +/- 0.2 muM for cardiac microsomes and 1.3 +/- 0.1 muM for skeletal microsomes at pH 6.8 and 0 degrees. The ATPase activities at saturating concentrations of ionized Ca2+ and pH 6.8, expressed as ATP hydrolysis per mg of protein, are 3 to 6 times lower for cardiac microsomes than for skeletal microsomes under a variety of conditions tested. The apparent Km value for MgATP at high concentrations in the presence of saturating concentrations of ionized Ca2+ is 0.18 +/- 0.03 ms at pH 6.8 and 25 degrees. The maximum velocity of ATPase activity under these conditions is 0.45 +/- 0.05 mumol per mg per min for cardiac microsomes and 1.60 +/- 0.05 mumol per mg per min for skeletal microsomes. The maximum steady state level of E approximately P for cardiac microsomes, 1.3 +/- 0.1 nmol per mg, is significantly less than the value of 4.9 +/- 0.2 nmol per mg for skeletal microsomes, so that the turnover number of the Ca2+-dependent ATPase of cardiac microsomes, calculated as the ratio of ATPase activity to the E approximately P level is similar to that of the skeletal ATPase. These findings indicate that the relatively slow rate of calcium transport by cardiac microsomes, whem compared to that of skeletal microsomes, reflects a lower density of calcium pumping sites and lower Ca2+ affinity for these sites, rather than a lower turnover rate.  相似文献   

17.
The active uptake and efflux of Ca2+ from suspensions of vesicles from heavy rabbit muscle sarcoplasmic reticulum have been examined using the antipyrylazo III dye method in the presence of various nucleotide triphosphate substrates to support active Ca2+ accumulation. On addition of ATP, Ca2+ is rapidly accumulated and maintained at high internal concentrations until the substrate for pump protein is exhausted. Ca2+-induced Ca2+ release which is inhibited by ruthenium red can be demonstrated. The kinetics of Ca2+ release via these channels is different from the Ca2+ efflux observed after substrate exhaustion. This rate was found to be dependent on the type of nucleotide triphosphate, decreasing in the order ATP greater than GTP greater than CTP greater than ITP UTP. It is suggested that different conformations of the Ca2+ pump protein induced by the different substrates may result in the creation of pathways for the facilitated diffusion of Ca2+.  相似文献   

18.
In a previous study we described the inhibitory action of a cytosolic protein fraction from heart muscle on ATP-dependent Ca2 uptake by sarcoplasmic reticulum (SR); further, this inhibition was shown to be blocked by an inhibitor antagonist, also derived from the cytosol (Narayanan et al. Biochim Biophys Acta 735: 53–66, 1983). The present study investigated the ontogenetic expression of the activities of Ca2 transport inhibitor and inhibitor antagonist in heart cytosol during fetal and postnatal development of the rat. The SR Ca2 transport inhibitor activity was undetectable in the cytosol of fetal (15- or 20-days gestation) rat heart but was manifested in the cytosol as early as one day after birth and increased progressively thereafter to reach almost adult levels within the first two weeks of postnatal development. The activity of the SR Ca2 transport inhibitor antagonist was barely detectable in the near-term (20 days gestation) fetus but increased substantially during early postnatal development, in parallel with the rise in activity of the inhibitor. The ontogenetic appearance and increase in the activities of the Ca2 transport inhibitor and its antagonist correlated well with the concurrent appearance and increase in the amounts of two polypeptides of apparent molecular weights 43 kDa and 64 kDa, which we have tentatively identified as the inhibitor and inhibitor antagonist, respectively. The co-ordinated expression of both the inhibitor and inhibitor antagonist activities in the cytosol during the early postnatal period parallels the morphogenesis and functional maturation of SR in cardiac muscle suggesting likely involvement of these cytosolic proteins in the physiological regulation of SR function.  相似文献   

19.
By interaction with sarcoplasmic reticulum from rabbit muscle G-actin loses the capability to polymerize. The modification of actin is due to the concomitant action of the Ca2+ ATPase and of an ADPase embedded in the sarcoplasmic reticulum vesicles. Methyl isobutyl xanthine increases the rate of modification of actin by the sarcoplasmic reticulum vesicles by increasing the rate of the exchange of the actin-bound nucleotide.  相似文献   

20.
Calcium binding to the sarcoplasmic reticulum of rabbit skeletal muscle   总被引:7,自引:0,他引:7  
J Chevallier  R A Butow 《Biochemistry》1971,10(14):2733-2737
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号