首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
spo0H encodes a sigma factor, sigma-H, of RNA polymerase that is required for sporulation in Bacillus subtilis. Null mutations in spo0H block the initiation of sporulation but have no obvious effect on vegetative growth. We have characterized an insertion mutation, csh203::Tn917lac, that makes spo0H essential for normal growth. In otherwise wild-type cells, the csh203::Tn917lac insertion mutation has no obvious effect on cell growth, viability, or sporulation. However, in combination with a mutation in spo0H, the csh203 mutation causes a defect in vegetative growth. The csh203::Tn917lac insertion mutation was found to be located within orf23, the first gene of the rpoD (sigma-A) operon. The transposon insertion separates the major vegetative promoters P1 and P2 from the coding regions of two essential genes, dnaG (encoding DNA primase) and rpoD (encoding the major sigma factor, sigma-A) and leaves these genes under the control of minor promoters, including P4, a promoter controlled by sigma-H. The chs203 insertion mutation caused a 2- to 10-fold increase in expression of promoters recognized by RNA polymerase containing sigma-H. The increased expression of genes controlled by sigma-H in the csh203 single mutant, as well as the growth defect of the csh203 spo0H double mutant, was due to effects on rpoD and not to a defect in orf23 or dnaG.  相似文献   

2.
3.
H L Carter  rd  L F Wang  R H Doi    C P Moran  Jr 《Journal of bacteriology》1988,170(4):1617-1621
  相似文献   

4.
Summary We have mapped the chromosomal locus of rpoD, which encodes the major sigma factor of Bacillus subtilis RNA polymerase. The rpoD locus lay between aroD and lys, tightly linked to dnaE and inseparable from crsA. Marker order in this region was acf-aroD-dnaE-rpoD(crsA)-spoOG-lys. By transformation using cloned donor DNA from the rpoD region, we identified the gene immediately upstream of rpoD as dnaE, which coded for a 62,000 dalton protein essential for DNA replication. Both dnaE and rpoD were transcribed in the same direction, counterclockwise on the chromosome. The gene functions and organization in the rpoD region are thus similar to those of the E. coli sigma operon. We also used transformation to identify crsA47 as a mutation within the sigma coding region itself. The crsA alteration of sigma renders the sporulation process insensitive to glucose catabolite repression, and also restores sporulation ability to strains carrying early-blocked spoOE, spoOF, and spoOK mutations. Thus the major sigma factor and these spoO gene products directly or indirectly affect the same cellular function.  相似文献   

5.
6.
7.
8.
Summary The regulatory regions for the rpsU-dnaG-rpoD macromolecular synthesis operon have been fused to a structural gene whose product is readily assayed (the Cmr structural gene coding for chloramphenicol acetyl transferase, CAT). The promoters (P1, P2, P3, Pa, Pb, Phs) for the macromolecular synthesis operon have different strengths as shown by their relative abilities to drive expression of the CAT gene. Promoter occlusion by P1 can be demonstrated within this operon. Regions 5kb upstream have a profound effect on operon gene expression. There is a thermoinducible promoter located within the dnaG structural gene. One of the macromolecular synthesis operon promoters is under lexA control. Although the operon structure allows coordinate expression of rpsU, dnaG and rpoD these additional features suggest that expression of individual genes can be independently regulated in response to altered growth conditions.Abbreviations Apr ampicillin resistance - CAT chloramphenicol acetyl transferase - Cmr chloramphenicol resistance - kb kilobase pair - orf open reading frame - P promoter - T terminator - Tcr tetracycline resistance  相似文献   

9.
10.
11.
12.
13.
A key event of the sporulation process in Bacillus subtilis is the asymmetric cell division that divides the developing cell into two unequal compartments. To examine the function of vegetative cell division genes in this developmental division, we isolated and characterized the B. subtilis counterpart to the Escherichia coli minicell operon minB, which governs correct placement of the division septum. Starting from the closely linked spo/VFlocus, we used walking methods to isolate the region of the B. subtilis chromosome proximate to the divlVB minicell locus. DNA sequence analysis found two open reading frames whose predicted products had significant identity to the E. coli MinC cell division inhibitor and the MinD ATPase activator of MinC, and disruption of minCD function generated a minicell phenotype in B. subtilis. Notably, no homologue to the E. coli MinE topological specificity element was found in the B. subtilis minCD region. The B. subtilis min genes were part of an operon transcribed from a major promoter more than 2.5 kb upstream from minC. An internal promoter immediately upstream from minC was dependent on RNA polymerase containing sigma-H and was active at the onset of sporulation. However, neither minCnor minD function was absolutely required for sporulation and, by implication, for asymmetric septum formation.  相似文献   

14.
The gerA, gerB, and gerK operons, which encode germinant receptors in spores of Bacillus subtilis, were transcribed only in sporulation, and their mRNA levels peaked initially approximately 3 h before the initiation of accumulation of the spore's dipicolinic acid. After a rapid fall, levels of these mRNAs peaked again approximately 5 h later. In one wild-type strain (PS832), gerA mRNA was the most abundant, with levels of gerB and gerK mRNAs approximately 50% of that of gerA mRNA, whereas gerB mRNA was the most abundant in another wild-type strain (PY79). The synthesis of gerK mRNA in sporulation was abolished by loss of the forespore-specific RNA polymerase sigma factor, sigma(G), and induction of sigma(G) synthesis in vegetative cells led to synthesis of gerK mRNA. SpoVT, a regulator of sigma(G)-dependent gene expression, repressed gerK expression. The gerK promoter showed sequence similarities to sigma(G)-dependent promoters, and deletion of elements of this putative promoter abolished gerK expression in sporulation.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号